Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth

Total Page:16

File Type:pdf, Size:1020Kb

Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth Author Manuscript Published OnlineFirst on May 5, 2020; DOI: 10.1158/0008-5472.CAN-19-2052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Prostaglandin E1 Inhibits GLI2 Amplification-Associated 2 Activation of the Hedgehog Pathway and Drug Refractory 3 Tumor Growth 4 Fujia Wu1,2, Chenze Zhang1,2, Chen Zhao1, Hao Wu1,2, Zhaoqian Teng1,2,3, Tao Jiang4,5,6 *, 5 Yu Wang1,2,3 * 6 1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, 7 Chinese Academy of Sciences, Beijing 100101, China 8 2. University of Chinese Academy of Sciences, Beijing 100049, China 9 3. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, 10 China 11 4. Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, 12 Beijing 100050, China 13 5. Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China 14 6. China National Clinical Research Center for Neurological Diseases, Beijing 100070, 15 China 16 * Corresponding Authors: Yu Wang, State Key Laboratory of Stem Cell and Reproductive 17 Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 18 100101, China. Phone: +86-10-82619461; E-mail: [email protected]; and Tao Jiang, 19 Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing 20 100050, China. Phone: +86-10-59975049; E-mail: [email protected] 21 Current address for Yu Wang: College of Life Sciences and Oceanography, Shenzhen 22 University, Shenzhen, China. 23 Running title: PGE1 inhibits GLI2 activity and drug refractory tumor growth. 24 Conflict of interest statement: The authors declare no potential conflicts of interest. 25 Page 1 of 29 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 5, 2020; DOI: 10.1158/0008-5472.CAN-19-2052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Abstract 2 Aberrant activation of the Hedgehog (HH) signaling pathway underlines the initiation and 3 progression of a multitude of cancers. The effectiveness of the leading drugs vismodegib 4 (GDC-0449) and sonidegib (LDE225), both Smoothened (SMO) antagonists, is compromised 5 by acquisition of mutations that alter pathway components, notably secondary mutations in 6 SMO and amplification of GLI2, a transcriptional mediator at the end of the pathway. 7 Pharmacological blockade of GLI2 activity could ultimately overcome these diversified 8 refractory mechanisms, which would also be effective in a broader spectrum of primary 9 tumors than current SMO antagonists. To this end, we conducted a high-content screen 10 directly analyzing the ciliary translocation of GLI2, a key event for GLI2 activation in HH 11 signal transduction. Several prostaglandin compounds were shown to inhibit accumulation of 12 GLI2 within the primary cilium (PC). In particular, prostaglandin E1 (PGE1), an 13 FDA-approved drug, is a potent GLI2 antagonist that overcame resistance mechanisms of 14 both SMO mutagenesis and GLI2 amplification. Consistent with a role in HH pathway 15 regulation, EP4 receptor localized to the PC. Mechanistically, PGE1 inhibited HH signaling 16 through the EP4 receptor, enhancing cAMP-PKA activity, which promoted phosphorylation 17 and degradation of GLI2 via the ubiquitination pathway. PGE1 also effectively inhibited the 18 growth of drug refractory human medulloblastoma (MB) xenografts. Together, these results 19 identify PGE1 and other prostaglandins as potential templates for complementary therapeutic 20 development to circumvent resistance to current generation SMO antagonists in use in the 21 clinic. 22 Significance 23 Findings show that PGE1 exhibits pan-inhibition against multiple drug refractory activities 24 for Hedgehog-targeted therapies and elicits significant anti-tumor effects in xenograft models 25 of drug refractory human medulloblastoma mimicking GLI2 amplification. 26 Page 2 of 29 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 5, 2020; DOI: 10.1158/0008-5472.CAN-19-2052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Introduction 2 The evolutionarily conserved HH signaling pathway plays critical roles in embryonic 3 patterning and adult tissue homeostasis (1,2). Hyperactive HH signaling has been linked to a 4 range of malignant tumors through tumor initiation, maintenance of tumor stem/progenitor 5 cells, and support of tumor-stroma interaction (3,4). Therefore, the HH signaling has emerged 6 as a therapeutic target of interest for cancer therapy and intensive efforts have been made to 7 develop targeted pathway antagonists. 8 Mammalian HH signal transduction is controlled by the Patched1 (PTCH1)-mediated 9 suppression of SMO, a seven-pass transmembrane protein which traffics continuously 10 through the primary cilium (PC) (5,6). Inactive SMO failed to regulate the activity state of 11 GLI2, the primary transcription activator of HH pathway, which thus was sequentially 12 phosphorylated by protein kinase A (PKA), glycogen synthase kinase-3β (GSK-3β), and 13 casein kinase 1 (CK1), and trafficked to the proteasome for degradation. On HH ligand (Sonic 14 hedgehog [SHH], Desert hedgehog [DHH], or Indian hedgehog [IHH]) binding to the shared 15 receptor PTCH1, the inhibitory effect on SMO is relieved, enabling SMO ciliary 16 accumulation and activation (5,6). Consequently, GLI2 translocates in activated full-length 17 form from the cilium to the nucleus (7), where it induces orchestrated expression of target 18 genes, including GLI1 and PTCH1. 