Lattice Polytopes and Orbifolds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Classification and the Conjugacy Classesof the Finite Subgroups of The
Algebraic & Geometric Topology 8 (2008) 757–785 757 The classification and the conjugacy classes of the finite subgroups of the sphere braid groups DACIBERG LGONÇALVES JOHN GUASCHI Let n 3. We classify the finite groups which are realised as subgroups of the sphere 2 braid group Bn.S /. Such groups must be of cohomological period 2 or 4. Depend- ing on the value of n, we show that the following are the maximal finite subgroups of 2 Bn.S /: Z2.n 1/ ; the dicyclic groups of order 4n and 4.n 2/; the binary tetrahedral group T ; the binary octahedral group O ; and the binary icosahedral group I . We give geometric as well as some explicit algebraic constructions of these groups in 2 Bn.S / and determine the number of conjugacy classes of such finite subgroups. We 2 also reprove Murasugi’s classification of the torsion elements of Bn.S / and explain 2 how the finite subgroups of Bn.S / are related to this classification, as well as to the 2 lower central and derived series of Bn.S /. 20F36; 20F50, 20E45, 57M99 1 Introduction The braid groups Bn of the plane were introduced by E Artin in 1925[2;3]. Braid groups of surfaces were studied by Zariski[41]. They were later generalised by Fox to braid groups of arbitrary topological spaces via the following definition[16]. Let M be a compact, connected surface, and let n N . We denote the set of all ordered 2 n–tuples of distinct points of M , known as the n–th configuration space of M , by: Fn.M / .p1;:::; pn/ pi M and pi pj if i j : D f j 2 ¤ ¤ g Configuration spaces play an important roleˆ in several branches of mathematics and have been extensively studied; see Cohen and Gitler[9] and Fadell and Husseini[14], for example. -
A Symplectic Resolution for the Binary Tetrahedral Group
A SYMPLECTIC RESOLUTION FOR THE BINARY TETRAHEDRAL GROUP MANFRED LEHN & CHRISTOPH SORGER Abstract. We describe an explicit symplectic resolution for the quo- tient singularity arising from the four-dimensional symplectic represen- ation of the binary tetrahedral group. Let G be a nite group with a complex symplectic representation V . The symplectic form σ on V descends to a symplectic form σ¯ on the open regular part of V=G. A proper morphism f : Y ! V=G is a symplectic resolution if Y is smooth and if f ∗σ¯ extends to a symplectic form on Y . It turns out that symplectic resolutions of quotient singularities are a rare phenomenon. By a theorem of Verbitsky [9], a necessary condition for the existence of a symplectic resolution is that G be generated by symplectic reections, i.e. by elements whose x locus on V is a linear subspace of codimension 2. Given an arbitrary complex representation V0 of a nite group G, we obtain a symplectic representation on ∗, where ∗ denotes the contragradient V0 ⊕V0 V0 representation of V0. In this case, Verbitsky's theorem specialises to an earlier theorem of Kaledin [7]: For ∗ to admit a symplectic resolution, the V0 ⊕ V0 =G action of G on V0 should be generated by complex reections, in other words, V0=G should be smooth. The complex reection groups have been classied by Shephard and Todd [8], the symplectic reection groups by Cohen [2]. The list of Shephard and Todd contains as a sublist the nite Coxeter groups. The question which of these groups G ⊂ Sp(V ) admits a symplectic res- olution for V=G has been solved for the Coxeter groups by Ginzburg and Kaledin [3] and for arbitrary complex reection groups most recently by Bellamy [1]. -
Maximal Subgroups of the Coxeter Group W(H4) and Quaternions
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 412 (2006) 441–452 www.elsevier.com/locate/laa Maximal subgroups of the Coxeter group W(H4) and quaternions Mehmet Koca a, Ramazan Koç b,∗, Muataz Al-Barwani a, Shadia Al-Farsi a aDepartment of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Muscat, Oman bDepartment of Physics, Faculty of Engineering, Gaziantep University, 27310 Gaziantep, Turkey Received 9 October 2004; accepted 17 July 2005 Available online 12 September 2005 Submitted by H. Schneider Abstract The largest finite subgroup of O(4) is the non-crystallographic Coxeter group W(H4) of order 14,400. Its derived subgroup is the largest finite subgroup W(H4)/Z2 of SO(4) of order 7200. Moreover, up to conjugacy, it has five non-normal maximal subgroups of orders 144, two 240, 400 and 576. Two groups [W(H2) × W(H2)]Z4 and W(H3) × Z2 possess non- crystallographic structures with orders 400 and 240 respectively. The groups of orders 144, 240 and 576 are the extensions of the Weyl groups of the root systems of SU(3) × SU(3), SU(5) and SO(8) respectively. We represent the maximal subgroups of W(H4) with sets of quaternion pairs acting on the quaternionic root systems. © 2005 Elsevier Inc. All rights reserved. AMS classification: 20G20; 20F05; 20E34 Keywords: Structure of groups; Quaternions; Coxeter groups; Subgroup structure ∗ Corresponding author. Tel.: +90 342 360 1200; fax: +90 342 360 1013. -
