A Fundamental Study of the Reductive Leaching of Chalcopyrite Using Metallic Iron

Total Page:16

File Type:pdf, Size:1020Kb

A Fundamental Study of the Reductive Leaching of Chalcopyrite Using Metallic Iron A FUNDAMENTAL STUDY OF THE REDUCTIVE LEACHING OF CHALCOPYRITE USING METALLIC IRON by NED AM ABED B. Sc., Chemical Engineering, Jordan University of Science and Technology, Jordan, 1989 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES Department of Metals and Materials Engineering We accept this thesis as conforming to the,required standard THE UNIVERSITY OF BRITISH COLUMBIA April 1999 ©Nedam Abed, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) ABSTRACT A fundamental study of the reductive leaching (decomposition) of chalcopyrite was performed in both sulfate and chloride media. This was done to understand the physical chemistry of the leaching reactions and the possibility of developing a process flowsheet. The main objective of reductive leaching is to achieve the enrichment of chalcopyrite by rejection of iron and sulfur. A chalcopyrite concentrate containing around 60% chalcopyrite and analyzing around 28% copper was leached under reducing conditions using metallic iron. Various parameters were studied to understand their effect on leaching kinetics, including : temperature, particle size, agitation, acid concentration, molar ratios, and others. The leaching data were analyzed to determine the leaching mechanism and develop a kinetic model. The leaching reaction was found to be rapid on fresh surfaces of the concentrate, but slows markedly in one hour, as a film of products, mainly chalcocite, forms on particle surfaces. Iron was also found to enter the leach solution as soluble ferrous ions and sulfur is released as hydrogen sulfide. The general leaching reaction may be written as : + 2+ 2CuFeS2(s) + Fe(s) + 6H (aq) ->' Cu2S(s) + 3Fe (aq) + 3H2S(g) The proposed mechanism is a series of reactions. It is envisaged to be composed of two parts : a corrosion mechanism, which is iron dissolution, and galvanic mechanism, which is chalcopyrite reduction. The kinetic analysis indicated that the leaching reaction, which is electrochemical in nature, follows the shrinking core model under product layer diffusion control, and the rate determining step is the transport of one or more of reaction species, through the product layer. The reaction was dependent on the initial acid concentration, chalcopyrite particle size and molar ratio of iron to chalcopyrite. Moreover, the reaction was independent of the rate of agitation beyond that required to provide a well-mixed reaction mixture. Under stoichiometric conditions, room temperature and atmospheric pressure, the conversion (decomposition of chalcopyrite to simpler copper sulfides) was always below 60%, unless the initial amount of the reductant was increased or very fine chalcopyrite particles were used. ii For the studied experimental conditions, the developed parabolic leaching model for sulfate media takes the form : -33,880" 2/3 l-3(l-Xb) + 2(l-Xb) 7 [FT] exp t R v RT J and for chloride media, The parabolic leaching behavior was confirmed from the successful estimation of the related thermodynamic and kinetic properties of the leaching systems. The analysis of temperature dependence indicated that leaching increases with increasing temperature up to 65 °C. The apparent activation energy for leaching in sulfate media was estimated to be ~33 kJ/mol, and for chloride media, ~26 kJ/mol under stoichiometric conditions, in the temperature range 25-65 °C. Chemical analysis was extensively used based on wet chemistry methods, which were capable of demonstrating the general reaction stoichiometry including the composition of the new solid phase. Further, qualitative analysis by SEM confirmed the findings of the kinetic and chemical analysis. The findings from the fundamental study show that conversion is preferred under high solid pulp density (SPD), and back reaction kinetics have essentially little or no adverse effect. In an attempt to improve the conversion and utilize the results for a possible flowsheet, the concentrate was