19 Constitutive HH signaling contributes to tumorigenesis mainly through two types of 20 mechanisms. First, ligand-independent hyperactive pathway activity within the tumor cell 21 drives tumorigenesis in basal cell carcinoma (BCC), the most common cancer in Caucasian 22 population (8), medulloblastoma (MB), the most common childhood brain cancer (9), and 23 rhabdomyosarcoma (RMS) (10). Almost all BCC is initiated by ligand-independent HH 24 activity, most commonly through PTCH1 loss-of-function or SMO gain-of-function mutations 25 (11,12). Similarly, hyperactive HH signaling has emerged as the driver in approximately 30% 26 of MB through ligand-independent mechanisms including inactivating mutations in PTCH1 27 and SUFU, and genomic amplification of GLI2 (13-15). Second, HH pathway activation in 28 surrounding stromal cells has been found to support the growth of tumor cells in a paracrine 29 manner, whereby stromal cells receive HH ligand from tumor cells and secret stimulatory Page 3 of 29 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on May 5, 2020; DOI: 10.1158/0008-5472.CAN-19-2052 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 factor in response for tumor progression (16). Such mechanism was documented in a broad 2 range of malignancies, most notably those in blood, pancreas, lung, stomach, colon, and 3 prostate (3). Clinical implications of the paracrine mechanism of action are yet to be clarified 4 as most clinical trials using HH pathway antagonists to treat these cancers did not meet a 5 positive conclusion (4). However, glasdegib was recently approved by the U.S. Food and 6 Drug Administration (FDA) for acute myeloid leukemia (AML), thus highlighting potential 7 expanded use of HH targeted cancer therapy beyond BCC and MB (17). 8 Cyclopamine, a natural compound found in wild corn lily (Veratrum californicum), was 9 identified as the first HH pathway inhibitor directly targeting SMO (18). Since then, many 10 more SMO inhibitors have been developed and several of them, including vismodegib, 11 sonidegib, glasdegib, LY2940680, and BMS-833923, have delivered promising results in 12 preclinical and clinical studies in HH-dependent cancers (3). Both vismodegib and sonidegib 13 have been approved by the U.S. FDA for treatment of advanced BCC (19,20). However, 14 acquired resistance to vismodegib and sonidegib limits their long-term efficacy. Drug 15 resistance can be acquired by genetic aberrations of multiple pathway components including 16 SMO mutations, SUFU mutations, and GLI2 amplifications (21-24). Notably, intra-tumor 17 heterogeneity of those drug refractory mechanisms was identified, further complicating the 18 situation that next generation cancer therapy needs to tackle (21). In addition, current 19 anti-SMO therapies failed to target primary tumors harboring mutations downstream of SMO 20 level (25). 21 The emergence of multiple drug resistance mechanisms associated with current SMO 22 antagonists and lack of therapies targeting HH pathway downstream of SMO level has 23 prompted our investigations into alternative approaches. From a perspective of pathway 24 epistasis, we reasoned that targeting hyperactive GLI2, the central transcription activator of 25 the pathway, would potentially deliver more effective therapeutic interventions that may 26 pan-inhibit various drug refractory mechanisms. Herein, we reported the discovery of a 27 number of prostaglandins in a high content screening for small molecules inhibiting GLI2 28 ciliary accumulation. We demonstrated that prostaglandin
Recommended publications
  • Hedgehog Signaling Is Evolutionarily Conserved Cilium-Independent
    Downloaded from genesdev.cshlp.org on August 14, 2009 - Published by Cold Spring Harbor Laboratory Press Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved Miao-Hsueh Chen, Christopher W. Wilson, Ya-Jun Li, et al. Genes Dev. 2009 23: 1910-1928 Access the most recent version at doi:10.1101/gad.1794109 Supplemental http://genesdev.cshlp.org/content/suppl/2009/07/23/23.16.1910.DC1.html Material References This article cites 97 articles, 47 of which can be accessed free at: http://genesdev.cshlp.org/content/23/16/1910.full.html#ref-list-1 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genes & Development go to: http://genesdev.cshlp.org/subscriptions Copyright © 2009 by Cold Spring Harbor Laboratory Press Downloaded from genesdev.cshlp.org on August 14, 2009 - Published by Cold Spring Harbor Laboratory Press Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved Miao-Hsueh Chen,1,3 Christopher W. Wilson,1,3 Ya-Jun Li,1 Kelvin King Lo Law,2 Chi-Sheng Lu,1 Rhodora Gacayan,1 Xiaoyun Zhang,2 Chi-chung Hui,2 and Pao-Tien Chuang1,4 1Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA; 2Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada A central question in Hedgehog (Hh) signaling is how evolutionarily conserved components of the pathway might use the primary cilium in mammals but not fly.
