Lysobacter Tongrenensis Sp. Nov., Isolated from Soil of a Manganese Factory

Total Page:16

File Type:pdf, Size:1020Kb

Lysobacter Tongrenensis Sp. Nov., Isolated from Soil of a Manganese Factory Archives of Microbiology (2018) 200:439–444 https://doi.org/10.1007/s00203-017-1457-z ORIGINAL PAPER Lysobacter tongrenensis sp. nov., isolated from soil of a manganese factory Jingxin Li1 · Yushan Han1 · Wei Guo1 · Qian Wang1,3 · Shuijiao Liao1,2 · Gejiao Wang1 Received: 16 August 2017 / Accepted: 15 November 2017 / Published online: 29 November 2017 © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract A Gram-staining negative, aerobic, non-motile, rod-shaped bacterial strain, designated YS-37T, was isolated from soil in a manganese factory, People’s Republic of China. Based on16S rRNA gene sequence analysis, strain YS-37T was most closely related to Lysobacter pocheonensis Gsoil 193 T (97.0%), Lysobacter dokdonensis DS-58T (96.0%) and Lysobacter daecheongensis Dae08T (95.8%) and grouped together with L. pocheonensis Gsoil 193 T and Lysobacter dokdonensis DS- 58T. The DNA–DNA hybridization value between strain YS-37T and L. pocheonensis KCTC 12624T was 43.3% (± 1). The major respiratory quinone of strain YS-37T was ubiquinone-8, and the polar lipids were diphosphatidylglycerol, phosphati- dylethanolamine, phosphatidylglycerol, phospholipid, phosphatidylmethylethaolamine and two unknown lipids. Its major cellular fatty acids (> 5%) were iso-C15:0, iso-C17:1ω9c, iso-C16:0, iso-C11:0 3-OH and iso-C11:0 and the G + C content of the genomic DNA was 67.1 mol%. Strain YS-37T also showed some biophysical and biochemical differences with the related strains, especially in hydrolysis of casein. The results demonstrated that strain YS-37T belongs to genus Lysobacter and represents a novel Lysobacter species for which the name Lysobacter tongrenensis sp. nov. is proposed. The type strain is YS-37T (= CCTCC AB 2016052T = KCTC 52206T). Keywords Lysobacter tongrenensis · Soil · Polyphasic taxonomy · 16S rRNA gene Introduction Genus Lysobacter was first described by Christensen and Cook in 1978 with Lysobacter enzymogenes as the type spe- cies (Christensen and Cook 1978). This genus was classi- fied within family Xanthomonadaceae of Gamma-Proteo- Communicated by Erko Stackebrandt. bacteria (Saddler and Bradbury 2005) and the description was later emended by Park et al. (2008). To data, the genus Jingxin Li and Yushan Han contributed equally to this work. Lysobacter consists of 43 species (http://www.bacterio.net/ lysobacter.html). Lysobacter members are generally Gram- Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00203-017-1457-z) contains negative, aerobic, gliding and have a high DNA G + C con- supplementary material, which is available to authorized users. tents (61.7–70.7%), and the major quinones, fatty acids and polar lipids are of ubiquinone-8 (Q-8), iso-branched fatty * Gejiao Wang acids, and diphosphatidylglycerol (DPG), phosphatidyletha- [email protected] nolamine (PE) and phosphatidylglycerol (PG), respectively 1 State Key Laboratory of Agricultural Microbiology, (Christensen and Cook 1978; Christensen 2005; Weon et al. College of Life Science and Technology, Huazhong 2006; Ten et al. 2008, 2009; Srinivasan et al. 2010; Liu et al. Agricultural University, Wuhan, Hubei 430070, 2011; Wang et al. 2011; Oh et al. 2011; Luo et al. 2012; Ye People’s Republic of China et al. 2015; Ngo et al. 2015). Here we describe the polypha- 2 College of Basis Science, Huazhong Agricultural University, sic characteristics of strain YS-37T that related to Lysobacter Wuhan, Hubei 430070, People’s Republic of China members. 