Tylopilus Griseiolivaceus Sp. Nov. and T. Leucomycelinus (Boletaceae) Revisited from the Dominican Republic Within a Comprehensive Phylogeny of Tylopilus S

Total Page:16

File Type:pdf, Size:1020Kb

Tylopilus Griseiolivaceus Sp. Nov. and T. Leucomycelinus (Boletaceae) Revisited from the Dominican Republic Within a Comprehensive Phylogeny of Tylopilus S Mycological Progress (2019) 18:1039–1056 https://doi.org/10.1007/s11557-019-01513-2 ORIGINAL ARTICLE Tylopilus griseiolivaceus sp. nov. and T. leucomycelinus (Boletaceae) revisited from the Dominican Republic within a comprehensive phylogeny of Tylopilus s. str. Matteo Gelardi1 & Claudio Angelini2,3 & Federica Costanzo1 & Francesco Dovana4 & Beatriz Ortiz-Santana5 & Alfredo Vizzini4 Received: 2 July 2019 /Revised: 31 July 2019 /Accepted: 2 August 2019 # German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The genus Tylopilus s. str. in the Dominican Republic is investigated. Tylopilus griseiolivaceus is introduced as a novel species based on material recorded in a neotropical montane pine woodland but also known to occur in temperate coniferous forests in southeastern USA. The Central American species T. leucomycelinus is also re-evaluated and its geographical range expanded. A detailed morphological description is provided for both species and accompanied by colour images of fresh basidiomes in habitat, line drawings of the main anatomical features and molecular support relying on a multilocus phylogenetic inference (nrITS, nrLSU (28S), rpb2 datasets). In addition, DNA was successfully isolated from the type material of T. leucomycelinus and compared with the genetic material obtained from additional neotropical samples. The taxonomic placement, ecological require- ments and distribution patterns of T. griseiolivaceus and T. leucomycelinus are investigated/reviewed and their relationships with closely allied taxa in Tylopilus s. str. are elucidated and discussed. Epitypification of T. leucomycelinus is proposed herein. Keywords Boletales . Tylopilus . Molecular phylogeny . Greater Antilles . Neotropical boletes . Taxonomy Introduction 2008). It was one of the earlier boletoid genera to be separated from Boletus Fr. s.l. as intended in the Friesian system and its Tylopilus P. Karst., typified by T. felleus (Bull.) P. Karst., is a establishment is dated back to the second half of the nine- cosmopolitan and ubiquitous genus that is mainly character- teenth century (Karsten 1881). Up to very recent times, ized by pileate-stipitate basidiomes with non-glutinous sur- Tylopilus has been conceived in a very broad sense, including faces, pinkish flesh to vinaceous brown spore print, smooth a very large array of species with a wide range of different basidiospores and ectomycorrhizal (ECM) nutritional mode morphological, chemical and ecological features (Singer (Horak 1968; Pegler and Young 1981; Singer 1986; Watling 1947, 1986; Heinemann 1951;Hongo1960; Horak 1968, 2011; Snell and Dick 1970; Smith and Thiers 1971; Corner 1972;Thiers1975; Grund and Harrison 1976; Wolfe Jr 1979, Editorial Responsibility: Zhu-Liang Yang 1986; Singer et al. 1983, 1991; Imazeki et al. 1988; Both 1993; Wolfe Jr and Bougher 1993; Watling and Turnbull * Alfredo Vizzini [email protected] 1994; Watling and Li 1999; Bessette et al. 2000;Mao2009). However, molecular phylogenetic approaches carried out in 1 Anguillara Sabazia, Italy the last 20 years have clearly and repeatedly demonstrated that 2 Pordenone, Italy such an assemblage of species into a single genus should be disregarded, since Tylopilus s.l. appears to be definitely poly- 3 Dr. Rafael Ma. Moscoso National Botanical Garden, Av. República de Colombia, Santo Domingo, Dominican Republic phyletic, consisting of several independent phylogenetic line- ages (Binder and Hibbett 2006; Drehmel et al. 2008;Lietal. 