leached in the presence of excess chloride content, at -35% SPD. Based on material balance calculations, at room temperature and under near stoichiometric conditions, greater than 80% of the added chalcopyrite can be decomposed to yield copper sulfides (chalcocite) by rejection of iron and sulfur, using size fractions smaller than 74 jam. As a result of these findings, a process flowsheet was developed and further investigation is required to demonstrate the viability of the proposed process. iii TABLE OF CONTENTS Abstract ii List of Tables vi . List of Figures ix Acknowledgment xiii Section 1 Introduction 1 Section 2 Literature Survey : 8 2.1 Thermodynamics of Chalcopyrite Leaching 8 2.2 Oxidative Leaching of Chalcopyrite 30 2.3 Non-oxidative Leaching of Chalcopyrite 37 2.4 Reductive Leaching of Chalcopyrite 38 2.5 Halide Media Leaching of Chalcopyrite 50 Section 3 Objectives 52 Section 4 Proposed Leaching Mechanism with Metallic Iron 53 Section 5 Experimental Methods 57 5.1 Materials 57 5.2 Methods 59 5.2.1 The Kinetic Study 59 5.2.2 The Process Study 62 5.2.3 Analysis Techniques 64 5.2.4 Reaction Product Characterization 64 5.3. Calculations 65 Section 6 Results and Discussion 67 6.1 Analysis of Reaction Kinetics 67 6.1.1 Effect of Agitation 79 iv 6.1.2 Effect of Temperature 83 6.1.3 Effect of Particle Size 92 6.1.4 Effect of Initial Acid Concentration 100 6.1.5 Effect of Metallic Iron Addition 109 6.1.6 Effect of Chalcopyrite Addition 114 6.1.7 Effect of Solid Pulp Density (SPD) 119 6.1.8 Leaching Rates of Chalcopyrite Particles 121 6.2 Schematic Representation of the Leaching Process 126 6.3 Concluding Remarks 138 6.4 Process Development 139 6.4.1 Leaching 139 6.4.1.1 Acid Effect 139 6.4.1.2 Ferrous Chloride Effect 142 6.4.1.3 Metallic Iron Effect 142 6.4.1.4 Particle Size Effect 144 6.4.2 Solid / Liquid Separation 148 6.4.3 Iron Removal 148 6.4.4 Solid Washing Unit 148 6.4.5 Hydrogen Sulfide Collection Unit 149 6.4.6 Process Advantages 149 6.5 Hydrogen Sulfide Treatment 151 Section 7 Conclusions 156 Section 8 Recommendations for Future Research 158 Bibliography 162 Appendix I : Leaching Kinetics Models 172 Appendix II : Chemical Analysis 183 v LIST OF TABLES Table 1.1 : Common copper minerals 3 Table 1.2 : Electronic and structural properties of selected sulfide and oxide minerals 6 Table 2.1 : Summary of physical and chemical properties of group 11 (IB) metals 9 Table 2.2 : Selected solubility data for copper and related species 10 Table 2.3 : Thermodynamic values for some common species and reactions in copper aqueous chemistry 13 Table 2.4 : Reactions and thermodynamic equations used in constructing the Eh-pH diagrams 16 Table 2.5 : Selected heat capacity values for different species 21 Table 2.6 : Standard thermodynamic data for different species 22 Table 2.7 : Selected physical constants for copper and other species 23 Table 2.8 : The oxidative leaching of chalcopyrite in sulfate media 30 Table 2.9 : Reduction potentials of some metals and minerals at standard conditions 40 Table 2.10 : Summary of reviewed research on chalcopyrite reductive leaching 49 Table 5.1 : Detailed chemical analysis of the tested chalcopyrite concentrate 57 Table 5.2 : The mineralogical composition of the tested chalcopyrite concentrate 57 Table 5.3 : Particle size distribution of the concentrate 58 Table 6.1 : Sample experimental leaching data for selecting a leaching model by Wen's method (sulfate media, stoichiometric run, 25 °C) 69 Table 6.2 : Sample experimental leaching data for selecting a leaching model by Wen's method (chloride media, stoichiometric run, 65 °C) 70 Table 6.3 : Agitation speed effect on reaction kinetics (stoichiometric runs, sulfate media, 25 °C) 80 Table 6.4 : Agitation speed effect on reaction kinetics (stoichiometric runs, chloride media, 25 °C). 