    [Show full text]
  • Gli Transcription Factors Mediate the Oncogenic Transformation of Prostate Basal Cells Induced by a Kras-Androgen Receptor Axis*
    crossmark THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 291, NO. 49, pp. 25749–25760, December 2, 2016 © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Gli Transcription Factors Mediate the Oncogenic Transformation of Prostate Basal Cells Induced by a Kras-Androgen Receptor Axis*□S Received for publication, August 12, 2016, and in revised form, September 28, 2016 Published, JBC Papers in Press, October 19, 2016, DOI 10.1074/jbc.M116.753129 Meng Wu‡, Lishann Ingram‡, Ezequiel J. Tolosa§, Renzo E. Vera§, Qianjin Li‡, Sungjin Kim‡, Yongjie Ma‡, Demetri D. Spyropoulos¶, Zanna Beharryʈ, Jiaoti Huang**, Martin E. Fernandez-Zapico§, and Houjian Cai‡1 From the ‡Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, the §Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, the ¶Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, the ʈDepartment of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, and the **Department of Pathology, School of Medicine, Duke University, Durham, North Carolina 27710 Edited by Eric Fearon Although the differentiation of oncogenically transformed cer progression has been characterized with multiple stages, 2 basal progenitor cells is one of the key steps in prostate tumori- including benign, prostatic intraepithelial neoplasia (PIN), Downloaded from genesis, the mechanisms mediating this cellular process are still invasive adenocarcinoma, and metastatic cancer (2). Numerous ؉ largely unknown. Here we demonstrate that an expanded p63 oncogenic driver genes, including loss of tumor suppressors, ؉ and CK5 basal/progenitor cell population, induced by the con- overexpression, and/or activation of oncogenes, have been comitant activation of oncogenic Kras(G12D) and androgen identified based on genetic analysis of clinical prostate tumors.
    [Show full text]
  • 16171145.Pdf
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Radboud Repository PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/86683 Please be advised that this information was generated on 2017-12-06 and may be subject to change. OBSTETR GYNEC European Journal of Obstetrics & Gynecology ELSEV and Reproductive Biology 61 (1995) 171-173 Case report Critical limb ischemia after accidental subcutaneous infusion of sulprostone Yvonne W.C.M. de Koninga, Peter W. Plaisierb, I. Leng Tanc, Fred K. Lotgering*a aDepartment o f Obstetrics and Gynaecology, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands bDepartment o f General Surgery, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands cDepartment o f Radiology, Erasmus University, School o f Medicine and Health Sciences, EUR EE 2283, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands Received 23 September 1994; accepted 20 January 1995 Abstract A 34-year-old patient was treated with constant intravenous infusion of sulprostone because of postpartum hemorrhage from a hypotonic uterus. The arm in which sulprostone had been infused was painful 23 h after infusion. A day later, the arm was found to be blueish, edematous and extremely painful as a result of arterial spasm. The vasospasm was probably caused by accidental subcutaneous infusion of sulprostone as a result of a displaced intravenous catheter.