4 Department of Life Science and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 2011, 2014; Halling et al. 2012a, b;Nuhnetal.2013;Wuetal. 2014, 2016; Magnago et al. 2017). A number of different 5 USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, genera have thus been erected to accommodate species previ- Madison, WI 53726, USA ously placed in this genus, such as Zangia Yan C. Li & Zhu L. 1040 Mycol Progress (2019) 18:1039–1056 Yang, Sutorius Halling, Nuhn & Fechner, Australopilus similarly only a limited number of taxa have till now been Halling & Fechner, Harrya Halling, Nuhn & Osmundson, reported from the underexplored areas of central and southern Pseudoaustroboletus Yan C. Li & Zhu L. Yang and Chiua South America (Palfner 2005;Barbosa-Silvaetal.2017; YanC.Li&ZhuL.Yang(Lietal.2011, 2014; Halling Magnago et al. 2017). The situation appears to be not much et al. 2012a, b;Wuetal.2016). Currently, the circumscription dissimilar in the islands of the Caribbean, where the genus is of Tylopilus s.str. as a monophyletic lineage belonging to the nearly absent. As a matter of fact, only a couple of Tylopilus subfamily Boletoideae Singer (Wu et al. 2014, 2016)isre- species have been reported to occur in the Dominican stricted to sect. Tylopilus (= sect. Fellei Singer) and sect. Republic to date, viz. T. chromapes (Frost) A.H. Sm. & Oxydabiles Singer pro parte as outlined by Singer (1986) Thiers and T. balloui (Peck) Singer (Ortiz-Santana et al. and Singer et al. (1991), encompassing species featuring 2007). However, the former has recently been reassigned to brownish, brown-olive to violet-purple colours, reticulate or a separate genus Harrya (Halling et al. 2012b) within the smooth stipe, white context and basal mycelium, tissues un- subfamily Zangioideae G. Wu, Y.C. Li & Zhu L. Yang (Wu changeable or reddening-darkening, occasionally greenish et al. 2014) based on morphological and molecular phyloge- blue to sea green on bruising, bitter to rarely mild taste and netic evidence, whereas the latter resulted from a misidentifi- dextrinoid cystidia (Binder and Hibbett 2006;Nuhnetal. cation of T. leucomycelinus (Singer & M.H. Ivory) R. Flores 2013;Wuetal.2014, 2016; Gelardi et al. 2015; & Simonini with the North American taxon (see below). Chakraborty et al. 2018; Liang et al. 2018;Chaietal.2019). As part of an ongoing project aiming at recording and Furthermore, two additional morphologically homogeneous analysing the boletes of the Dominican Republic, and well-delimited species groups, the T. balloui (Peck) T. griseiolivaceus is presented as a new species and a modern Singer complex (characterized by yellow-orange to orange- re-description and epitypification of T. leucomycelinus is pro- red or reddish brown colours, smooth stipe, negative reaction vided. In addition, DNA was successfully extracted from the with ammonia, mild taste, short phaseoliform-allantoid to type material of T. leucomycelinus and inferred to match with subovoid basidiospores and trichoderm to ixotrichoderm sequences obtained from samples recently recorded in Belize, pileipellis) and T. potamogeton Singer complex (sect. Guatemala and the Dominican Republic. Potamogetones Singer) (sharing tomentose pileus and stipe, non-staining context, bluing surfaces with ammonia, bitter taste and ECM association with caesalpinoid legumes) should Materials and methods also be retained within Tylopilus s. str. (Osmundson 2009; Nuhn et al. 2013;Wuetal.2014, 2016; Gelardi et al. 2015; Collection site and sampling Magnago et al. 2017; Chakraborty et al. 2018). However, due to the considerable morphological plasticity of Tylopilus,its Specimens examined were collected in Belize, Dominican taxonomic and phylogenetic boundaries have only partially Republic and Honduras, and are deposited in BRH, CFMR, been assessed and the infrageneric classification still remains F and JBSD (acronyms from Thiers 2019), while “ANGE” unclear. and “MG” refer to the personal herbarium