80 Table 6.5 : Temperature effect on reaction kinetics (0.1 M H2S04 solution, stoichiometric runs, 25-85 °C) 84 Table 6.6 : Temperature effect on reaction kinetics (0.1 M HC1 solution, stoichiometric runs, 25-85 °C) 85 Table 6.7 : Temperature dependence of reaction rates and related thermodynamic values for sulfate and chloride media 89 Table 6.8 : Particle size effect on reaction kinetics (sulfate media, stoichiometric runs, 25 °C) 93 Table 6.9 : Particle size effect on reaction kinetics (chloride media, stoichiometric runs, 25 °C) 94 Table 6.10 : Particle size dependence of reaction rates for sulfate and chloride media 94 Table 6.11 : Acid concentration effect on reaction kinetics (sulfate media, constant CuFeS2 and Fe additions, 25 °C) 101 Table 6.12 : Acid concentration effect on reaction kinetics (chloride media, constant CuFeS2 and Fe additions, 25 °C) 101 Table 6.13 : Hydrogen ion dependence of reaction rates (sulfate media) 104 Table 6.14 : Hydrogen ion dependence of reaction rates (chloride media) 107 Table 6.15 : Metallic iron effect on reaction kinetics (sulfate media, constant CuFeS2 and H2S04 additions, 25 °C) 110 Table 6.16 : Metallic iron effect on reaction kinetics
Recommended publications
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Supergene Mineralogy and Processes in the San Xavier Mine Area, Pima County, Arizona
    Supergene mineralogy and processes in the San Xavier mine area, Pima County, Arizona Item Type text; Thesis-Reproduction (electronic) Authors Arnold, Leavitt Clark, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 18:44:48 Link to Item http://hdl.handle.net/10150/551760 SUPERGENE MINERALOGY AND PROCESSES IN THE SAN XAVIER MINE AREA— PIMA COUNTY, ARIZONA by L. Clark Arnold A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1964 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of require­ ments for an advanced degree at The University of Arizona and is de­ posited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite.
    [Show full text]
  • Azu Td Hy E9791 1968 43 Sip
    A study of crystallization from water of compounds in the system Fe² - Cu² - So₄². Item Type Thesis-Reproduction (electronic); text Authors Walton, Wayne J. A. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 05:15:43 Link to Item http://hdl.handle.net/10150/191508 A STUDY OF CRYSTALLIZATION FROM WATER OF COMPOUNDS IN THE SYSTEM Fe -CU++ - SO4= by Wayne J. A. Walton, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1968 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill- ment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknow- ledginent of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • An Outline of the Caserones Copper and Molybdenum Deposit Development Project
    (Attachment) An outline of the Caserones Copper and Molybdenum Deposit Development Project A. Construction period: From 2010 to 2013. B. Commencement of operation: ・Production of refined copper by hydrometallurgical SX-EW process: in January 2013 ・Production of copper and molybdenum concentrates: in September 2013 C. Expected mine life: 28 years D. Flow of production to shipment: ≪Production of copper and molybdenum concentrates≫ Crushing and grinding ⇒ Flotation, dewatering, draining ⇒ Cu and Mo concentrates ⇒ shipping Open-pit mining ≪ Production of refined copper by SX-EW process ≫ Dump-leaching ⇒ SX-EW ⇒copper cathode⇒shipping Notes 1: (1)Dump-leaching means a process to extract (leach) copper by sprinkling sulfuric acid over a pile of uncrushed copper ore. (2)SX-EW process means a solvent extractive electrolytic copper winning process. Copper ion is selectively recovered from the leaching solution, and copper metal is produced by electrolysis from the copper sulfate solution. Approximately 20% of the copper from the mines in the world is produced by this process. E. Estimated volume of ore to be mined Ore Volume Grade (million Copper % Molybdenum tons) (ppm) Primary and secondary copper sulfide 1,050 0.34 126 (For production of copper and molybdenum concentrates) Copper oxide and secondary copper 300 0.25 - sulfide ore (For production of refined copper by SX/EW process) Notes 2: ・Primary copper sulfide:sulfides which formulated during the metallogenetic epoch. Chalcopyrite etc. ・Secondary copper sulfide:sulfides made of the primary copper sulfide which reacted with sulfuric acid. Chalcocite etc. ・Copper oxide:primary copper sulfide which oxidized by rain or weathering. chalcanthite,malachite ore etc.
