Burdzies.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Burdzies.Pdf de Gruyter Studies in Mathematics 5 Editors: Carlos Kenig · Andrew Ranicki · Michael Röckner de Gruyter Studies in Mathematics 1 Riemannian Geometry, 2nd rev. ed., Wilhelm P. A. Klingenberg 2 Semimartingales, Michel Me´tivier 3 Holomorphic Functions of Several Variables, Ludger Kaup and Burchard Kaup 4 Spaces of Measures, Corneliu Constantinescu 5Knots, Gerhard Burde and Heiner Zieschang 6Ergodic Theorems, Ulrich Krengel 7Mathematical Theory of Statistics, Helmut Strasser 8Transformation Groups, Tammo tom Dieck 9 Gibbs Measures and Phase Transitions, Hans-Otto Georgii 10 Analyticity in Infinite Dimensional Spaces, Michel Herve´ 11 Elementary Geometry in Hyperbolic Space, Werner Fenchel 12 Transcendental Numbers, Andrei B. Shidlovskii 13 Ordinary Differential Equations, Herbert Amann 14 Dirichlet Forms and Analysis on Wiener Space, Nicolas Bouleau and Francis Hirsch 15 Nevanlinna Theory and Complex Differential Equations, Ilpo Laine 16 Rational Iteration, Norbert Steinmetz 17 Korovkin-type Approximation Theory and its Applications, Francesco Altomare and Michele Campiti 18 Quantum Invariants of Knots and 3-Manifolds, Vladimir G. Turaev 19 Dirichlet Forms and Symmetric Markov Processes, Masatoshi Fukushima, Yoichi Oshima and Masayoshi Takeda 20 Harmonic Analysis of Probability Measures on Hypergroups, Walter R. Bloom and Herbert Heyer 21 Potential Theory on Infinite-Dimensional Abelian Groups, Alexander Bendikov 22 Methods of Noncommutative Analysis, Vladimir E. Nazaikinskii, Victor E. Shatalov and Boris Yu. Sternin 23 Probability Theory, Heinz Bauer 24 Variational Methods for Potential Operator Equations, Jan Chabrowski 25 The Structure of Compact Groups, Karl H. Hofmann and Sidney A. Morris 26 Measure and Integration Theory, Heinz Bauer 27 Stochastic Finance, Hans Föllmer and Alexander Schied 28 Painleve´ Differential Equations in the Complex Plane, Valerii I. Gromak, Ilpo Laine and Shun Shimomura 29 Discontinuous Groups of Isometries in the Hyperbolic Plane, Werner Fenchel and Jakob Nielsen Gerhard Burde · Heiner Zieschang Knots Second Revised and Extended Edition Walter de Gruyter ≥ Berlin · New York 2003 Authors Gerhard Burde Heiner Zieschang Fachbereich Mathematik (Fach 187) Fakultät für Mathematik Universität Frankfurt am Main Ruhr-Universität Bochum Robert-Mayer-Str. 6Ϫ10 Universitätsstr. 150 60325 Frankfurt/Main 44801 Bochum Germany Germany Series Editors Carlos E. Kenig Andrew Ranicki Michael Röckner Department of Mathematics Department of Mathematics Fakultät für Mathematik University of Chicago University of Edinburgh Universität Bielefeld 5734 University Ave Mayfield Road Universitätsstraße 25 Chicago, IL 60637, USA Edinburgh EH9 3JZ, Scotland 33615 Bielefeld, Germany Mathematics Subject Classification 2000: 57-02; 57M25, 20F34, 20F36 Keywords: knots; links; fibred knots; torus knots; factorization; braids; branched coverings; Montesinos links; knot groups; Seifert surfaces; Alexander polynomials; Seifert matrices; cyclic periods of knots; homfly polynomial With 184 figures Țȍ Printed on acid-free paper which falls within the guidelines of the ANSI to ensure permanence and durability. Library of Congress Cataloging-in-Publication Data Burde, Gerhard, 1931Ϫ Knots / Gerhard Burde, Heiner Zieschang. Ϫ 2nd rev. and extended ed. p. cm. Ϫ (De Gruyter studies in mathematics ; 5) Includes bibliographical references and index. ISBN 3 11 017005 1 (cloth : alk. paper) I. Zieschang, Heiner. II. Title. III. Series. QA612.2 .B87 2002 514Ј.224Ϫdc21 2002034764 ISBN 3 11 017005 1 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at Ͻhttp://dnb.ddb.deϾ. Ą Copyright 2003 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin, Germany. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Printed in Germany. Cover design: Rudolf Hübler, Berlin. Typeset using the authors’ TEX files: I. Zimmermann, Freiburg. Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen. Preface to the First Edition The phenomenon of a knot is a fundamental experience in our perception of three dimensional space. What is special about knots is that they represent a truly intrinsic and essential quality of 3-space accessible to intuitive understanding. No arbitrariness like the choice of a metric mars the nature of a knot–atrefoil knot will be universally recognizable wherever the basic geometric conditions of our world exist. (One is tempted to propose it as an emblem of our universe.) There is no doubt that knots hold an important – if not crucial – position in the theory of 3-dimensional manifolds. As a subject for a mathematical textbook they serve a double purpose. They are excellent introductory material to geometric and algebraic topology, helping to understand problems and to recognize obstructions in this field. On the other hand they present themselves as ready and copious test material for the application of various concepts and theorems in topology. The first nine chapters (excepting the sixth) treat standard material of classical knot theory. The remaining chapters are devoted to more or less special topics depending on the interest and taste of the authors and what they believed to be essential and alive. The subjects might, of course, have been selected quite differently from the abundant wealth of publications in knot theory during the last decades. We have stuck throughout this book mainly to traditional topics of classical knot theory. Links have been included where they come in naturally. Higher-dimensional knot theory has been completely left out – even where it has a bearing on 3-dimensional knots such as slice knots. The theme of surgery has been rather neglected – excepting Chapter 15. Wild knots and Algebraic knots are merely mentioned. This book may be read by students with a basic knowledge in algebraic topology –atleast the first four chapters will present no serious difficulties to them. As the book proceeds certain fundamental results on 3-manifolds are used – such as the Papakyriakopoulos theorems. The theorems are stated in Appendix B and references are given where proofs may be found. There seemed to be no point in adding another presentation of these things. The reader who is not familiar with these theorems is, however, well advised to interrupt the reading to study them. At some places the theory of surfaces is needed – several results of Nielsen are applied. Proofs of these may be read in [ZVC 1980], but taking them for granted will not seriously impair the understanding of this book. Whenever possible we have given complete and self- contained proofs at the most elementary level possible. To do this we occasionally refrained from applying a general theorem but gave a simpler proof for the special case in hand. There are, of course, many pertinent and interesting facts in knot theory – especially in its recent development – that were definitely beyond the scope of such a textbook. To be complete – even in a special field such as knots – is impossible today and was not aimed at. We tried to keep up with important contributions in our bibliography. vi Preface to the First Edition There are not many textbooks on knots. Reidemeister’s “Knotentheorie” was con- ceived for a different purpose and level; Neuwirth’s book “Knot Groups” and Hillman’s monograph “Alexander Ideals of Links” have a more specialised and algebraic interest in mind. In writing this book we had, however, to take into consideration Rolfsen’s remarkable book “Knots and Links”. We tried to avoid overlappings in the contents and the manner of presentation. In particular, we thought it futile to produce another set of drawings of knots and links up to ten crossings – or even more. They can – in perfect beauty – be viewed in Rolfsen’s book. Knots with less than ten crossings have been added in Appendix D as a minimum of ready illustrative material. The tables of knot invariants have also been devised in a way which offers at least something new. Figures are plentiful because we think them necessary and hope them to be helpful. Finally we wish to express our gratitude to Colin Maclachlan who read the manu- script and expurgated it from the grosser lapsus linguae (this sentence was composed without his supervision). We are indebted to U. Lüdicke and G. Wenzel who wrote the computer programs and carried out the computations of a major part of the knot