of Claudio Angelini In America, the diversity of Tylopilus s.l. has a long tradi- and Matteo Gelardi, respectively. Herbarium numbers are cit- tion of study, having been widely explored over the past two ed for all collections from which morphological features were centuries, especially in the temperate belt of southeastern examined. Author citations follow the Index Fungorum, Canada and eastern USA (Frost 1874; Peck 1889; Murrill Authors of Fungal Names (www.indexfungorum.org/ 1909, 1914, 1948; Coker and Beers 1943; Singer 1947; authorsoffungalnames.htm). Novel names and typifications Snell and Dick 1970; Smith and Thiers 1971; Grund and are registered with MycoBank (http://www.mycobank.org/). Harrison 1976;WolfeJr1981, 1983, 1986;WolfeJrand Halling 1989; Both 1993; Baroni and Both 1998; Bessette Morphological studies et al. 2000, 2016) as well as in the adjacent neotropical forests of mainland Central America and Northern South America Macroscopic descriptions and ecological information such as (Singer 1978, 1989;Singeretal.1983, 1991;Halling1989; habitat notations, time of fruiting and associated plant com- Wolfe Jr and Bougher 1993; Flores Arzù and Simonini 2000; munities accompanied the detailed field notes of the fresh Henkel 1999, 2001; Halling and Mueller 2001, 2005;Amtoft basidiomes. In the field, latitude, longitude, and elevation et al. 2002;Fulgenzietal.2007; Ortiz-Santana et al. 2007; were determined with a Global Positioning System (GPS) Fulgenzi 2009;OsmundsonandHalling2010), owing to the receiver. Colour terms in capital letters (e.g. White, Plate large number of species being distributed in these regions. By LIII) are from Ridgway (1912). Photographs of collections contrast, the genus is apparently very scarcely represented were taken in the natural habitat using a Nikon Coolpix along the Pacific Northwest with just a few species occurring 8400 camera. Microscopic anatomical features were observed (Thiers 1975; Arora 1986; Siegel
Recommended publications
  • Covered in Phylloboletellus and Numerous Clamps in Boletellus Fibuliger
    PERSOONIA Published by the Rijksherbarium, Leiden Volume 11, Part 3, pp. 269-302 (1981) Notes on bolete taxonomy—III Rolf Singer Field Museum of Natural History, Chicago, U.S.A. have Contributions involving bolete taxonomy during the last ten years not only widened the knowledge and increased the number of species in the boletes and related lamellate and gastroid forms, but have also introduced a large number of of new data on characters useful for the generic and subgeneric taxonomy these is therefore timely to fungi,resulting, in part, in new taxonomical arrangements. It consider these new data with a view to integratingthem into an amended classifi- cation which, ifit pretends to be natural must take into account all observations of possible diagnostic value. It must also take into account all sufficiently described species from all phytogeographic regions. 1. Clamp connections Like any other character (including the spore print color), the presence or absence ofclamp connections in is neither in of the carpophores here nor other groups Basidiomycetes necessarily a generic or family character. This situation became very clear when occasional clamps were discovered in Phylloboletellus and numerous clamps in Boletellus fibuliger. Kiihner (1978-1980) rightly postulates that cytology and sexuality should be considered wherever at all possible. This, as he is well aware, is not feasible in most boletes, and we must be content to judgeclamp-occurrence per se, giving it importance wherever associated with other characters and within a well circumscribed and obviously homogeneous group such as Phlebopus, Paragyrodon, and Gyrodon. (Heinemann (1954) and Pegler & Young this is (1981) treat group on the family level.) Gyroporus, also clamp-bearing, considered close, but somewhat more removed than the other genera.