    [Show full text]
  • Non-Canonical Activation of Hedgehog in Prostate Cancer Cells Mediated by the Interaction of Transcriptionally Active Androgen Receptor Proteins with Gli3
    Oncogene (2018) 37:2313–2325 https://doi.org/10.1038/s41388-017-0098-7 ARTICLE Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3 1 1,2 2 1 1 1 2,3 Na Li ● Sarah Truong ● Mannan Nouri ● Jackson Moore ● Nader Al Nakouzi ● Amy Anne Lubik ● Ralph Buttyan Received: 19 July 2017 / Revised: 18 October 2017 / Accepted: 29 November 2017 / Published online: 12 February 2018 © The Author(s) 2018. This article is published with open access Abstract Hedgehog (Hh) is an oncogenic signaling pathway that regulates the activity of Gli transcription factors. Canonical Hh is a Smoothened-(Smo-) driven process that alters the post-translational processing of Gli2/Gli3 proteins. Though evidence supports a role for Gli action in prostate cancer (PCa) cell growth and progression, there is little indication that Smo is involved. Here we describe a non-canonical means for activation of Gli transcription in PCa cells mediated by the binding of transcriptionally-active androgen receptors (ARs) to Gli3. Androgens stimulated reporter expression from a Gli-dependent promoter in a variety of AR + PCa cells and this activity was suppressed by an anti-androgen, Enz, or by AR knockdown. 1234567890();,: Androgens also upregulated expression of endogenous Gli-dependent genes. This activity was associated with increased intranuclear binding of Gli3 to AR that was antagonized by Enz. Fine mapping of the AR binding domain on Gli2 showed that AR recognizes the Gli protein processing domain (PPD) in the C-terminus. Mutations in the arginine-/serine repeat elements of the Gli2 PPD involved in phosphorylation and ubiquitinylation blocked the binding to AR.
    [Show full text]
  • Differential Activity and Clinical Utility of Latanoprost in Glaucoma and Ocular Hypertension
    Clinical Ophthalmology Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Differential activity and clinical utility of latanoprost in glaucoma and ocular hypertension Fernanda Pacella Background: The purpose of this study was to demonstrate the hypotensive efficacy and tolerability Paolo Turchetti of latanoprost when used as monotherapy and as polytherapy associated with antiglaucomatous Valentina Santamaria medication proven to be ineffective in keeping intraocular pressure under control. David Impallara Methods: Three hundred and thirty-seven patients (672 eyes) affected by primary open-angle Gianpaolo Smaldone glaucoma and intraocular hypertension were recruited over a period of 10 years from the Chiara Brillante Glaucoma Centre, Department of Ophthalmological Sciences, University of Rome “Sapienza”, and treated, subject to informed consent, with latanoprost 0.005% alone or in combination Aloisa Librando with other ocular hypotensive drugs. The patients were followed during this period at regular Angela Damiano intervals, with determination of visual field, fundus oculi, visual acuity, and eventual onset of Jose Pecori-Giraldi local and systemic side effects. Elena Pacella Results: Latanoprost used as monotherapy and as polytherapy renders possible optimal and Department of Sense Organs, durable control of intraocular pressure in the form of one antiglaucomatous drug because it can University of Rome “Sapienza”, substitute for one or more drugs and obtain the same hypotensive effect. Roma,
    [Show full text]
  • Tamoxifen Resistance: Emerging Molecular Targets
    International Journal of Molecular Sciences Review Tamoxifen Resistance: Emerging Molecular Targets Milena Rondón-Lagos 1,*,†, Victoria E. Villegas 2,3,*,†, Nelson Rangel 1,2,3, Magda Carolina Sánchez 2 and Peter G. Zaphiropoulos 4 1 Department of Medical Sciences, University of Turin, Turin 10126, Italy; [email protected] 2 Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 11001000, Colombia; [email protected] 3 Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá 11001000, Colombia 4 Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden; [email protected] * Correspondence: [email protected] (M.R.-L.); [email protected] (V.E.V.); Tel.: +39-01-1633-4127 (ext. 4388) (M.R.-L.); +57-1-297-0200 (ext. 4029) (V.E.V.); Fax: +39-01-1663-5267 (M.R.-L.); +57-1-297-0200 (V.E.V.) † These authors contributed equally to this work. Academic Editor: William Chi-shing Cho Received: 5 July 2016; Accepted: 16 August 2016; Published: 19 August 2016 Abstract: 17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells.
    [Show full text]
  • Effect of Prostanoids on Human Platelet Function: an Overview
    International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1).
