2-Aminoethoxydiphenylborane Is an Acute Inhibitor of Directly Photosensitive Retinal Ganglion Cell Activity in Vitro and in Vivo

Total Page:16

File Type:pdf, Size:1020Kb

2-Aminoethoxydiphenylborane Is an Acute Inhibitor of Directly Photosensitive Retinal Ganglion Cell Activity in Vitro and in Vivo The Journal of Neuroscience, April 11, 2007 • 27(15):3981–3086 • 3981 Brief Communications 2-Aminoethoxydiphenylborane Is an Acute Inhibitor of Directly Photosensitive Retinal Ganglion Cell Activity In Vitro and In Vivo Sumathi Sekaran,1 Gurprit S. Lall,2 Katherine L. Ralphs,3 Adrian J. Wolstenholme,3 Robert J. Lucas,2 Russell G. Foster,1 and Mark W. Hankins1 1Circadian and Visual Neuroscience Group, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom, 2Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, and 3Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom The mammalian retina contains directly photosensitive retinal ganglion cells (RGCs), which use the photopigment melanopsin. The generation of mice lacking melanopsin has been invaluable in elucidating the function of these cells. These animals display deficiencies in circadian photoentrainment, the pupil light reflex, and the circadian regulation of the cone pathway. Interpreting the results from such gene knock-out models is always complicated by neuronal plasticity and the potential for restructuring of neuronal networks. Until now, the study of photosensitive RGCs has lacked an acute inhibitor. 2-Aminoethoxydiphenylborane (2-APB) is an antagonist at IP3 receptors and an inhibitor of canonical transient receptor potential ion channels (TRPCs). Here, we show that 2-APB is an extremely potent in vitro inhibitor of the photosensitive RGCs and that its effect is independent of store-dependent Ca 2ϩ release. The identification of canonical TRPC6 and TRPC7 ion channels in melanopsin-expressing ganglion cells suggests that 2-APB may act directly on a TRPC ion channel. Importantly, using the pupil light reflex as a functional assay, we show that 2-APB inhibits photosensitive RGC activity in vivo. Collec- tively, our data further elucidate the phototransduction pathway in the photosensitive RGCs and demonstrate that 2-APB can be used to silence activity in these cells both in vitro and in vivo. Key words: 2-aminoethoxydiphenylborane; melanopsin; retinal ganglion cell; TRPC6; TRPC7; pupil light reflex Introduction The full functional implications of the melanopsin-expressing A small subset of mammalian retinal ganglion cells (RGCs) photosensitive RGCs are unclear. The axons of these cells project (1–3%) are directly photosensitive (Berson et al., 2002; Sekaran et to brain regions involved in non-image-forming functions, in- al., 2003). These cells express melanopsin (Hattar et al., 2002), a cluding the suprachiasmatic nucleus and the olivary pretectal G-protein-coupled receptor protein that forms a fully functional nucleus (Hattar et al., 2002). Somewhat surprisingly, they also photopigment in expression systems (Melyan et al., 2005; Panda innervate a wide range of additional targets, including the lateral et al., 2005; Qiu et al., 2005). To assess the function of the photo- geniculate nucleus, the superior colliculus, and the amygdala Ϫ Ϫ sensitive RGCs, mice with a targeted disruption of the melanop- (Hattar et al., 2006). The use of Opn4 / mice will go some way sin gene (Opn4) have been generated (Hattar et al., 2002; Panda to further our understanding of photosensitive RGC outputs, but et al., 2002). Opn4Ϫ/Ϫ mice lack intrinsic light responses of gan- as with all knock-out models, these studies are confounded by glion cell layer neurons (Hattar et al., 2002) and exhibit deficien- possible neuronal restructuring during development. At present, cies in circadian photoentrainment (Panda et al., 2002), the pupil the field lacks an acute inhibitor of photosensitive RGC activity. light reflex (PLR) (Lucas et al., 2003), and circadian regulation of The main aim of the current study was to identify a pharma- the cone pathway (Barnard et al., 2006). These studies have dem- cological agent that could acutely target the photosensitive RGCs. onstrated that this small population of photosensitive RGCs pro- To narrow our search, we focused on canonical transient receptor vides a significant contribution to non-image-forming photic potential (TRP) ion channels (TRPCs), which have been sug- responses. gested to be the likely endpoint in the phototransduction path- way that couples to melanopsin on the basis of several lines of evidence. Melanopsin shows high sequence homology to inver- Received