This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Weakly Exceptional Quotient Singularities Dmitrijs Sakovics Doctor of Philosophy University of Edinburgh 2013 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Dmitrijs Sakovics) ii Acknowledgements I would like to take this opportunity to thank my supervisor Ivan Cheltsov for introducing me to this this topic and for his invaluable explanations and advice. Without his patience and motivation this work would never have been possible. I wish to thank C. Shramov for useful conversations and helpful comments on the topic. I would also like to thank my thesis committee, Dr. Antony Maciocia and Dr. Vladimir Guletskii, whose comments and suggestions have been of great help in improving my thesis. -
Platonic Solids Generate Their Four-Dimensional Analogues
This is a repository copy of Platonic solids generate their four-dimensional analogues. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85590/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010 (2013) Platonic solids generate their four-dimensional analogues. Acta Crystallographica Section A : Foundations of Crystallography. pp. 592-602. ISSN 1600-5724 https://doi.org/10.1107/S0108767313021442 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a,b,c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. -
Remarks on the Cohomology of Finite Fundamental Groups of 3–Manifolds
Geometry & Topology Monographs 14 (2008) 519–556 519 arXiv version: fonts, pagination and layout may vary from GTM published version Remarks on the cohomology of finite fundamental groups of 3–manifolds SATOSHI TOMODA PETER ZVENGROWSKI Computations based on explicit 4–periodic resolutions are given for the cohomology of the finite groups G known to act freely on S3 , as well as the cohomology rings of the associated 3–manifolds (spherical space forms) M = S3=G. Chain approximations to the diagonal are constructed, and explicit contracting homotopies also constructed for the cases G is a generalized quaternion group, the binary tetrahedral group, or the binary octahedral group. Some applications are briefly discussed. 57M05, 57M60; 20J06 1 Introduction The structure of the cohomology rings of 3–manifolds is an area to which Heiner Zieschang devoted much work and energy, especially from 1993 onwards. This could be considered as part of a larger area of his interest, the degrees of maps between oriented 3– manifolds, especially the existence of degree one maps, which in turn have applications in unexpected areas such as relativity theory (cf Shastri, Williams and Zvengrowski [41] and Shastri and Zvengrowski [42]). References [1,6,7, 18, 19, 20, 21, 22, 23] in this paper, all involving work of Zieschang, his students Aaslepp, Drawe, Sczesny, and various colleagues, attest to his enthusiasm for these topics and the remarkable energy he expended studying them. Much of this work involved Seifert manifolds, in particular, references [1, 6, 7, 18, 20, 23]. Of these, [6, 7, 23] (together with [8, 9]) successfully completed the programme of computing the ring structure H∗(M) for any orientable Seifert manifold M with 1 2 3 3 G := π1(M) infinite. -
Improved Orientation Sampling for Indexing Diffraction Patterns of Polycrystalline Materials
CORE Downloaded from orbit.dtu.dk on: Dec 20, 2017 Metadata, citation and similar papers at core.ac.uk Provided by Online Research Database In Technology Improved orientation sampling for indexing diffraction patterns of polycrystalline materials Larsen, Peter Mahler; Schmidt, Søren Published in: Journal of Applied Crystallography Link to article, DOI: 10.1107/S1600576717012882 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Larsen, P. M., & Schmidt, S. (2017). Improved orientation sampling for indexing diffraction patterns of polycrystalline materials. Journal of Applied Crystallography, 50(6). DOI: 10.1107/S1600576717012882 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. research papers Improved orientation sampling for indexing diffraction patterns of polycrystalline materials ISSN 1600-5767 Peter Mahler Larsen* and Søren Schmidt Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. *Correspondence e-mail: [email protected] Received 12 July 2017 Accepted 8 September 2017 Orientation mapping is a widely used technique for revealing the microstructure of a polycrystalline sample. -