invariants listed in the tables. We are grateful to U. Dederek-Breuer who wrote the program for filing and sorting the bibliography. We also want to thank Mrs. A. Huck and Mrs. M. Schwarz for patiently typing, re-typing, correcting and re-correcting abominable manuscripts. Frankfurt (Main)/Bochum, Summer 1985 Gerhard Burde Heiner Zieschang Preface to the Second Edition The text has been revised, some mistakes have been eliminated and Chapter 15 has been brought up to date, especially taking into account the Gordon–Luecke Theorem on knot complements, although we have not included a proof. Chapter 16 was added, presenting an introduction to the HOMFLYpolynomial, and including a self-contained account of the fundamental facts about Hecke algebras. A proof of Markov’s theorem was added in Chapter 10 on braids. We also tried to bring
Recommended publications
  • Mathematics and Research Policy: • Starts at Unicph 1963 2004: Institut for Grundvidenskab (Including Chemistry); a View Back on Activities, I Was • Cand.Scient
    5/2/2013 Mogens Flensted-Jensen - Department of Mathematical Sciences Mogens Flensted-Jensen - Department of Mathematical Sciences Mogens Flensted-Jensen - Department of Mathematical Sciences Mathematics at KVL Mogens Flensted-Jensen a few dates Updates: Tomas Vils Pedersen lektor 2000- Henrik L. Pedersen lektor 2002-2012 Professor 2012 - Retirement Lecture May 3 2013 • Born 1942 Department Names • Student 1961 1975: Institut for Matematik og Statistik; 1991: Institut for Matematik og Fysik; Mathematics and Research policy: • Starts at UniCph 1963 2004: Institut for Grundvidenskab (including chemistry); A view back on activities, I was • Cand.scient. 1968 2009: Institut for Grundvidenskab og Miljø • Ass.prof.(lektor) 1973 2012: happy to take part in. • Professor KVL 1979 • Professor UniCph 2007 (at IGM by “infusion”) • Professor UniCph 2012 (at IMF by “confusion”) Mogens Flensted-Jensen • Emeritus 2012 2012: Institut for Matematiske Fag Department of Mathematical Sciences Homepage: http://www.math.ku.dk/~mfj/ May 3 2013 May 3 2013 May 3 2013 Dias 1 Dias 2 Dias 3 Mogens Flensted-Jensen - Department of Mathematical Sciences Mogens Flensted-Jensen - Department of Mathematical Sciences Mogens Flensted-Jensen - Department of Mathematical Sciences st June 1 1979 I left KU for Landbohøjskolen June 1st 1979 – Sept. 30th 2012 Mathematics and Research policy Great celebration! My lecture will focus on three themes: Mathematics: Analysis on Symmetric spaces, spherical functions and the discrete spectrum. Research council work: From the national
    [Show full text]
  • The Homotopy Types of Free Racks and Quandles
    The homotopy types of free racks and quandles Tyler Lawson and Markus Szymik June 2021 Abstract. We initiate the homotopical study of racks and quandles, two algebraic structures that govern knot theory and related braided structures in algebra and geometry. We prove analogs of Milnor’s theorem on free groups for these theories and their pointed variants, identifying the homotopy types of the free racks and free quandles on spaces of generators. These results allow us to complete the stable classification of racks and quandles by identifying the ring spectra that model their stable homotopy theories. As an application, we show that the stable homotopy of a knot quandle is, in general, more complicated than what any Wirtinger presentation coming from a diagram predicts. 1 Introduction Racks and quandles form two algebraic theories that are closely related to groups and symmetry. A rack R has a binary operation B such that the left-multiplications s 7! r Bs are automorphism of R for all elements r in R. This means that racks bring their own symmetries. All natural sym- metries, however, are generated by the canonical automorphism r 7! r B r (see [45, Thm. 5.4]). A quandle is a rack for which the canonical automorphism is the identity. Every group defines −1 a quandle via conjugation g B h = ghg , and so does every subset closed under conjugation. The most prominent applications of these algebraic concepts so far are to the classification of knots, first phrased in terms of quandles by Joyce [28, Cor. 16.3] and Matveev [35, Thm.