Oct. 30, 2006; revised March 12, 2007; accepted March 14, 2007. ThisworkwassupportedbytheWellcomeTrustandtheBiotechnologyandBiologicalSciencesResearchCouncil. tebrate opsins (Provencio et al., 1998), which can couple to TRP We thank King-Wai Yau and Samer Hattar for the kind gift of the melanopsin knock-out mouse line. ion channels (Montell, 2005). Coexpression of melanopsin with CorrespondenceshouldbeaddressedtoSumathiSekaran,CircadianandVisualNeuroscienceGroup,Universityof TRPC channels resulted in the generation of a functional pho- Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK. E-mail: topigment (Panda et al., 2005; Qiu et al., 2005). Light-evoked sumathi.sekaran@eye.ox.ac.uk. DOI:10.1523/JNEUROSCI.4716-06.2007 currents in rat photosensitive RGCs can be suppressed by TRPC Copyright © 2007 Society for Neuroscience 0270-6474/07/273981-06$15.00/0 channel blockers (Warren et al., 2006). The results from the 3982 • J. Neurosci., April 11, 2007 • 27(15):3981–3086 Sekaran et al. • 2-APB Blocks Photosensitive Retinal Ganglion Cells present study provide additional support for a role of TRPC (1:500; all from Alomone Labs, Jerusalem, Israel), or ␣-TRPC7 (1:200) channels in the phototransduction pathway of mouse photosen- (supplemental Fig. 1, available at www.jneurosci.org as supplemental sitive RGCs. In particular, we found that the TRPC channel in- material). All TRPC antibodies were raised in rabbit (secondary anti- body, Alexa Fluor 488 donkey ␣-rabbit IgG). Sections were mounted in hibitor 2-aminoethoxydiphenylborane (2-APB) is a potent in- Ј Ј hibitor of intrinsic light-evoked activity in the ganglion cell layer, media with 4 ,6 -diamidino-2-phenylindole dihydrochloride (DAPI) (Vector Laboratories) and visualized with a Zeiss LSM510 confocal both in vitro and in vivo. microscope. Pupillometry. All measurements were restricted to the middle of the Materials and Methods light portion of a 12 h light/dark cycle. The consensual PLR was recorded All procedures were performed under United Kingdom Home Office from dark-adapted (20 min) C3H mice 70–120 d of age (preinjection guidelines. control) (Lucas et al., 2001). Mice were anesthetized with isoflurane Calcium imaging. Retinas from C3H mice (wild type at the rd locus; before intraocular injection. A glass electrode attached to a Hamilton ␮ postnatal days 4–5) and C3H rd/rd cl mice (3–6 months) were placed in syringe was used to inject 1 l of solution containing pharmacological a recording chamber ganglion cell side up and incubated in Ringer’s agents or vehicle control (1% DMSO). Recovery from anesthesia was solution [(in mM) 119 NaCl, 2.5 KCl, 1 KH PO , 1.3 MgCl , 2.5 CaCl , complete within minutes, and postinjection PLR recordings were made 2 4 2 2 ϫ 12 26.2 NaHCO , and 20 D-glucose; equilibrated with 95% O /5% CO ;pH at 20 and 40 min time points. Light stimuli (480 nm; 10 10 photons/ 3 2 2 2 7.4] containing 10 ␮M fura-2 AM (Invitrogen, Paisley, UK). The fluores- cm /s) of 1 min duration were generated using a xenon arc source trans- cent imaging technique has been described in detail previously (Sekaran ferred into an integrating sphere by an optic cable to provide illumina- et al., 2003, 2005). Briefly, the dual-wavelength Ca 2ϩ-sensitive indicator tion to the whole eye. Pupil images were digitally captured using a CCD fura-2 AM was excited alternately at 340 and 380 nm. Emitted fluores- camera and analyzed by software developed in house. After the last pu- ϳ cence (510 nm) was captured with an intensified CCD camera every 2 s. pillary recording, all mice were killed ( 40 min after injection). ϩ Retinas were stimulated at 470 Ϯ 20 nm (4.9 ϫ 10 12–2.9 ϫ 10 15 photons/ Drugs. The following drugs were used: L-( )-2-amino-4- s/cm 2) interleaved between image acquisitions. Pharmacological agents phosphonobutyric acid (L-AP4; Tocris Bioscience, Bristol, UK); DL-2- were administered until two successive light-evoked responses of equiv- amino-5-phosphonopentanoic acid (DL-AP5; Tocris Bioscience); ϩ alent amplitude were obtained (maximum period of drug application 2-aminoethoxydiphenylborane (Tocris Bioscience); ( )-cis-diltiazem was 30 min). The drift in the baseline fluorescence was corrected to the hydrochloride (L-cis-diltiazem; Sigma); cyclopiazonic acid (Tocris Bio- prestimulus values (⌬F/F) by curve fitting. The integrated change in science); 6,7-dinitroquinoxaline-2,3-dione (DNQX; Tocris Bioscience); fluorescence during light stimulation was calculated (F/s 2). Where pos- flufenamic acid (Sigma); SKF96365 hydrochloride (Tocris Bioscience); sible, responses from two repeated stimulations were averaged for the and thapsigargin (Tocris Bioscience). control and drug-treated conditions. Data are expressed as mean Ϯ SEM, and statistical analysis was performed with paired t tests. Results TRPC7 antibody generation and validation. The TRPC7 antibody was Effect of TRPC channel inhibitors on the photosensitive RGC raised against a peptide corresponding to the C-terminal 16 aa of human light response in vitro TRPC7 (hTRPC7) coupled to keyhole limpet hemocyanin using 0.05% To visualize the light responses