    [Show full text]
  • <I>Phylloporus
    VOLUME 2 DECEMBER 2018 Fungal Systematics and Evolution PAGES 341–359 doi.org/10.3114/fuse.2018.02.10 Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus boletinoides A. Farid1*§, M. Gelardi2*, C. Angelini3,4, A.R. Franck5, F. Costanzo2, L. Kaminsky6, E. Ercole7, T.J. Baroni8, A.L. White1, J.R. Garey1, M.E. Smith6, A. Vizzini7§ 1Herbarium, Department of Cell Biology, Micriobiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA 2Via Angelo Custode 4A, I-00061 Anguillara Sabazia, RM, Italy 3Via Cappuccini 78/8, I-33170 Pordenone, Italy 4National Botanical Garden of Santo Domingo, Santo Domingo, Dominican Republic 5Wertheim Conservatory, Department of Biological Sciences, Florida International University, Miami, Florida, 33199, USA 6Department of Plant pathology, University of Florida, Gainesville, Florida 32611, USA 7Department of Life Sciences and Systems Biology, University of Turin, Viale P.A. Mattioli 25, I-10125 Torino, Italy 8Department of Biological Sciences, State University of New York – College at Cortland, Cortland, NY 1304, USA *Authors contributed equally to this manuscript §Corresponding authors: [email protected], [email protected] Key words: Abstract: The monotypic genus Phylloporopsis is described as new to science based on Phylloporus boletinoides. This Boletales species occurs widely in eastern North America and Central America. It is reported for the first time from a neotropical lamellate boletes montane pine woodland in the Dominican Republic. The confirmation of this newly recognised monophyletic genus is molecular phylogeny supported and molecularly confirmed by phylogenetic inference based on multiple loci (ITS, 28S, TEF1-α, and RPB1).
    [Show full text]
  • How Many Fungi Make Sclerotia?
    fungal ecology xxx (2014) 1e10 available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/funeco Short Communication How many fungi make sclerotia? Matthew E. SMITHa,*, Terry W. HENKELb, Jeffrey A. ROLLINSa aUniversity of Florida, Department of Plant Pathology, Gainesville, FL 32611-0680, USA bHumboldt State University of Florida, Department of Biological Sciences, Arcata, CA 95521, USA article info abstract Article history: Most fungi produce some type of durable microscopic structure such as a spore that is Received 25 April 2014 important for dispersal and/or survival under adverse conditions, but many species also Revision received 23 July 2014 produce dense aggregations of tissue called sclerotia. These structures help fungi to survive Accepted 28 July 2014 challenging conditions such as freezing, desiccation, microbial attack, or the absence of a Available online - host. During studies of hypogeous fungi we encountered morphologically distinct sclerotia Corresponding editor: in nature that were not linked with a known fungus. These observations suggested that Dr. Jean Lodge many unrelated fungi with diverse trophic modes may form sclerotia, but that these structures have been overlooked. To identify the phylogenetic affiliations and trophic Keywords: modes of sclerotium-forming fungi, we conducted a literature review and sequenced DNA Chemical defense from fresh sclerotium collections. We found that sclerotium-forming fungi are ecologically Ectomycorrhizal diverse and phylogenetically dispersed among 85 genera in 20 orders of Dikarya, suggesting Plant pathogens that the ability to form sclerotia probably evolved 14 different times in fungi. Saprotrophic ª 2014 Elsevier Ltd and The British Mycological Society. All rights reserved. Sclerotium Fungi are among the most diverse lineages of eukaryotes with features such as a hyphal thallus, non-flagellated cells, and an estimated 5.1 million species (Blackwell, 2011).