    [Show full text]
  • On the Foundation of Mathematica Scandinavica
    MATH. SCAND. 93 (2003), 5–19 ON THE FOUNDATION OF MATHEMATICA SCANDINAVICA BODIL BRANNER 1. Introduction In 1953 two new Scandinavian journals appeared, Mathematica Scandinavica and Nordisk Matematisk Tidskrift, since 1979 also named Normat. Negoti- ations among Scandinavian mathematicians started with a wish to create an international research journal accepting papers in the principal languages Eng- lish, French and German, and expanded quickly into negotiations on another more elementary journal accepting papers in Danish, Norwegian, Swedish, and occasionally in English or German. The mathematical societies in the Nordic countries Denmark, Finland, Iceland, Norway and Sweden were behind both journals and for the elementary journal also societies of schoolteachers in Denmark, Finland, Norway and Sweden. The main character behind the creation of the two journals was the Danish mathematician Svend Bundgaard. The negotiations were essentially carried out during 1951 and 1952. Although the title of this paper signals that this is the story behind the creation of Math. Scand., it is also – although to a lesser extent – the story behind the creation of Nordisk Matematisk Tidskrift. The stories are so interwoven in time and in persons involved that it would be wrong to tell one without the other. Many of the mathematicians who are mentioned in the following are famous for their mathematical achievements, this text will however only focus on their role in the creation of the journals and the different societies involved. The sources used in this paper are found in the archives of Math. Scand., mainly letters, minutes of meetings, and drafts of documents. Some supple- mentary letters from the archives of the Danish Mathematical Society have proved useful as well.
    [Show full text]
  • An Introduction to Knot Theory and the Knot Group
    AN INTRODUCTION TO KNOT THEORY AND THE KNOT GROUP LARSEN LINOV Abstract. This paper for the University of Chicago Math REU is an expos- itory introduction to knot theory. In the first section, definitions are given for knots and for fundamental concepts and examples in knot theory, and motivation is given for the second section. The second section applies the fun- damental group from algebraic topology to knots as a means to approach the basic problem of knot theory, and several important examples are given as well as a general method of computation for knot diagrams. This paper assumes knowledge in basic algebraic and general topology as well as group theory. Contents 1. Knots and Links 1 1.1. Examples of Knots 2 1.2. Links 3 1.3. Knot Invariants 4 2. Knot Groups and the Wirtinger Presentation 5 2.1. Preliminary Examples 5 2.2. The Wirtinger Presentation 6 2.3. Knot Groups for Torus Knots 9 Acknowledgements 10 References 10 1. Knots and Links We open with a definition: Definition 1.1. A knot is an embedding of the circle S1 in R3. The intuitive meaning behind a knot can be directly discerned from its name, as can the motivation for the concept. A mathematical knot is just like a knot of string in the real world, except that it has no thickness, is fixed in space, and most importantly forms a closed loop, without any loose ends. For mathematical con- venience, R3 in the definition is often replaced with its one-point compactification S3. Of course, knots in the real world are not fixed in space, and there is no interesting difference between, say, two knots that differ only by a translation.
    [Show full text]
  • Mathematical Conversations
    Mathematical Conversations ,&.&!,p$.l,lQ,poe$qf ellar:f snv,exigs.,&pgirn His total research outllut in the fornr of research papers, scholastic articles ancl books exceecls 230 in nunrber; his collaborative rese.rrch is procligious. His nrost famous book Convex Ana/r'-si-c, pr-rblishecl in 1970, is the first book to systematicallv cleielolr that area in its own right and as a franrerlork fcir fornrr-r lating ancl solving optimization ltroblen'rs ir.r -oconon'rics ancl engineer-ing. lt is one of the most highlv citecl books in all of nrather.natics. (Werner Fenchel 1 905- I 988 r rvas generouslv acknor'r,l eclgecl as an "honorary co-author" for Iris pioneering influence on the subject.) ln aclclition, Rockafellar has written five other books, two of them r'r,,ith research partners. His books have been influential in the development of variational analysis, optimal control, matlrematica I programm i ng and stochastic opti m ization. I n Ra ph T. Rockafe ar fact, he ranks highly in the Institute of Scientific lnformation (lSl) Iist of citation indices. lnterview of Ralph Tyrrell Rocl<afellar by Y.K. Leong Rockafellar is the first recipient (together with Michael Ralph Tyrrell Rockafellar made pioneering and significant J.D. Powell) of the Dantzig Prize awarded by the Society contributions to convex analysis, variational analysis, risk for Industrial and Applied Mathematics (SIAM) and the ,+ theory and optimization, both deterministic and stochastic. Mathematical Programming Society (MPS) in 1982. He l received the John von Neumann Citation from SIAM and r, t! Rockafellar had his undergracluate education ancl PhD from MPS in 1992.