Recommended publications
  • Photoperiodic Responses on Expression of Clock Genes, Synaptic Plasticity Markers, and Protein Translation Initiators the Impact of Blue-Enriched Light
    Photoperiodic Responses on Expression of Clock Genes, Synaptic Plasticity Markers, and Protein Translation Initiators The Impact Of Blue-Enriched Light Master report Jorrit Waslander, s2401878 Behavioral Cognitive Neuroscience research master, N-track University of Groningen, the Netherlands Internship at: Bergen Stress and Sleep Group, University of Bergen, Norway Date: 13-7-2018 Internal supervisor, University of Groningen: P. (Peter) Meerlo External supervisor, University of Bergen: J. (Janne) Grønli Daily supervisor, University of Bergen: A. (Andrea) R. Marti Photoperiodic Responses in the PFC Table of Contents Summary ................................................................................................................................................. 3 Introduction ............................................................................................................................................. 5 Research Objective .............................................................................................................................. 8 Hypotheses .......................................................................................................................................... 8 Methods ................................................................................................................................................ 10 Experimental procedure .................................................................................................................... 10 Ethics ............................................................................................................................................
    [Show full text]
  • Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus David C
    University of Connecticut OpenCommons@UConn UCHC Articles - Research University of Connecticut Health Center Research 6-2017 Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus David C. Martinelli University of Connecticut School of Medicine and Dentistry Follow this and additional works at: https://opencommons.uconn.edu/uchcres_articles Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Recommended Citation Martinelli, David C., "Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus" (2017). UCHC Articles - Research. 311. https://opencommons.uconn.edu/uchcres_articles/311 HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Biol Rhythms Manuscript Author . Author Manuscript Author manuscript; available in PMC 2017 November 01. Published in final edited form as: J Biol Rhythms. 2017 June ; 32(3): 222–236. doi:10.1177/0748730417704766. Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus Kylie S. Chew*,†, Diego C. Fernandez*,1, Samer Hattar*,‡,1, Thomas C. Südhof§,‖, and David C. Martinelli§,¶,2 *Department of Biology, The Johns Hopkins University, Baltimore, Maryland †Department of Biology, Stanford University School of Medicine, Stanford, California ‡The Solomon Snyder- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland §Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California ‖Howard Hughes
    [Show full text]
  • The Photoreceptors and Neural Circuits Driving the Pupillary Light Reflex
    THE PHOTORECEPTORS AND NEURAL CIRCUITS DRIVING THE PUPILLARY LIGHT REFLEX by Alan C. Rupp A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland January 28, 2016 This work is protected by a Creative Commons license: Attribution-NonCommercial CC BY-NC Abstract The visual system utilizes environmental light information to guide animal behavior. Regulation of the light entering the eye by the pupillary light reflex (PLR) is critical for normal vision, though its precise mechanisms are unclear. The PLR can be driven by two mechanisms: (1) an intrinsic photosensitivity of the iris muscle itself, and (2) a neural circuit originating with light detection in the retina and a multisynaptic