3 Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA Vol.:(0123456789)1 3 440 Archives of Microbiology (2018) 200:439–444 Materials and methods (Jiancheng Biotech, China) in combination with the 3% KOH method (Smibert and Krieg 1994). Gliding motil- Bacterial strain and culture conditions ity was tested on a fresh R2A broth culture using the hanging-drop method (Bernardet et al. 2002). Growth Strain YS-37T was isolated from soil of a manganese fac- was assessed at various temperatures (0, 4, 16, 20, 25, tory named Guizhou Dalong Manganese Industry (109°04ʹE, 28, 32, 37, 42 and 45 °C) on R2A agar, and in various 27°28ʹN) in Tongren city, Guizhou Province, People’s NaCl concentrations (0, 0.5, 1, 2, 3, 5, 6, and 7%, w/v) Republic of China. The soil sample was suspended in 0.85% in R2A liquid medium at 28 °C. The pH range (pH 4–10) NaCl (w/v) and the diluted solutions were spread on R2A was tested in R2A liquid medium with different buffer agar plates and incubated at 28 °C for 1 week. A total of 32 systems (0.1 M citric acid/0.1 M sodium citrate, for pH strains were isolated (data not shown) and a strain named 4.0–5.0; 0.1 M KH 2PO4/0.1 M NaOH, for pH 6.0–8.0; T YS-37 was selected for this study due to the preliminary 0.1 M NaHCO3/0.1 M Na2CO3, for pH 9–10). Growth low 16S rRNA gene sequence similarity. The resistance lev- under anaerobic condition was determined by incubation els of strain YS-37T for multi-metal(loids) were tested with in an anaerobic chamber at 28 °C for 2 weeks on R2A agar. the minimal inhibition concentration (MIC) on R2A agar Oxidase and catalase activities were determined using oxi- plates using MnCl 2, Na3AsO3, K2Sb2(C4H2O6)2, K2CrO4, dase reagent and 3% (v/v) H2O2, respectively (Smibert T CdCl2 and PbCl2. Strains L. pocheonensis KCTC 12624 , L. and Krieg 1994). Nitrate and nitrite reduction tests were dokdonensis KCTC 12822 T and L. daecheongensis KCTC performed as described by Lányí (1987). Hydrogen sulfide 12600T were purchased from the Korean Centre of Type production, indole test and hydrolyses of casein (5%, Cultures and used as reference strains. w/v), gelatin (15%, w/v), Tween 20, 40, 60, 80 and starch (0.2%, w/v) were determined according to Smibert and Krieg (1994). Acid production from carbohydrates were also tested (Dong and Cai 2001). The API 20 NE, API ID 32GN and API ZYM systems (bioMérieux) were used to Phylogenetic analysis determine biochemical properties, utilization of carbohy- drates and enzyme activities according to the manufac- Genomic DNA of strain YS-37T was extracted accord- turer’s protocols, and if necessary, in combination with ing to standard procedures (Sambrook and Russell 2001). traditional methods. The primers 27F and 1492R were used for amplification of the 16S rRNA gene fragment as described by Brosius et al. (1978). The PCR product was purified and cloned into pGEM-T vector (Promega), subsequently PCR amplified Chemotaxonomic characterization using primers T7 and SP6 and sequenced in Tsingke Com- pany (Beijing, China). The nearly completed 16S rRNA gene For whole-cell fatty acid analysis, cells of strain YS-37T sequence (1506 bp) of strain YS-37T was aligned with those and the three reference strains were inoculated on R2A from EzTaxon database (http://eztaxon-e.ezbiocloud.net) agar and harvested when the cells growth reached the (Chun et al. 2007) using the CLUSTAL X program (Thomp- exponential phase determined by the quadrant streak pat- son et al. 1997). Phylogenetic analyses were performed with tern method according to the protocol of MIDI (Sherlock MEGA 6 (Tamura et al. 2013) using neighbor-joining (Sai- Microbial Identification System, MIDI) and analyzed by tou and Nei 1987), maximum-parsimony (Fitch 1971) and gas chromatography (MIDI Sherlock version 4.5; MIDI maximum-likelihood (Felsenstein 1981) algorithms. For database TSBA40 4.10) (Sasser 1990). For the extraction each method, bootstrap values were calculated based on of respiratory quinones and polar lipids, the strains were 1000 replications (Felsenstein 1985). cultured in R2A medium and freeze-dried after harvest- ing. Respiratory quinone analysis was performed by HPLC as described by Minnikin et al. (1984). Polar lipid analy- ses of strain YS-37T and L. dokdonensis KCTC 12822T were determined by two-dimensional TLC method as Morphological, physiological, described by Tindall (1990). The DNA G + C content was and biochemical characterization determined by HPLC according to the method of Mesbah et al. (1989). Genomic DNA was extracted as described by Cellular morphology was observed by scanning elec- Pitcher and Saunders (1989) for DNA–DNA hybridization tron microscopy (SEM, JSM-6390; JEOL) (Fig. S1). analysis, which was performed using the thermal denatura- Gram reaction was determined using a Gram-staining kit tion and renaturation method of De Ley et al. (1970). 