    [Show full text]
  • GLI2 but Not GLI1/GLI3 Plays a Central Role in the Induction of Malignant Phenotype of Gallbladder Cancer
    ONCOLOGY REPORTS 45: 997-1010, 2021 GLI2 but not GLI1/GLI3 plays a central role in the induction of malignant phenotype of gallbladder cancer SHU ICHIMIYA1, HIDEYA ONISHI1, SHINJIRO NAGAO1, SATOKO KOGA1, KUKIKO SAKIHAMA2, KAZUNORI NAKAYAMA1, AKIKO FUJIMURA3, YASUHIRO OYAMA4, AKIRA IMAIZUMI1, YOSHINAO ODA2 and MASAFUMI NAKAMURA4 Departments of 1Cancer Therapy and Research, 2Anatomical Pathology, 3Otorhinolaryngology and 4Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan Received August 10, 2020; Accepted December 7, 2020 DOI: 10.3892/or.2021.7947 Abstract. We previously reported that Hedgehog (Hh) signal Introduction was enhanced in gallbladder cancer (GBC) and was involved in the induction of malignant phenotype of GBC. In recent Gallbladder cancer (GBC) is the seventh most common gastro- years, therapeutics that target Hh signaling have focused on intestinal carcinoma and accounts for 1.2% of all cancer cases molecules downstream of smoothened (SMO). The three tran- and 1.7% of all cancer-related deaths (1). GBC develops from scription factors in the Hh signal pathway, glioma-associated metaplasia to dysplasia to carcinoma in situ and then to invasive oncogene homolog 1 (GLI1), GLI2, and GLI3, function down- carcinoma over 5‑15 years (2). During this time, GBC exhibits stream of SMO, but their biological role in GBC remains few characteristic symptoms, and numerous cases have already unclear. In the present study, the biological significance of developed into locally advanced or metastasized cancer by the GLI1, GLI2, and GLI3 were analyzed with the aim of devel- time of diagnosis. Gemcitabine (GEM), cisplatin (CDDP), and oping novel treatments for GBC.
    [Show full text]
  • Misoprostol Tablets
    Cytotec® misoprostol tablets WARNINGS CYTOTEC (MISOPROSTOL) ADMINISTRATION TO WOMEN WHO ARE PREGNANT CAN CAUSE BIRTH DEFECTS, ABORTION, PREMATURE BIRTH OR UTERINE RUPTURE. UTERINE RUPTURE HAS BEEN REPORTED WHEN CYTOTEC WAS ADMINISTERED IN PREGNANT WOMEN TO INDUCE LABOR OR TO INDUCE ABORTION. THE RISK OF UTERINE RUPTURE INCREASES WITH ADVANCING GESTATIONAL AGES AND WITH PRIOR UTERINE SURGERY, INCLUDING CESAREAN DELIVERY (see also PRECAUTIONS and LABOR AND DELIVERY). CYTOTEC SHOULD NOT BE TAKEN BY PREGNANT WOMEN TO REDUCE THE RISK OF ULCERS INDUCED BY NONSTEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs) (see CONTRAINDICATIONS, WARNINGS, and PRECAUTIONS). PATIENTS MUST BE ADVISED OF THE ABORTIFACIENT PROPERTY AND WARNED NOT TO GIVE THE DRUG TO OTHERS. Cytotec should not be used for reducing the risk of NSAID-induced ulcers in women of childbearing potential unless the patient is at high risk of complications from gastric ulcers associated with use of the NSAID, or is at high risk of developing gastric ulceration. In such patients, Cytotec may be prescribed if the patient has had a negative serum pregnancy test within 2 weeks prior to beginning therapy. is capable of complying with effective contraceptive measures. has received both oral and written warnings of the hazards of misoprostol, the risk of possible contraception failure, and the danger to other women of childbearing potential should the drug be taken by mistake. will begin Cytotec only on the second or third day of the next normal menstrual period. DESCRIPTION Cytotec oral tablets contain either 100 mcg or 200 mcg of misoprostol, a synthetic prostaglandin E1 analog. 1 Reference ID: 4228046 Misoprostol contains approximately equal amounts of the two diastereomers presented below with their enantiomers indicated by (±): Misoprostol is a water-soluble, viscous liquid.