neural circuit that activates the iris muscle. Even within the retina, multiple photoreceptive mechanisms— rods, cone, or melanopsin phototransduction—can contribute to the PLR, with uncertain relative importance. In this thesis, I provide evidence that the retina almost exclusively drives the mouse PLR using bilaterally asymmetric brain circuitry, with minimal role for the iris intrinsic photosensitivity. Intrinsically photosensitive retinal ganglion cells (ipRGCs) relay all rod, cone, and melanopsin light detection from the retina to brain for the PLR. I show that ipRGCs predominantly relay synaptic input originating from rod photoreceptors, with minimal input from cones or their endogenous melanopsin phototransduction. Finally, I provide evidence that rod signals reach ipRGCs using a non- conventional retinal circuit, potentially through direct synaptic connections between rod bipolar cells and ipRGCs. The results presented in this thesis identify the initial steps of the PLR and provide insight into the precise mechanisms of visual function.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Ultrastructure of Melanopsin-Expressing Retinal Ganglion Cell Circuitry in the Retina and Brain Regions that Mediate Light-Driven Behavior Permalink https://escholarship.org/uc/item/8kd9v9xp Author Liu, Yu Hsin Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Ultrastructure of Melanopsin-Expressing Retinal Ganglion Cell Circuitry in the Retina and Brain Regions that Mediate Light-Driven Behavior A dissertation submitted in partial satisfaction of the Requirements for the degree Doctor of Philosophy in Neurosciences by Yu Hsin Liu Committee in charge: Professor Satchidananda Panda, Chair Professor Mark Ellisman, Co-Chair Professor Nicola Allen Professor Brenda Bloodgood Professor Ed Callaway Professor David Welsh 2017 Copyright Yu Hsin Liu, 2017 All rights reserved. This Dissertation of Yu Hsin Liu is approved, and it is acceptable in quality and form for publication on microfilm and electronically: _________________________________________ _________________________________________ _________________________________________ _________________________________________ _________________________________________ Co-Chair _________________________________________ Chair University of California, San Diego 2017 iii TABLE OF CONTENTS Signature Page ..................................................................................................... iii Table
    [Show full text]
  • Distinct Iprgc Subpopulations Mediate Light's Acute and Circadian
    RESEARCH ARTICLE Distinct ipRGC subpopulations mediate light’s acute and circadian effects on body temperature and sleep Alan C Rupp1, Michelle Ren2, Cara M Altimus1, Diego C Fernandez1†, Melissa Richardson1, Fred Turek2, Samer Hattar1,3†, Tiffany M Schmidt2* 1Department of Biology, Johns Hopkins University, Baltimore, United States; 2Department of Neurobiology, Northwestern University, Evanston, United States; 3Department of Neuroscience, Johns Hopkins University, Baltimore, United States Abstract The light environment greatly impacts human alertness, mood, and cognition by both acute regulation of physiology and indirect alignment of circadian rhythms. These processes require the melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), but the relevant downstream brain areas involved remain elusive. ipRGCs project widely in the brain, including to the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Here we show that body temperature and sleep responses to acute light exposure are absent after genetic ablation of all ipRGCs except a subpopulation that projects to the SCN. Furthermore, by chemogenetic activation of the ipRGCs that avoid the SCN, we show that these cells are sufficient for acute changes in body temperature. Our results challenge the idea that the SCN is a major relay for the acute effects of light on non-image forming behaviors and identify the sensory cells that initiate light’s profound effects on body temperature and sleep. *For correspondence: DOI: https://doi.org/10.7554/eLife.44358.001 tiffany.schmidt@northwestern.edu Present address: †National Institute of Mental Health, Introduction Bethesda, United States Many essential functions are influenced by light both indirectly through alignment of circadian Competing interests: The rhythms (photoentrainment) and acutely by a direct mechanism (sometimes referred to as ‘masking’) authors declare that no (Mrosovsky et al., 1999; Altimus et al., 2008; Lupi et al., 2008; Tsai et al., 2009; LeGates et al., competing interests exist.