1 3 Archives of Microbiology (2018) 200:439–444 441 Results and discussion for urease activity, indole production and hydrogen sulfide production. These characteristics are consistent with the The 16S rRNA gene sequence of strain YS-37T was closely strains of the genus Lysobacter (Weon et al. 2006; Luo related to Lysobacter pocheonensis Gsoil 193T (97.0%), et al. 2012; Ye et al. 2015). The flexirubin-type pigment T Lysobacter dokdonensis DS-58T (96.0%) and Lysobacter was absent. Strain YS-37 showed some biophysical and daecheongensis Dae08T (95.8%), and showed similari- biochemical differences with the related strains, especially ties less than 95.4% with the other members of the genus in hydrolysis of casein (Table 1, supplementary material Lysobacter including the type species strain Lysobacter Table S1). enzymogenes (93.9%). In the phylogenetic tree based on The DNA–DNA hybridization value between strain YS- T neighbor-joining algorithm, strain YS-37 T was closely 37 and the closely related strain L. pocheonensis KCTC T related to the Lysobacter members and formed a branch 12624 was 43.3% (± 1, n = 2), which is below the thresh- with L. pocheonensis Gsoil 193T and L. dokdonensis DS- old value of 70% recommended for species delineation 58T (Fig. 1). The phylogenetic trees based on the max- (Wayne et al. 1987). The whole-cell fatty acid compositions T T imum-parsimony and maximum-likelihood algorithms of strain YS-37 , L.
Recommended publications
  • Scope of the Thesis
    Unraveling predatory-prey interactions between bacteria Dissertation To Fulfill the Requirements for the Degree of „Doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena By Ivana Seccareccia (M.Sc. in Biology) born on 8th April 1986 in Rijeka, Croatia Die Forschungsarbeit im Rahmen dieser Dissertation wurde am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V. – Hans-Knöll–Institut in der Nachwuchsgruppe Sekundärmetabolismus räuberischer Bakterien unter der Betreuung von Dr. habil. Markus Nett von Oktober 2011 bis Oktober 2015 in Jena durchgeführt. Gutachter: ……………………………………………. ………………………………………….… ……………………………………………. Tag der öffentlichen Verteidigung: We make our world significant by the courage of our questions and by the depth of our answers. Carl Sagan Table of Contents 1 Introduction ......................................................................................................................... 6 1.1 Predation in the microbial community ........................................................................... 6 1.2 Bacterial predators .......................................................................................................... 7 1.3 Phases of predation ......................................................................................................... 8 1.3.1 Seeking prey ......................................................................................................... 9 1.3.2 Prey recognition
    [Show full text]
  • Lysobacter Enzymogenes
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of 8-2010 Detection Methods for the Genus Lysobacter and the Species Lysobacter enzymogenes Hu Yin University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Life Sciences Commons Yin, Hu, "Detection Methods for the Genus Lysobacter and the Species Lysobacter enzymogenes" (2010). Dissertations and Theses in Biological Sciences. 15. https://digitalcommons.unl.edu/bioscidiss/15 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Detection Methods for the Genus Lysobacter and the Species Lysobacter enzymogenes By Hu Yin A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Biological Sciences Under the Supervision of Professor Gary Y. Yuen Lincoln, Nebraska August, 2010 Detection Methods for the Genus Lysobacter and the Species Lysobacter enzymogenes Hu Yin, M.S. University of Nebraska, 2010 Advisor: Gary Y. Yuen Strains of Lysobacter enzymogenes, a bacterial species with biocontrol activity, have been detected via 16S rDNA sequences in soil in different parts of the world. In most instances, however, their occurrence could not be confirmed by isolation, presumably because the species occurred in low numbers relative to faster-growing species of Bacillus or Pseudomonas.