    [Show full text]
  • ON the CRYSTALLOGRAPHY of AXINITE and the NORMAL SETTING of TRICLINIC CRYSTALS MA Pracock, Harvard
    ON THE CRYSTALLOGRAPHY OF AXINITE AND THE NORMAL SETTING OF TRICLINIC CRYSTALS M. A. PracocK, Harvard.(Iniaersity, Cambriilge, Mass. CoNrBNrs Present Status of the Problem of Choosing Morphological Elements. 588 Course of the Present Study 591 Several Steps in Choosing Normal Triclinic Elements. 592 Determination of the SpecificLattice ... ... 592 Choice oI the Represbntative Lattice Cell .. 593 Orientation of the Representative Lattice Cell. 593 Determination of Normal Elements from the External Geometry 597 Determination of Normal Elements from X-Ray Measurements 599 Relation of the New Lattice Elements to those of Cossner & Reicliel... 602 Determination of the Optical Elements 603 Definitive Presentation of the Crystallography of Axinite 605 Some of the Existing Settings of Axinite and the Underlying Principles. 605 Neumann (1825). 605 L6vy (1838)-Des Cloizeaux (1862).. 609 Miller (1852) 609 Vom Rath (1866). 610 Schrauf (1870). 6tL Goldschmidt(1886; 1897-19tJ) .. 612 Dana (1892) 613 Friedel (1926). 613 Propriety of the Normal Setting of Triclinic Crystals. 615 Summary.... 616 Acknowledgments. 617 References...... 618 ExplanationoftheFigures.....'Co-ordinate. .618 Appendix: Transformation of tf. O. H. DoNNev;... 62l PnBsBNr Srarus or.TrrE Pnonr-nu oF CHoosrNG MonpnorocrcAl ELEMENTS The problem of choosing morphological crystallographic elements reachesfull generality in the triclinic system, in which the mutual inter- sectionsof any three non-tautozonal crystal planes may be taken as axes of referencewith the intercepts of any crystal plane cutting all the axes to define the parameters. If the indices of the observed planes are to be small numbers only a moderate number of morphological lattices come under consideration; but since a triclinic lattice may be defined by any one of numerous cells, and any triclinic cell can be oriented in twenty- four different ways, the number of sets of geometrical elements that can be chosen for any one triclinic speciesis still very considerable.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Preliminary Model of Porphyry Copper Deposits
    Preliminary Model of Porphyry Copper Deposits Open-File Report 2008–1321 U.S. Department of the Interior U.S. Geological Survey Preliminary Model of Porphyry Copper Deposits By Byron R. Berger, Robert A. Ayuso, Jeffrey C. Wynn, and Robert R. Seal Open-File Report 2008–1321 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Berger, B.R., Ayuso, R.A., Wynn, J.C., and Seal, R.R., 2008, Preliminary model of porphyry copper deposits: U.S. Geological Survey Open-File Report 2008–1321, 55 p. iii Contents Introduction.....................................................................................................................................................1 Regional Environment ...................................................................................................................................3
    [Show full text]
  • Alpersite (Mg,Cu)So4â•¢7H2O, a New Mineral of the Melanterite
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2006 Alpersite (Mg,Cu)SO4•7H2O, A New Mineral of the Melanterite Group, and Cuprian Pentahydrite: Their Occurrence Within Mine Waste Ronald C. Peterson Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada, [email protected] Jane M. Hammarstrom United States Geological Survey, 954 National Center, Reston, Virginia 20192, U.S.A. Robert R. Seal II United States Geological Survey, 954 National Center, Reston, Virginia 20192, U.S.A. Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Peterson, Ronald C.; Hammarstrom, Jane M.; and Seal II, Robert R., "Alpersite (Mg,Cu)SO4•7H2O, A New Mineral of the Melanterite Group, and Cuprian Pentahydrite: Their Occurrence Within Mine Waste" (2006). USGS Staff -- Published Research. 334. https://digitalcommons.unl.edu/usgsstaffpub/334 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. American Mineralogist, Volume 91, pages 261–269, 2006 Alpersite (Mg,Cu)SO4·7H2O, a new mineral of the melanterite group, and cuprian pentahydrite: Their occurrence within mine waste RONALD C. PETERSON,1,* JANE M. HAMMARSTROM,2 AND ROBERT R. SEAL II2 1Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada 2United States Geological Survey, 954 National Center, Reston, Virginia 20192, U.S.A.