    [Show full text]
  • BMC Neuroscience Biomed Central
    BMC Neuroscience BioMed Central Research article Open Access Regulation of prokineticin 2 expression by light and the circadian clock Michelle Y Cheng1, Eric L Bittman2, Samer Hattar3 and Qun-Yong Zhou*1 Address: 1Department of Pharmacology, University of California, Irvine, CA, USA, 2Department of Biology, University of Massachusetts, Amherst, MA, USA and 3Departments of Biology and Neuroscience, Johns Hopkins University, Baltimore, MD, USA Email: Michelle Y Cheng - mycheng@uci.edu; Eric L Bittman - elb@bio.umass.edu; Samer Hattar - shattar@jhu.edu; Qun- Yong Zhou* - qzhou@uci.edu * Corresponding author Published: 11 March 2005 Received: 17 November 2004 Accepted: 11 March 2005 BMC Neuroscience 2005, 6:17 doi:10.1186/1471-2202-6-17 This article is available from: http://www.biomedcentral.com/1471-2202/6/17 © 2005 Cheng et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The suprachiasmatic nucleus (SCN) contains the master circadian clock that regulates daily rhythms of many physiological and behavioural processes in mammals. Previously we have shown that prokineticin 2 (PK2) is a clock-controlled gene that may function as a critical SCN output molecule responsible for circadian locomotor rhythms. As light is the principal zeitgeber that entrains the circadian oscillator, and PK2 expression is responsive to nocturnal light pulses, we further investigated the effects of light on the molecular rhythm of PK2 in the SCN.
    [Show full text]
  • Regulation of Prokineticin 2 Expression by Light and the Circadian Clock MY Cheng
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Biology Department Faculty Publication Series Biology 2005 Regulation of prokineticin 2 expression by light and the circadian clock MY Cheng EL Bittman S Hattar QY Zhou Follow this and additional works at: https://scholarworks.umass.edu/biology_faculty_pubs Part of the Biology Commons Recommended Citation Cheng, MY; Bittman, EL; Hattar, S; and Zhou, QY, "Regulation of prokineticin 2 expression by light and the circadian clock" (2005). BMC Neuroscience. 45. https://10.1186/1471-2202-6-17 This Article is brought to you for free and open access by the Biology at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Biology Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu. BMC Neuroscience BioMed Central Research article Open Access Regulation of prokineticin 2 expression by light and the circadian clock Michelle Y Cheng1, Eric L Bittman2, Samer Hattar3 and Qun-Yong Zhou*1 Address: 1Department of Pharmacology, University of California, Irvine, CA, USA, 2Department of Biology, University of Massachusetts, Amherst, MA, USA and 3Departments of Biology and Neuroscience, Johns Hopkins University, Baltimore, MD, USA Email: Michelle Y Cheng - mycheng@uci.edu; Eric L Bittman - elb@bio.umass.edu; Samer Hattar - shattar@jhu.edu; Qun- Yong Zhou* - qzhou@uci.edu * Corresponding author Published: 11 March 2005 Received: 17 November 2004 Accepted: 11 March 2005 BMC Neuroscience 2005, 6:17 doi:10.1186/1471-2202-6-17 This article is available from: http://www.biomedcentral.com/1471-2202/6/17 © 2005 Cheng et al; licensee BioMed Central Ltd.