    [Show full text]
  • Metagenomics Analysis Reveals the Microbial Communities
    diversity Article Metagenomics Analysis Reveals the Microbial Communities, Antimicrobial Resistance Gene Diversity and Potential Pathogen Transmission Risk of Two Different Landfills in China Shan Wan 1,†, Min Xia 2,†, Jie Tao 1, Yanjun Pang 1, Fugen Yu 1,* , Jun Wu 3,* and Shanping Chen 2,* 1 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; [email protected] (S.W.); [email protected] (J.T.); [email protected] (Y.P.) 2 Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China; [email protected] 3 State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China * Correspondence: [email protected] (F.Y.); [email protected] (J.W.); [email protected] (S.C.) † There authors contribute equally to this work. Abstract: In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical Citation: Wan, S.; Xia, M.; Tao, J.; landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacte- Pang, Y.; Yu, F.; Wu, J.; Chen, S. ria were predominant in the two landfills, and archaea and fungi were also detected. The genera Metagenomics Analysis Reveals the Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, Microbial Communities, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens Antimicrobial Resistance Gene were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas Diversity and Potential Pathogen aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of Transmission Risk of Two Different potential environmental risk in landfills.
    [Show full text]
  • Arenimonas Halophila Sp. Nov., Isolated from Soil
    TAXONOMIC DESCRIPTION Kanjanasuntree et al., Int J Syst Evol Microbiol 2018;68:2188–2193 DOI 10.1099/ijsem.0.002801 Arenimonas halophila sp. nov., isolated from soil Rungravee Kanjanasuntree,1 Jong-Hwa Kim,1 Jung-Hoon Yoon,2 Ampaitip Sukhoom,3 Duangporn Kantachote3 and Wonyong Kim1,* Abstract A Gram-staining-negative, aerobic, non-motile, rod-shaped bacterium, designated CAU 1453T, was isolated from soil and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1453T grew optimally at 30 C and at pH 6.5 in the presence of 1 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that CAU 1453T represented a member of the genus Arenimonas and was most closely related to Arenimonas donghaensis KACC 11381T (97.2 % similarity). T CAU 1453 contained ubiquinone-8 (Q-8) as the predominant isoprenoid quinone and iso-C15 : 0 and iso-C16 : 0 as the major cellular fatty acids. The polar lipids consisted of diphosphatidylglycerol, a phosphoglycolipid, an aminophospholipid, two unidentified phospholipids and two unidentified glycolipids. CAU 1453T showed low DNA–DNA relatedness with the most closely related strain, A. donghaensis KACC 11381T (26.5 %). The DNA G+C content was 67.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, CAU 1453T represents a novel species of the genus Arenimonas, for which the name Arenimonas halophila sp. nov. is proposed. The type strain is CAU 1453T (=KCTC 62235T=NBRC 113093T). The genus Arenimonas, a member of the family Xantho- CAU 1453T was isolated from soil by the dilution plating monadaceae in the class Gammaproteobacteria was pro- method using marine agar 2216 (MA; Difco) [14].
    [Show full text]
  • Lysobacter, a New Genus of Nonhiting, Gliding Bacteria with a High Base Ratio
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1978, p. 367-393 Vol. 28, 3 0020-7713/78/0028-0367$02.00/0 No. Copyright 0 1978 International Association of Microbiological Societies Printed in U.S. A. Lysobacter, a New Genus of Nonhiting, Gliding Bacteria with a High Base Ratio PENELOPE CHRISTENSEN AND F. D. COOK Department of Microbiology, University of Alberta, Edmonton, Alberta, Canada Highly mucoid, cream, pink and yellow-brown gliding organisms having deoxy- ribonucleic acid guanine-plus-cytosine contents of 62 to 70.1 mol% have been isolated by several workers, but since these organisms have never been observed to produce typical myxobacterial fruiting bodies, their taxonomy has been prob- lematical. Forty-six isolates were studied in detail, among them Ensign and Wolfe’s organism AL-1 and Cook’s isolate 495, both of which produce important proteases, as well as Cook’s culture 3C, which elaborates the potent, wide- spectrum antibiotic myxin. A new genus, Lysobacter, has been established for these organisms, and four new species and one new subspecies have been named and described: L. antibioticus (type strain, ATCC 29479), L. brunescens (type strain, ATCC 29482), L. enzymogenes (type strain, ATCC 29487), L. enzymogenes subspecies cookii Christensen (type strain, ATCC 29488), and L. gummosus (type strain, ATCC 29489). The dimensions of the thin, gliding, flexing cells of Lyso- bacter are 0.3 to 0.5 by 1.0 to 15.0 (sometimes up to 70) pm. These soil and water organisms all degrade chitin, two degrade alginate, three degrade pectate, three degrade carboxymethylcellulose, and one degrades starch, but none decomposes filter paper or agar.