Resolution of ADE Singularities
Resolution of Kleinian Singularities James J. Green April 25, 2014 abstract Firstly, the classification of finite subgroups of SL(2; C), a result of Felix Klein in 1884, is presented. The polynomial invariant subrings of these groups are then found. The generators of these subrings 3 satisfy a polynomial relation in three variables, which can be realised as a hypersurface in C . Each of these surfaces have a singularity at the origin; these are the Kleinian singularities. These singularities are blown-up, and their resolution graphs are shown to be precisely the Coxeter- Dynkin diagrams ADE. The target readership of this project is intended to be undergraduates with a foundational knowledge of group theory, topology and algebraic geometry. 1 1 Classifying the Finite Subgroups of SL(2; C) 1.1 Important Subgroups of the General Linear Group Recall: The general linear group of a vector space V over a field F is given by GL(V ) = ff : V −! V j f is linear and invertibleg: n In particular, we denote GL(F ) by GL(n; F). Since we can view linear maps as matrices, GL(n; F) can also be viewed as the set of invertible n × n matrices with entries in F. The next few definitions include important subgroups of GL(n; F). Definition 1.1. The special linear group over F is given by SL(n; F) = fA 2 GL(n; F) j det A = 1g: Definition 1.2. The orthogonal group over F is given by T O(n; F) = fA 2 GL(n; F) j AA = Ig where AT denotes the transpose of A, and I denotes the n × n identity matrix. -
Swampland Constraints on 5D N = 1 Supergravity Arxiv:2004.14401V2
Prepared for submission to JHEP Swampland Constraints on 5d N = 1 Supergravity Sheldon Katz, a Hee-Cheol Kim, b;c Houri-Christina Tarazi, d Cumrun Vafa d aDepartment of Mathematics, MC-382, University of Illinois at Urbana-Champaign, Ur- bana, IL 61801, USA bDepartment of Physics, POSTECH, Pohang 790-784, Korea cAsia Pacific Center for Theoretical Physics, Postech, Pohang 37673, Korea dDepartment of Physics, Harvard University, Cambridge, MA 02138, USA Abstract: We propose Swampland constraints on consistent 5-dimensional N = 1 supergravity theories. We focus on a special class of BPS magnetic monopole strings which arise in gravitational theories. The central charges and the levels of current algebras of 2d CFTs on these strings can be calculated by anomaly inflow mechanism and used to provide constraints on the low-energy particle spectrum and the effective action of the 5d supergravity based on unitarity of the worldsheet CFT. In M-theory, where these theories are realized by compactification on Calabi-Yau 3-folds, the spe- cial monopole strings arise from wrapped M5-branes on special (\semi-ample") 4- cycles in the threefold. We identify various necessary geometric conditions for such cycles to lead to requisite BPS strings and translate these into constraints on the low-energy theories of gravity. These and other geometric conditions, some of which can be related to unitarity constraints on the monopole worldsheet, are additional arXiv:2004.14401v2 [hep-th] 13 Jul 2020 candidates for Swampland constraints on 5-dimensional N = 1 supergravity -
2011 Volume 4
2011 Volume 4 The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics PROGRESS IN PHYSICS “All scientists shall have the right to present their scientific research results, in whole or in part, at relevant scientific conferences, and to publish the same in printed scientific journals, electronic archives, and any other media.” — Declaration of Academic Freedom, Article 8 ISSN 1555-5534 The Journal on Advanced Studies in Theoretical and Experimental Physics, including Related Themes from Mathematics PROGRESS IN PHYSICS A quarterly issue scientific journal, registered with the Library of Congress (DC, USA). This journal is peer reviewed and included in the abs- tracting and indexing coverage of: Mathematical Reviews and MathSciNet (AMS, USA), DOAJ of Lund University (Sweden), Zentralblatt MATH (Germany), Scientific Commons of the University of St. Gallen (Switzerland), Open-J-Gate (India), Referativnyi Zhurnal VINITI (Russia), etc. Electronic version of this journal: October 2011 VOLUME 4 http://www.ptep-online.com CONTENTS Editorial Board Dmitri Rabounski, Editor-in-Chief [email protected] Minasyan V. and Samoilov V. Ultracold Fermi and Bose gases and Spinless Bose Florentin Smarandache, Assoc. Editor ChargedSoundParticles.......................................................3 [email protected] Minasyan V. and Samoilov V. Superfluidity Component of Solid 4He and Sound Par- Larissa Borissova, Assoc. Editor ticleswithSpin1.............................................................8 [email protected] Quznetsov G. Fermion-Antifermion Asymmetry . 13 Editorial Team Tank H. K. An Insight into Planck’s Units: Explaining the Experimental-Observa- Gunn Quznetsov tions of Lack of Quantum Structure of Space-Time . 17 [email protected] Ries A. and Fook M.V.L. Excited Electronic States of Atoms described by the Model Andreas Ries [email protected] ofOscillationsinaChainSystem..............................................20 Chifu Ebenezer Ndikilar Ogiba F. -
4D Pyritohedral Symmetry
SQU Journal for Science, 2016, 21(2), 150-161 © 2016 Sultan Qaboos University 4D Pyritohedral Symmetry Nazife O. Koca*, Amal J.H. Al Qanobi and Mehmet Koca Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khoud 123, Muscat, Sultanate of Oman,* Email: [email protected]. ABSTRACT: We describe an extension of the pyritohedral symmetry in 3D to 4-dimensional Euclidean space and construct the group elements of the 4D pyritohedral group of order 576 in terms of quaternions. It turns out that it is a maximal subgroup of both the rank-4 Coxeter groups W (F4) and W (H4), implying that it is a group relevant to the crystallographic as well as quasicrystallographic structures in 4-dimensions. We derive the vertices of the 24 pseudoicosahedra, 24 tetrahedra and the 96 triangular pyramids forming the facets of the pseudo snub 24- cell. It turns out that the relevant lattice is the root lattice of W (D4). The vertices of the dual polytope of the pseudo snub 24-cell consists of the union of three sets: 24-cell, another 24-cell and a new pseudo snub 24-cell. We also derive a new representation for the symmetry group of the pseudo snub 24-cell and the corresponding vertices of the polytopes. Keywords: Pseudoicosahedron; Pyritohedron; Lattice; Coxeter groups and Quaternions. تماثل متعدد اﻷوجه ذو التركيب المشابه لمعدن البايريت في الفضاء اﻻقليدي ذو اﻷبعاد اﻷربعة نظيفة كوجا، أمل القنوبي و محمد كوجا مستخلص: وصفنا امتدادا لتماثل تركيب متعددات اﻷوجه من النوع المشابه لبلورة معدن البايرايت )pyritohedral( - و الذي يمكن صياغته -
Pos(TASI2017)015
The String Landscape, the Swampland, and the Missing Corner PoS(TASI2017)015 T. Daniel Brennana, Federico Cartab,∗ and Cumrun Vafayc a Department of Physics and Astronomy, Rutgers University 126 Frelinghuysen Rd., Piscataway NJ 08855, USA b Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain c Jefferson Physical Laboratory, Harvard University Cambridge, MA 02138, USA Email: [email protected], [email protected], [email protected] We give a brief overview of the string landscape and techniques used to construct string com- pactifications. We then explain how this motivates the notion of the swampland and review a number of conjectures that attempt to characterize theories in the swampland. We also compare holography in the context of superstrings with the similar, but much simpler case of topological string theory. For topological strings, there is a direct definition of topological gravity based on a sum over a “quantum gravitational foam.” In this context, holography is the statement of an identification between a gravity and gauge theory, both of which are defined independently of one another. This points to a missing corner in string dualities which suggests the search for a direct definition of quantum theory of gravity rather than relying on its strongly coupled holographic dual as an adequate substitute (Based on TASI 2017 lectures given by C. Vafa). Theoretical Advanced Study Institute in Elementary Partical Physics (TASI): “Physics at the Fundamental Frontier” University of Colorado, Boulder Boulder, CO June, 5 – 30 2017 ∗La Caixa-Severo Ochoa Scholar ySpeaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).