    [Show full text]
  • Determination of Melanterite-Rozenite and Chalcanthite-Bonattite Equilibria by Humidity Measurements at 0.1 Mpa
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2002 Determination of Melanterite-Rozenite and Chalcanthite-Bonattite Equilibria by Humidity Measurements at 0.1 MPa I-Ming Chou U.S. Geological Survey, 954 National Center, Reston, Virginia 20192, U.S.A. R.R. Seal II U.S. Geological Survey, 954 National Center, Reston, Virginia 20192, U.S.A. B.S. Hemingway U.S. Geological Survey, 953 National Center, Reston, Virginia 20192, U.S.A. Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Chou, I-Ming; Seal II, R.R.; and Hemingway, B.S., "Determination of Melanterite-Rozenite and Chalcanthite- Bonattite Equilibria by Humidity Measurements at 0.1 MPa" (2002). USGS Staff -- Published Research. 329. https://digitalcommons.unl.edu/usgsstaffpub/329 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. American Mineralogist, Volume 87, pages 108–114, 2002 Determination of melanterite-rozenite and chalcanthite-bonattite equilibria by humidity measurements at 0.1 MPa I-MING CHOU,1,* R.R. SEAL II,1 AND B.S. HEMINGWAY2 1U.S. Geological Survey, 954 National Center, Reston, Virginia 20192, U.S.A. 2U.S. Geological Survey, 953 National Center, Reston, Virginia 20192, U.S.A. ABSTRACT Melanterite (FeSO4·7H2O)-rozenite (FeSO4·4H2O) and chalcanthite (CuSO4·5H2O)-bonattite (CuSO4·3H2O) equilibria were determined by humidity measurements at 0.1 MPa.
    [Show full text]
  • Copper(II) Sulfate Pentahydrate
    Copper(II) sulfate pentahydrate Product Number C8027 Store at Room Temperature Product Description Preparation Instructions Molecular Formula: CuSO4 •5H2O This product is soluble in water (100 mg/ml), yieldng a Molecular Weight: 249.7 clear blue solution. It is also soluble in methanol and CAS Number: 7758-99-8 glycerol, and slightly soluble in ethanol.1 Synonym: cupric sulfate pentahydrate References This product is cell culture tested (0.02 µg/ml) and is 1. The Merck Index, 12th ed., Entry# 2722. appropriate for use in cell culture applications. 2. Chang, M. Y., et al., Oxidized LDL bind to nonproteoglycan components of smooth muscle Copper sulfate is a reagent that is used in many large- extracellular matrices. J. Lipid Res., 42(5), scale applications. Applications include textile dyeing, 824-833 (2001). the preparation of azo dyes, wood preservation, and 3. Nguyen-Khoa, T., et al., Oxidized low-density the tanning of leather. Copper sulfate pentahydrate lipoprotein induces macrophage respiratory burst occurs in nature as the mineral chalcanthite.1 via its protein moiety: A novel pathway in atherogenesis? Biochem. Biophys. Res. Copper sulfate is frequently utilized to oxidize Commun., 263(3), 804-809 (1999). lipoproteins in the context of biological oxidative 4. Grey, B. E., and Steck, T. R., The viable but stress.2,3 It is also used in studies of plants and plant nonculturable state of Ralstonia solanacearum pathogens.4,5 may be involved in long-term survival and plant infection. Appl. Environ. Microbiol., 67(9), A protocol for the isolation of recombinant yeast 6- 3866-3872 (2001). phosphofructo-2-kinase that uses copper sulfate has 5.
    [Show full text]