    [Show full text]
  • Unveiling Bacterial Interactions Through Multidimensional Scaling and Dynamics Modeling Received: 06 May 2015 Pedro Dorado-Morales1, Cristina Vilanova1, Carlos P
    www.nature.com/scientificreports OPEN Unveiling Bacterial Interactions through Multidimensional Scaling and Dynamics Modeling Received: 06 May 2015 Pedro Dorado-Morales1, Cristina Vilanova1, Carlos P. Garay3, Jose Manuel Martí3 Accepted: 17 November 2015 & Manuel Porcar1,2 Published: 16 December 2015 We propose a new strategy to identify and visualize bacterial consortia by conducting replicated culturing of environmental samples coupled with high-throughput sequencing and multidimensional scaling analysis, followed by identification of bacteria-bacteria correlations and interactions. We conducted a proof of concept assay with pine-tree resin-based media in ten replicates, which allowed detecting and visualizing dynamical bacterial associations in the form of statistically significant and yet biologically relevant bacterial consortia. There is a growing interest on disentangling the complexity of microbial interactions in order to both optimize reactions performed by natural consortia and to pave the way towards the development of synthetic consor- tia with improved biotechnological properties1,2. Despite the enormous amount of metagenomic data on both natural and artificial microbial ecosystems, bacterial consortia are not necessarily deduced from those data. In fact, the flexibility of the bacterial interactions, the lack of replicated assays and/or biases associated with differ- ent DNA isolation technologies and taxonomic bioinformatics tools hamper the clear identification of bacterial consortia. We propose here a holistic approach aiming at identifying bacterial interactions in laboratory-selected microbial complex cultures. The method requires multi-replicated taxonomic data on independent subcultures, and high-throughput sequencing-based taxonomic data. From this data matrix, randomness of replicates can be verified, linear correlations can be visualized and interactions can emerge from statistical correlations.
    [Show full text]
  • The Soil Microbial Food Web Revisited: Predatory Myxobacteria As Keystone Taxa?
    The ISME Journal https://doi.org/10.1038/s41396-021-00958-2 ARTICLE The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? 1 1 1,2 1 1 Sebastian Petters ● Verena Groß ● Andrea Söllinger ● Michelle Pichler ● Anne Reinhard ● 1 1 Mia Maria Bengtsson ● Tim Urich Received: 4 October 2018 / Revised: 24 February 2021 / Accepted: 4 March 2021 © The Author(s) 2021. This article is published with open access Abstract Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5–9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized fi 1234567890();,: 1234567890();,: predatory bacteria af liated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition.
    [Show full text]
  • Phylogenomics Insights Into Order and Families of Lysobacterales
    SHORT COMMUNICATION Kumar et al., Access Microbiology 2019;1 DOI 10.1099/acmi.0.000015 Phylogenomics insights into order and families of Lysobacterales Sanjeet Kumar†, Kanika Bansal, Prashant P. Patil‡ and Prabhu B. Patil* Abstract Order Lysobacterales (earlier known Xanthomonadales) is a taxonomically complex group of a large number of gamma-pro- teobacteria classified in two different families, namelyLysobacteraceae and Rhodanobacteraceae. Current taxonomy is largely based on classical approaches and is devoid of whole-genome information-based analysis. In the present study, we have taken all classified and poorly described species belonging to the order Lysobacterales to perform a phylogenetic analysis based on the 16 S rRNA sequence. Moreover, to obtain robust phylogeny, we have generated whole-genome sequencing data of six type species namely Metallibacterium scheffleri, Panacagrimonas perspica, Thermomonas haemolytica, Fulvimonas soli, Pseudoful- vimonas gallinarii and Rhodanobacter lindaniclasticus of the families Lysobacteraceae and Rhodanobacteraceae. Interestingly, whole-genome-based phylogenetic analysis revealed unusual positioning of the type species Pseudofulvimonas, Panacagri- monas, Metallibacterium and Aquimonas at family level. Whole-genome-based phylogeny involving 92 type strains resolved the taxonomic positioning by reshuffling the genus across families Lysobacteraceae and Rhodanobacteraceae. The present study reveals the need and scope for genome-based phylogenetic and comparative studies in order to address relationships of genera and species of order Lysobacterales. IMPact StatEMENT genus with unary species can serve as a reference and standard Species of order Lysobacterales have undergone several reclas- to compare later identified species of the respective genera. sifications, until today the taxonomy position of species within the order is largely devoid of whole-genome information.