    [Show full text]
  • Unoprostone Isopropyl (Rescula) Reference Number: HIM.PA.11 Effective Date: 09.04.18 Last Review Date: 11.19 Revision Log Line of Business: HIM
    Clinical Policy: Unoprostone Isopropyl (Rescula) Reference Number: HIM.PA.11 Effective Date: 09.04.18 Last Review Date: 11.19 Revision Log Line of Business: HIM See Important Reminder at the end of this policy for important regulatory and legal information. Description Unoprostone isopropyl ophthalmic solution, 0.15% (Rescula®) is a synthetic analog (docosanoid) of prostaglandin F2-alpha. FDA Approved Indication(s) Rescula is indicated for the reduction of elevated intraocular pressure in patients with open-angle glaucoma or ocular hypertension. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Rescula is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Ocular Hypertension or Open-Angle Glaucoma (must meet all): 1. Diagnosis of open-angle glaucoma or ocular hypertension; 2. Failure of prostaglandin analogues (e.g., latanoprost, travoprost, bimatoprost) in combination with beta blockers (e.g., timolol), unless contraindicated or clinically significant adverse effects are experienced; 3. Age ≥ 18 years; 4. Dose does not exceed 1 bottle per 35 days. Approval duration: 12 months B. Other diagnoses/indications 1. Refer to the off-label use policy for the relevant line of business if diagnosis is NOT specifically listed under section III (Diagnoses/Indications for which coverage is NOT authorized): HIM.PHAR.21 for health insurance marketplace. II. Continued Therapy A. Ocular Hypertension or Open-Angle Glaucoma (must meet all): 1. Currently receiving medication via Centene benefit or member has previously met initial approval criteria; 2.
    [Show full text]
  • Misoprostol Induces Relaxation of Human Corpus Cavernosum Smooth Muscle: Comparison to Prostaglandin E1
    International Journal of Impotence Research (2000) 12, 107±110 ß 2000 Macmillan Publishers Ltd All rights reserved 0955-9930/00 $15.00 www.nature.com/ijir Misoprostol induces relaxation of human corpus cavernosum smooth muscle: comparison to prostaglandin E1 RB Moreland1, NN Kim1, A Nehra2, BG Parulkar3 and A Traish1,4* 1Department of Urology, Boston University School of Medicine, Boston, MA 02118, USA; 2Department of Urology, Mayo Clinic and Foundation, Rochester, MN 55905, USA; 3Department of Urology, University of Massachusetts Medical Center, Worcester, MA 01604, USA; and 4Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA Prostaglandin E1 (PGE1) relaxes trabecular smooth muscle by interacting with speci®c G-protein coupled receptors on human corpus cavernosum smooth muscle and increasing intracellular synthesis of cAMP. Misoprostol (CytotecTM), is an oral prostaglandin E analogue. The purpose of this study was to compare the functional activity of misoprostol with PGE1 in human corpus cavernosum and cultured human corpus cavernosum smooth muscle cells. Misoprostol, misoprostol free acid or PGE1 induced dose-dependent relaxations in strips of human corpus cavernosum. At concentrations greater than 1076 M, tissue recontraction was observed with all three agents. This was abrogated by pretreatment with the thromboxane A2 receptor antagonist SQ29,548. From these observations, we conclude that misoprostol is activated by human corpus cavernosum in situ and relaxes phenylephrine-precontrated tissue
    [Show full text]
  • The EP2 Receptor Is the Predominant Prostanoid Receptor in the Human
    110 BritishJournalofOphthalmology 1993; 77: 110-114 The EP2 receptor is the predominant prostanoid receptor in the human ciliary muscle Br J Ophthalmol: first published as 10.1136/bjo.77.2.110 on 1 February 1993. Downloaded from Toshihiko Matsuo, Max S Cynader Abstract IP prostanoid receptors, respectively. The EP Prostaglandins canreduce intraocularpressure receptor can be further classified into three by increasing uveoscleral outflow. We have subtypes, called EPI, EP2, and EP3 previously demonstrated that the human receptors.'89 The framework of the receptor ciliary muscle was a zone of concentration for classification has been supported in part, by binding sites (receptors) for prostaglandin F2a cloning and expression of cDNA for a human and for prostaglandin E2. Here, we try to thromboxane A2 receptor.20 elucidate the types of prostanoid receptors in It is important to know the types ofprostanoid the ciliary muscle using competitive ligand receptors located on the human ciliary muscle in binding studies in human eye sections and order to understand its role in uveoscleral out- computer assisted autoradiographic densito- flow, and to design new drugs with more potency metry. Saturation binding curves showed that and fewer adverse effects. In this study we tried the human ciliary muscle had a large number of to elucidate the type(s) of prostanoid receptors binding sites with a high affinity for prosta- located on the human ciliary muscle by glandin E2 compared with prostaglandin D2 combining receptor autoradiography with and F2,. The binding oftritiated prostaglandin competitive binding studies with various ligands E2 and F2a in the ciliary muscle was displaced on human eye sections.
    [Show full text]