    [Show full text]
  • Pakaraimaea Dipterocarpacea
    The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea Matthew E. Smith1*, Terry W. Henkel2, Jessie K. Uehling2, Alexander K. Fremier3, H. David Clarke4, Rytas Vilgalys5 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 2 Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America, 3 Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, United States of America, 4 Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, United States of America, 5 Department of Biology, Duke University, Durham, North Carolina, United States of America Abstract Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • A Survey of Termitomyces (Lyophyllaceae, Agaricales), Including a New Species, from a Subtropical Forest in Xishuangbanna, China
    MYCOBIOLOGY 2019, VOL. 47, NO. 4, 391–400 https://doi.org/10.1080/12298093.2019.1682449 RESEARCH ARTICLE A Survey of Termitomyces (Lyophyllaceae, Agaricales), Including a New Species, from a Subtropical Forest in Xishuangbanna, China Lei Yea,b,c , Samantha C. Karunarathnaa,b, Huli Lia,b,c, Jianchu Xua,b, Kevin D. Hydea,b,c,d and Peter E. Mortimera aKey Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; bWorld Agroforestry Centre, East and Central Asia Office, Kunming, China; cCenter of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand; dMushroom Research Foundation, Chiang Mai, Thailand ABSTRACT ARTICLE HISTORY A survey of mushrooms was conducted in Xishuangbanna, Yunnan Province, China, in the Received 10 June 2019 rainy season (May to October) of 2012, 2013, and 2014, during which 16 specimens of Revised 10 September 2019 Termitomyces were collected. Preliminary macro- and micro-characteristics, together with ITS Accepted 10 September 2019 sequence data, showed that four of the specimens belonged to a new species (Termitomyces KEYWORDS fragilis), while the other 12 belonged to T. aurantiacus, T. eurrhizus, T. globules, T. microcarpus, Termitomyces; symbiosis; and T. bulborhizus. In this paper, T. fragilis is introduced as a species new to science based termites; wild on morphological characterization and phylogenetic analyses. Macro- and micro- morpho- edible mushrooms logical descriptions, color photographs and line drawings of the new species, and a phylo- genetic tree to show the placement of the new species are provided. T. fragilis is then compared with other closely related taxa in the genus Termitomyces.
    [Show full text]
  • Phylogeny of Lyophyllum Section Difformia Does Hon-Shimeji (L
    Phylogeny of Lyophyllum section Difformia Does hon-shimeji (L. shimeji) occur in Sweden? Henrik Sundberg Degree project for Master of Science in Botanical Systematics and Evolution 30 hec Department of Plant and Environmental Sciences University of Gothenburg ABSTRACT ........................................................................................................................................................... 2 1. INTRODUCTION ............................................................................................................................................. 3 1.1. BACKGROUND ............................................................................................................................................. 3 1.2. WHAT IS HON-SHIMEJI? ............................................................................................................................. 3 2. PROBLEMS & OBJECTIVES ........................................................................................................................ 4 3. LITERATURE REVIEW ................................................................................................................................. 4 3.1. GENERAL ECOLOGY AND DISTRIBUTION OF THE GENUS LYOPHYLLUM P. KARST. ................................... 4 3.2. TAXONOMY ................................................................................................................................................. 4 3.2.1. Traditional classification of the genus Lyophyllum .........................................................................
    [Show full text]
  • Heimioporus (Boletineae) in Australia