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • A002 Methylobacterium Carri Sp. Nov., Isolated from Automotive Air
    A002 Methylobacterium carri sp. nov., Isolated from Automotive Air Conditioning System Jigwan Son and Jong-Ok Ka* Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University A bacterial strain, designated DB0501T, with Gram-stain-negative, aerobic, motile, and rod-shaped cell, was isolated from an automotive air conditioning system collected in the Republic of Korea. 16S rRNA gene sequence analysis indicated that the strain DB0501T grouped in the genus Methylobacterium and closely related to Methylobacterium platani PMB02T (98.8%), Methylobacterium currus PR1016AT (97.7%), Methylobacterium variabile DSM 16961T (97.7%), Methylobacterium aquaticum DSM 16371T (97.6%), Methylobacterium tarhaniae N4211T (97.4%) and Methylobacterium frigidaeris IER25-16T (97.2%). Genomic relatedness between strain DB0501T and its closest relatives was evaluated using average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity with values of 86.4–90.8%, 39.3 ± 2.6–48.2 ± 5.0% and 87.8–89.5% respectively. The strain grew 15-30°C , pH 5.5-8.0 and in 0–1.0% w/v NaCl. Summed feature 3 (C16:1 7c and/or C16:1 6c) and summed feature 8 (C18:1 ω7c T and/or C18:1 ω6c) were the predominant cellular fatty acids in strain DB0501 . Q-10 was the major ubiquinone. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylcholine. The DNA G+C content of strain DB0501T was 70.8 mol%. Based on phenotypic, genotypic and chemotaxonomic data, strain DB0501T represents a novel species of the genus Methylobacterium, for which the name Methylobacterium carri sp.
    [Show full text]
  • Ultramicrobacteria from Nitrate- and Radionuclide-Contaminated Groundwater
    sustainability Article Ultramicrobacteria from Nitrate- and Radionuclide-Contaminated Groundwater Tamara Nazina 1,2,* , Tamara Babich 1, Nadezhda Kostryukova 1, Diyana Sokolova 1, Ruslan Abdullin 1, Tatyana Tourova 1, Vitaly Kadnikov 3, Andrey Mardanov 3, Nikolai Ravin 3, Denis Grouzdev 3 , Andrey Poltaraus 4, Stepan Kalmykov 5, Alexey Safonov 6, Elena Zakharova 6, Alexander Novikov 2 and Kenji Kato 7 1 Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (T.B.); [email protected] (N.K.); [email protected] (D.S.); [email protected] (R.A.); [email protected] (T.T.) 2 V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 3 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (V.K.); [email protected] (A.M.); [email protected] (N.R.); [email protected] (D.G.) 4 Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 5 Chemical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; [email protected] 6 Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] (A.S.); [email protected] (E.Z.) 7 Faculty of Science, Department of Geosciences, Shizuoka University, 422-8529 Shizuoka, Japan; [email protected]
    [Show full text]
  • Novel Arsenic Hyper-Resistant Bacteria from an Extreme Environment
    Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia Vladimir Bermanec, Tina Paradžik, Snježana Kazazić, Chantelle Venter, Jasna Hrenović, Dušica Vujaklija, Robert Duran, Ivan Boev, Blažo Boev To cite this version: Vladimir Bermanec, Tina Paradžik, Snježana Kazazić, Chantelle Venter, Jasna Hrenović, et al.. Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia. Journal of Hazardous Materials, Elsevier, 2021, 402, pp.123437. 10.1016/j.jhazmat.2020.123437. hal-02920366 HAL Id: hal-02920366 https://hal.archives-ouvertes.fr/hal-02920366 Submitted on 27 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia Vladimir Bermanec1†, Tina Paradžik2†, Snježana P. Kazazić2, Chantelle Venter3, Jasna Hrenović1*, Dušica Vujaklija2*, Robert Duran4, Ivan Boev5, Blažo Boev5 1 University of Zagreb, Faculty of Science, Zagreb, Croatia ([email protected],
    [Show full text]