    [Show full text]
  • Herbert Busemann (1905--1994)
    HERBERT BUSEMANN (1905–1994) A BIOGRAPHY FOR HIS SELECTED WORKS EDITION ATHANASE PAPADOPOULOS Herbert Busemann1 was born in Berlin on May 12, 1905 and he died in Santa Ynez, County of Santa Barbara (California) on February 3, 1994, where he used to live. His first paper was published in 1930, and his last one in 1993. He wrote six books, two of which were translated into Russian in the 1960s. Initially, Busemann was not destined for a mathematical career. His father was a very successful businessman who wanted his son to be- come, like him, a businessman. Thus, the young Herbert, after high school (in Frankfurt and Essen), spent two and a half years in business. Several years later, Busemann recalls that he always wanted to study mathematics and describes this period as “two and a half lost years of my life.” Busemann started university in 1925, at the age of 20. Between the years 1925 and 1930, he studied in Munich (one semester in the aca- demic year 1925/26), Paris (the academic year 1927/28) and G¨ottingen (one semester in 1925/26, and the years 1928/1930). He also made two 1Most of the information about Busemann is extracted from the following sources: (1) An interview with Constance Reid, presumably made on April 22, 1973 and kept at the library of the G¨ottingen University. (2) Other documents held at the G¨ottingen University Library, published in Vol- ume II of the present edition of Busemann’s Selected Works. (3) Busemann’s correspondence with Richard Courant which is kept at the Archives of New York University.
    [Show full text]
  • Elementary Geometry in Hyperbolic Space, by Werner Fenchel. De Gruyter Studies in Mathematics, Vol
    BOOK REVIEWS 589 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 23, Number 2, October 1990 © 1990 American Mathematical Society 0273-0979/90 $1.00+ $.25 per page Elementary geometry in hyperbolic space, by Werner Fenchel. De Gruyter Studies in Mathematics, vol. 11, Walter de Gruyter, Berlin, New York, 1989, xi+225 pp., $69.95. ISBN 0-89925- 493-4 To obtain a helpful overview of the material in hand it is ap­ propriate to begin with a brief discussion of the Möbius group in «-dimensions. Detailed accounts have been given from different perspectives by Ahlfors [1], Beardon [2], and Wilker [5]. Let X = X" = {x e R"+1:||x|| = 1} be the unit «-sphere in Rw+1 > n > 2. An (n- l)-sphere y = yn~x on X is the section of X by an «-flat containing more than one point of X and each such (« - 1)-sphere determines an involution y:X —• X called inversion in y. This inversion fixes the points of y and interchanges other points in pairs which are separated by y and have the property that any two circles of X, which pass through one of the points and are perpendicular to y, meet again at the other point. The group generated by the set of all inversions of X is the «-dimensional Möbius group j£n . Further properties of J!n can be inferred from the fact that it can also be defined as the group of bijections of X that preserves circles, or angles, or cross ratios, where a typical cross ratio of the four distinct points a, b, c, d belonging to X is the number (\\a - b\\ \\c - d\\)/(\\a - c\\ \\b - d\\).