    [Show full text]
  • KEENAN-DISSERTATION-2017.Pdf (8.719Mb)
    THE PHOTORECEPTORS AND NEUROTRANSMITTERS DRIVING SUBCONCOIUS RESPONSES TO LIGHT by William Thomas Keenan A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October, 2017 © William T. Keenan 2017 All Rights Reserved Abstract Our sensory systems allow us to detect and successfully navigate the environment. The visual system translates environmental light into our conscious perception of sight, as well as subconscious physiological responses such as circadian photoentrainment, the pupillary light reflex, and mood modulation among others. The first step in these processes is photon detection by photoreceptors in the neural retina of the eye. In mammals, 3 general classes of photoreceptors exist: rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs). ipRGCs, in addition to being photoreceptors, are the critical relay for light information from rods and cones to brain areas responsible for the subconscious responses to light. In order for this light information to get to the brain, ipRGCs are known to employ 2 distinct neurotransmitters: glutamate and PACAP. However, the contribution of each photoreceptor and neurotransmitter to subconscious behaviors remains unclear. In this thesis, I demonstrate the role each photoreceptor plays in responding to the multitude of potential environmental light conditions. I show, similar to the photoreceptors, the neurotransmitters relay distinct and necessary aspects of the information detected by the photoreceptors. In addition, I identify novel neurotransmitters within subsets of ipRGCs which may be responsible for relaying their own unique aspect of the light environment to the brain. Thesis advisor: Samer Hattar, Ph.D. Secondary reader: Haiqing Zhao, Ph.D.
    [Show full text]
  • Table of Contents (PDF)
    The Journal of Neuroscience September 24, 2014 • Volume 34 Number 39 • www.jneurosci.org i This Week in The Journal Journal Club 12947 A Role for the Human Substantia Nigra in Reinforcement Learning Archy O. de Berker and Robb B. Rutledge 12950 Neurocognitive Mechanisms for Vocal Emotions: Sounds, Meaning, Action Nadine Lavan and Ce´sar F. Lima Brief Communications ᭹ 13033 The Role of p75NTR in Cholinergic Basal Forebrain Structure and Function Cover legend: Thalamic axonal arbors from Zoran Boskovic, Fabienne Alfonsi, Bree A. Rumballe, Sachini Fonseka, corticothalamic neurons of the primary Francois Windels, and Elizabeth J. Coulson somatosensory (S1) cortex. Colorized fluorescent 13077 An Anti-Neuroinflammatory That Targets Dysregulated Glia Enhances the Efficacy of image from an in vitro slice containing CNS-Directed Gene Therapy in Murine Infantile Neuronal Ceroid Lipofuscinosis EYFP-expressing corticothalamic fibers originating Shannon L. Macauley, Andrew M.S. Wong, Charles Shyng, David P. Augner, from a small injection of virus transducing Josh T. Dearborn, Yewande Pearse, Marie S. Roberts, Stephen C. Fowler, channelrhodopsin2-EYFP into deep S1 cortex. For Jonathan D. Cooper, D. Martin Watterson, and Mark S. Sands more details, see the article by Lee et al. (pages 13170–13182). 13163 Retrospectively and Prospectively Modulated Hippocampal Place Responses Are Differentially Distributed along a Common Path in a Continuous T-Maze Julien Catanese, Alessandro Viggiano, Erika Cerasti, Michae¨l B. Zugaro, and Sidney I. Wiener Articles CELLULAR/MOLECULAR
    [Show full text]
  • (Tolloid/BMP-1) Is Regulated in Aplysia Neurons by Treatments That Induce Long-Term Sensitization
    The Journal of Neuroscience, January 15, 1997, 17(2):755–764 A Developmental Gene (Tolloid/BMP-1) Is Regulated in Aplysia Neurons by Treatments that Induce Long-Term Sensitization Qing-R Liu,1 Samer Hattar,1 Shogo Endo,1 Kathleen MacPhee,1 Han Zhang,2 Leonard J. Cleary,2 John H. Byrne,2 and Arnold Eskin1 1Department of Biochemical and Biophysical Sciences, University of Houston, Houston, Texas 77204, and 2Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas 77225 Long-term sensitization training, or procedures that mimic the increased by serotonin and behavioral training was 41–45% training, produces long-term facilitation of sensory-motor neu- identical to a developmentally regulated gene family which ron synapses in Aplysia. The long-term effects of these proce- includes Drosophila tolloid and human bone morphogenetic dures require mRNA and protein synthesis (Montarolo et al., protein-1 (BMP-1). Both tolloid and BMP-1 encode metallopro- 1986; Castellucci et al., 1989). Using the techniques of differ- teases that might activate TGF-b (transforming growth factor ential display reverse transcription PCR (DDRT-PCR) and ribo- b)-like molecules or process procollagens. Aplysia tolloid/BMP- nuclease protection assays (RPA), we identified a cDNA whose 1-like protein (apTBL-1) might regulate the morphology and mRNA level was increased significantly in sensory neurons by efficacy of synaptic connections between sensory and motor treatments of isolated pleural-pedal ganglia with serotonin for neurons, which are associated with long-term sensitization. 1.5 hr or by long-term behavioral training of Aplysia. The effects of serotonin and behavioral training on this mRNA were mim- Key words: Aplysia; tolloid; metalloprotease; sensitization; icked by treatments that elevate cAMP.