    Australasian Mycologist (2011) 29 Heimioporus (Boletineae) in Australia Roy E. Halling1,3 and Nigel A. Fechner2 1Institute of Systematic Botany, The New York Botanical Garden, Bronx, New York 10458, United States of America. 2Queensland Herbarium, Brisbane Botanic Garden, Mt Coot-tha Road, Toowong, Brisbane, Queensland 4066, Australia. 3Author for correspondence. Email: [email protected]. Abstract Two species of Heimioporus are fully documented, described and illustrated from recent collections gathered in Queensland. While H. fruticicola is known only from Australia so far, the specimens of H. japonicusMYVT-YHZLY0ZSHUKHUK*VVSVVSHYLWYLZLU[HUL^YLWVY[HUKZPNUPÄJHU[YHUNLL_[LUZPVUMVY this bolete. Key words: Boletes, mycorrhizae, Australia, biogeography. Introduction Materials and Methods Heimioporus^HZWYVWVZLKI`/VYHRHZHUL^ General colour terms are approximations, and the colour name to replace the bolete genus Heimiella Boedijn non codes (e.g., 7D8) are page, column, and row designations 3VOTHUU (ZTHU`HZZWLJPLZ^LYLPUJS\KLK from Kornerup & Wanscher (1983). All microscopic observations were made with an Olympus BHS compound I` /VYHR I\[ HZ LU]PZHNLK OLYL [OL NLU\Z microscope equipped with Nomarski differential interference circumscribes 10 species. These have olive-brown contrast (DIC) optics, and measurements were from dried spores which are alveolate-reticulate to reticulate or with TH[LYPHSYL]P]LKPU 26/;OLHIIYL]PH[PVU8YLMLYZ[V[OL pit-like perforations, extremely rarely rugulose and then mean length/width ratio measured from n basidiospores, and with crater–like pits; they are elongate-ellipsoid to short x refers to the mean length × mean width. Scanning electron LSSPWZVPK HUK SHJR H Z\WYHOPSHY WSHNL )VLKPQU micrographs of the spores were captured digitally from a included only the type species of his genus (Boletus Hitachi S-2700 scanning electron microscope operating at retisporus Pat.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology
    CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 57 August 2005 Number 1-2 Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters Jo s e f Š u t a r a Prosetická 239, 415 01 Tbplice, Czech Republic Šutara J. (2005): Central European genera of the Boletaceae and Suillaceae, with notes on their anatomical characters. - Czech Mycol. 57: 1-50. A taxonomic survey of Central European genera of the families Boletaceae and Suillaceae with tubular hymenophores, including the lamellate Phylloporus, is presented. Questions concerning the delimitation of the bolete genera are discussed. Descriptions and keys to the families and genera are based predominantly on anatomical characters of the carpophores. Attention is also paid to peripheral layers of stipe tissue, whose anatomical structure has not been sufficiently studied. The study of these layers, above all of the caulohymenium and the lateral stipe stratum, can provide information important for a better understanding of relationships between taxonomic groups in these families. The presence (or absence) of the caulohymenium with spore-bearing caulobasidia on the stipe surface is here considered as a significant ge­ neric character of boletes. A new combination, Pseudoboletus astraeicola (Imazeki) Šutara, is proposed. Key words: Boletaceae, Suillaceae, generic taxonomy, anatomical characters. Šutara J. (2005): Středoevropské rody čeledí Boletaceae a Suillaceae, s poznámka­ mi k jejich anatomickým znakům. - Czech Mycol. 57: 1-50. Je předložen taxonomický přehled středoevropských rodů čeledí Boletaceae a. SuiUaceae s rourko- vitým hymenoforem, včetně rodu Phylloporus s lupeny. Jsou diskutovány otázky týkající se vymezení hřibovitých rodů. Popisy a klíče k čeledím a rodům jsou založeny převážně na anatomických znacích plodnic.
    [Show full text]
  • (Boletaceae, Basidiomycota) – a New Monotypic Sequestrate Genus and Species from Brazilian Atlantic Forest
    A peer-reviewed open-access journal MycoKeys 62: 53–73 (2020) Longistriata flava a new sequestrate genus and species 53 doi: 10.3897/mycokeys.62.39699 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Longistriata flava (Boletaceae, Basidiomycota) – a new monotypic sequestrate genus and species from Brazilian Atlantic Forest Marcelo A. Sulzbacher1, Takamichi Orihara2, Tine Grebenc3, Felipe Wartchow4, Matthew E. Smith5, María P. Martín6, Admir J. Giachini7, Iuri G. Baseia8 1 Departamento de Micologia, Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, CEP: 50760-420, Recife, PE, Brazil 2 Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara-shi, Kanagawa 250-0031, Japan 3 Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia 4 Departamento de Sistemática e Ecologia/CCEN, Universidade Federal da Paraíba, CEP: 58051-970, João Pessoa, PB, Brazil 5 Department of Plant Pathology, University of Flori- da, Gainesville, Florida 32611, USA 6 Departamento de Micologia, Real Jardín Botánico, RJB-CSIC, Plaza Murillo 2, Madrid 28014, Spain 7 Universidade Federal de Santa Catarina, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Campus Trindade – Setor F, CEP 88040-900, Flo- rianópolis, SC, Brazil 8 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, CEP: 59072-970, Natal, RN, Brazil Corresponding author: Tine Grebenc ([email protected]) Academic editor: A.Vizzini | Received 4 September 2019 | Accepted 8 November 2019 | Published 3 February 2020 Citation: Sulzbacher MA, Orihara T, Grebenc T, Wartchow F, Smith ME, Martín MP, Giachini AJ, Baseia IG (2020) Longistriata flava (Boletaceae, Basidiomycota) – a new monotypic sequestrate genus and species from Brazilian Atlantic Forest.
    [Show full text]