    [Show full text]
  • 200 Da-Oz Medal
    200 Da-Oz medal. 1933 forbidden to work due to "half-Jewish" status. dir. of Collegium Musicum. Concurr: 1945-58 dir. of orch; 1933 emigr. to U.K. with Jooss-ensemble, with which L.C. 1949 mem. fac. of Middlebury Composers' Conf, Middlebury, toured Eur. and U.S. 1934-37 prima ballerina, Teatro Com- Vt; summers 1952-56(7) fdr. and head, Tanglewood Study munale and Maggio Musicale Fiorentino, Florence. 1937-39 Group, Berkshire Music Cent, Tanglewood, Mass. 1961-62 resid. in Paris. 1937-38 tours of Switz. and It. in Igor Stravin- presented concerts in Fed. Repub. Ger. 1964-67 mus. dir. of sky's L'histoire du saldai, choreographed by — Hermann Scher- Ojai Fests; 1965-68 mem. nat. policy comm, Ford Found. Con- chen and Jean Cocteau. 1940-44 solo dancer, Munic. Theater, temp. Music Proj; guest lect. at major music and acad. cents, Bern. 1945-46 tours in Switz, Neth, and U.S. with Trudy incl. Eastman Sch. of Music, Univs. Hawaii, Indiana. Oregon, Schoop. 1946-47 engagement with Heinz Rosen at Munic. also Stanford Univ. and Tanglewood. I.D.'s early dissonant, Theater, Basel. 1947 to U.S. 1947-48 dance teacher. 1949 re- polyphonic style evolved into style with clear diatonic ele- turned to Fed. Repub. Ger. 1949- mem. G.D.B.A. 1949-51 solo ments. Fel: Guggenheim (1952 and 1960); Huntington Hart- dancer, Munic. Theater, Heidelberg. 1951-56 at opera house, ford (1954-58). Mem: A.S.C.A.P; Am. Musicol. Soc; Intl. Soc. Cologne: Solo dancer, 1952 choreographer for the première of for Contemp.
    [Show full text]
  • Altering the Trefoil Knot
    Altering the Trefoil Knot Spencer Shortt Georgia College December 19, 2018 Abstract A mathematical knot K is defined to be a topological imbedding of the circle into the 3-dimensional Euclidean space. Conceptually, a knot can be pictured as knotted shoe lace with both ends glued together. Two knots are said to be equivalent if they can be continuously deformed into each other. Different knots have been tabulated throughout history, and there are many techniques used to show if two knots are equivalent or not. The knot group is defined to be the fundamental group of the knot complement in the 3-dimensional Euclidean space. It is known that equivalent knots have isomorphic knot groups, although the converse is not necessarily true. This research investigates how piercing the space with a line changes the trefoil knot group based on different positions of the line with respect to the knot. This study draws comparisons between the fundamental groups of the altered knot complement space and the complement of the trefoil knot linked with the unknot. 1 Contents 1 Introduction to Concepts in Knot Theory 3 1.1 What is a Knot? . .3 1.2 Rolfsen Knot Tables . .4 1.3 Links . .5 1.4 Knot Composition . .6 1.5 Unknotting Number . .6 2 Relevant Mathematics 7 2.1 Continuity, Homeomorphisms, and Topological Imbeddings . .7 2.2 Paths and Path Homotopy . .7 2.3 Product Operation . .8 2.4 Fundamental Groups . .9 2.5 Induced Homomorphisms . .9 2.6 Deformation Retracts . 10 2.7 Generators . 10 2.8 The Seifert-van Kampen Theorem .
    [Show full text]
  • Mathematics of the Gateway Arch Page 220
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook of the American Mathematical Society Collection February 2010 Volume 57, Number 2 An Invitation to Cauchy-Riemann NEW 4TH NEW NEW EDITION and Sub-Riemannian Geometries 2010. XIX, 294 p. 25 illus. 4th ed. 2010. VIII, 274 p. 250 2010. XII, 475 p. 79 illus., 76 in 2010. XII, 376 p. 8 illus. (Copernicus) Dustjacket illus., 6 in color. Hardcover color. (Undergraduate Texts in (Problem Books in Mathematics) page 208 ISBN 978-1-84882-538-3 ISBN 978-3-642-00855-9 Mathematics) Hardcover Hardcover $27.50 $49.95 ISBN 978-1-4419-1620-4 ISBN 978-0-387-87861-4 $69.95 $69.95 Mathematics of the Gateway Arch page 220 Model Theory and Complex Geometry 2ND page 230 JOURNAL JOURNAL EDITION NEW 2nd ed. 1993. Corr. 3rd printing 2010. XVIII, 326 p. 49 illus. ISSN 1139-1138 (print version) ISSN 0019-5588 (print version) St. Paul Meeting 2010. XVI, 528 p. (Springer Series (Universitext) Softcover ISSN 1988-2807 (electronic Journal No. 13226 in Computational Mathematics, ISBN 978-0-387-09638-4 version) page 315 Volume 8) Softcover $59.95 Journal No. 13163 ISBN 978-3-642-05163-0 Volume 57, Number 2, Pages 201–328, February 2010 $79.95 Albuquerque Meeting page 318 For access check with your librarian Easy Ways to Order for the Americas Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA Call: (toll free) 1-800-SPRINGER Fax: 1-201-348-4505 Email: [email protected] or for outside the Americas Write: Springer Customer Service Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany Call: +49 (0) 6221-345-4301 Fax : +49 (0) 6221-345-4229 Email: [email protected] Prices are subject to change without notice.