    [Show full text]
  • SRBR 2006 Program Book
    Tenth Meeting Society for Research on Biological Rhythms Program and Abstracts SRBR May 21–25, 2006 Sandestin Golf and Beach Resort Sandestin, FL SOCIETY FOR RESEARCH ON BIOLOGICAL RHYTHMS i Executive Committee Advisory Board G.T.J. van der Horst Erasmus University William J. Schwartz, President Timothy J. Bartness University of Massachusetts Medical Georgia State University Russell N. Van Gelder School Washington University Vincent M. Cassone Martha Gillette, President-Elect Texas A & M Univeristy David R. Weaver University of Illinois University of Massachusetts Medical Philippe Delagrange Center Paul Hardin, Secretary Institut de Recherches Servier Texas A&M University Program Committee France Marie Dumont University of Montreal Vincent Cassone, Treasurer Carla Green, Program Chair Texas A&M University Russell Foster University of Virginia Imperial College of Science Josephine Arendt, Member-at-Large Greg Cahill University of Surrey Jadwiga M. Giebultowicz University of Houston Oregon State University Benjamin Rusak, Member-at-Large Michael Hastings Dalhousie University Martha Gillette MRC University of Illinois Ueli Schibler, Member-at-Large Takao Kondo University of Geneva Carla Green Nagoya University University of Virginia Journal of Biological Theresa Lee Rhythms Erik Herzog University of Michigan Washington University Johanna Meijer Editor-in-Chief Helena Illnerova Leiden University Czech Academy of Sciences Martin Zatz Ignacio Provencio National Institute of Mental Health Carl Johnson University of Virginia Vanderbilt University Associate Editors Louis Ptacek Elizabeth Klerman University of California, San Francisco Josephine Arendt Brigham & Women’s Hospital University of Surrey Paul Taghert Charalambos P. Kyriacou Washington University Paul Hardin University of Leicester Texas A&M University Joseph Takahashi Jennifer Loros Northwestern University Michael Hastings Dartmouth Medical Center MRC, Cambridge Travel Award Committee Ralph E.
    [Show full text]
  • 2021 NIH Virtual Postbac Poster
    NIH VIRTUAL POSTBAC POSTER DAY APRIL 27–29, 2021 #NIHPPD21 NATIONAL INSTITUTES OF HEALTH NIH VIRTUAL POSTBACCALAUREATE POSTER DAY: APRIL 27–29, 2021 4/27 TUESDAY SESSION POSTERS: 1-315 4/28 WEDNESDAY SESSION POSTERS: 316-627 4/29 THURSDAY SESSION POSTERS: 628-950 DATE INSTITUTE OR CENTER POSTER NUMBERS 4/27 NCI - National Cancer Institute ......................................................... 1 - 137 4/27 NCI-DCEG - National Cancer Institute - Division of Cancer Epidemiology and Genetics ......... 138 - 150 4/27 NHGRI - National Human Genome Research Institute .................................... 151 - 189 4/27 NIDDK - National Institute of Diabetes and Digestive and Kidney Diseases ................... 190 - 242 4/27 NIMHD - National Institute on Minority Health and Health Disparities ....................... 243 - 252 4/27 NINDS - National Institute of Neurological Disorders and Stroke ........................... 253 - 305 4/27 NINR - National Institute of Nursing Research .......................................... 306 - 315 4/28 CC - Clinical Center ................................................................ 316 - 346 4/28 NCCIH - National Center for Complementary and Integrative Health ........................ 347 - 359 4/28 NIAAA - National Institute on Alcohol Abuse and Alcoholism .............................. 360 - 396 4/28 NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development .... 397 - 461 4/28 NIDA - National Institute on Drug Abuse ............................................... 462 -
    [Show full text]