    [Show full text]
  • THE 2-GENERALIZED KNOT GROUP DETERMINES the KNOT 1. the 2
    THE 2-GENERALIZED KNOT GROUP DETERMINES THE KNOT SAM NELSON AND WALTER D. NEUMANN To the memory of Xiao-Song Lin Abstract. Generalized knot groups Gn(K) were introduced independently by Kelly (1991) and Wada (1992). We prove that G2(K) determines the unoriented knot type and sketch a proof of the same for Gn(K) for n > 2. 1. The 2{generalized knot group Generalized knot groups were introduced independently by Kelly [5] and Wada [10]. Wada arrived at these group invariants of knots by searching for homomor- phisms of the braid group Bn into Aut(Fn), while Kelly's work was related to knot racks or quandles [1, 4] and Wirtinger-type presentations. The Wirtinger presentation of a knot group expresses the group by generators x1; : : : ; xk and relators r1; : : : ; rk−1, in which each ri has the form ±1 ∓1 −1 xj xixj xi+1 for some map i 7! j of f1; : : : ; kg to itself and map f1; : : : ; kg ! {±1g. The group Gn(K) is defined by replacing each ri by ±n ∓n −1 xj xixj xi+1 : In particular, G1(K) is the usual knot group. In [9], responding to a preprint of Xiao-Song Lin and the first author [6], Tuffley showed that Gn(K) distinguishes the square and granny knots. Gn(K) cannot dis- tinguish a knot from its mirror image. But G2(K) is, in fact, a complete unoriented knot invariant. Theorem 1.1. The 2{generalized knot group G2(K) determines the knot K up to reflection. We will assume K is a non-trivial knot in the following proof, although it is not essential.
    [Show full text]
  • How Pioneers of Linear Economics Overlooked Perron-Frobenius Mathematics
    All but one: How pioneers of linear economics overlooked Perron-Frobenius mathematics Wilfried PARYS Paper prepared for the Conference “The Pioneers of Linear Models of Production” at the University of Paris Ouest, Nanterre, 17-18 January 2013 Address for correspondence. Wilfried Parys, Department of Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium; [email protected] 1. Introduction Recently MIT Press published the final two volumes, numbers 6 and 7, of The Collected Scientific Papers of Paul Anthony Samuelson. Because he wrote on many and widely different topics, Samuelson has often been considered the last generalist in economics, but it is remarkable how large a proportion of the final two volumes are devoted to linear economics.1 Besides Samuelson, at least nine other 20th century Nobel laureates in economics (Wassily Leontief, Ragnar Frisch, Herbert Simon, Tjalling Koopmans, Kenneth Arrow, Robert Solow, Gérard Debreu, John Hicks, Richard Stone) published interesting work on similar linear models.2 Because the inputs in processes of production are either positive or zero, the theory of positive or nonnegative matrices plays a crucial role in many modern treatments of linear economics. The title of my paper refers to “Perron-Frobenius mathematics” in honour of the fundamental papers by Oskar Perron (1907a, 1907b) and Georg Frobenius (1908, 1909, 1912) on positive and on nonnegative matrices.3 Today the Perron-Frobenius mathematics of nonnegative matrices enjoys wide applications, the most sensational perhaps being its implicit use by millions of internet surfers, who routinely activate Google’s PageRank algorithm every day (Langville & Meyer, 2006). Such a remarkable worldwide application in an electronic search engine is a far cry from the original theoretical articles, written more than a century ago, by Perron and Frobenius.
    [Show full text]