Return of Responses on 06/01/2020 to [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Return of Responses on 06/01/2020 to Namazu@Geoazur.Unice.Fr -2020 2019 Step 2 – Announcement of challenges on 04/11/2019; return of responses on 06/01/2020 to [email protected] PART I - Multiple Choice Questions - Finding the Right Answer for Each Question! Question 1. Let's compare our two neighboring telluric planets Earth and Mars. What is the wrong answer among the following? o The diameter of the planet Mars is smaller than that of the Earth o These two rocky planets have the same density o These two planets are rocky and each have at least one satellite o The atmosphere of Mars is 61 times thinner than Earth's o the surface gravity on Mars is only 38% of that of the Earth Question 2. It is not only on Earth that there are volcanoes. The volcanism of the planet Mars appeared almost four billion years ago. It would have known its maximum intensity at between 3.7 and 3.2 Ga, then would have weakened gradually. He has produced many volcanoes such as Olympus Mons, Pavonis Mons, Mons Ascraeus, Elysium Mons, Arsia Mons. Locate each of these volcanoes on the map below: o volcano 1> o volcano 2> o volcano 3> o volcano 4> o volcano 5> Question 3. Sort these volcanoes by altitude. Highest first (A), lowest last (E) o volcano has the highest> o volcano B> o volcano C> o volcano D> o volcano E the lowest> Question 4. Now compare volcanoes on both planets. On Mars, Olympus Mons has a diameter of 624 km at its base for an altitude of about 22 km. Mauna Kea in Hawaii is one of the highest volcanoes on Earth with an altitude of 9 km (from the ocean floor) for a diameter at its base of 180km. What is the most accurate statement: o Mons Olympus is less steep than Mauna Kea o Both volcanoes have a similar low slope of the order of 8% to 10% o Both volcanoes have a similar steep slope of about 25% o Mount Olympus does not look like Mauna Kea, which is a shield volcano o The Mauna Kea is much less steep than the Mons Olympus since it is lower Figure 6. The tow volcanoes drawn on a graph paper. Scales :horizontal 1:2 500 000 000; vertical 1:1 000 000 000 Drawing : Xavier Juan Question 5. Below is the topographic profile of the Mons Olympus in comparison with a Hawaiian volcano (the vertical scale is ten times smaller than the horizontal scale). Sea level From this information, choose the wrong proposition. o The island of Hawaii is the highest relief on Earth o The volume of the Mons Olympus is higher than that of the Hawaiian volcano because the atmospheric pressure on Mars is lower than on Earth. o Mons Olympus is a shield volcano o The volume of the Mons Olympus is higher than that of the Hawaiian volcano because the gravity on Mars is lower than on Earth. o The altitude of Mons Olympus has not been determined with respect to sea level Question 6 Mauna Kea is one of the largest shield volcano on Earth. A shield volcano is a volcano characterized by effusive eruptions producing fluid lava flows. Its relatively flat cone shape evokes that of a shield placed on the ground. It generally has, at its summit, a large volcanic crater. What kind of rock should we find most frequently on the slopes of the Mons Olympus? o Limestone rocks rich in fossils o Basalt type volcanic rocks o volcanic rocks of the andesite type o Silicified and charred woods o Saline rocks due to evaporation of water Question 7 During a volcanic eruption on Earth, many earthquakes occur before, during and after the emission of lava. Some volcanoes have seismometers that continuously record the seismic activity of the volcano. This is the case of Etna, which in December 2018 experienced a strong volcanic eruption. Below, we recorded the movement of the ground on a seismological station installed at the school of Bronté at the foot of the volcano Etna (Sicily). Each daily drive consists of 24 horizontal lines (one line for each hour of the day). All the unwinders are on the same scale. Help on: http://edumed.unice.fr/en/data-center/seismo Indicate the wrong answer: o The major eruption lasted about ten hours o Earthquakes occurred before and after the volcanic eruption o The major eruption began on December 24 around 9:10 am o Earthquakes occur only after the volcanic eruption o The recording of the major eruption is called a tremor Question 8 In previous recordings, there is a sudden change in the route on December 26 strong telluric shock on December 26 to a local earthquake. Look for the location and characteristics of this earthquake. Help: use the search engine on edumed.unice.fr/en/data-center/seismo Indicate the correct answer: The earthquake took place on December 26 in o 02h19m17s with a magnitude of 3.0 o 02h19m17s with a magnitude of 4.7 o 03h00m31s with a magnitude of 4.7 o 03h00m31s with a magnitude of 2.7 o 02h39m17s with a magnitude of 4.7 Question 9 On Mars too, there are earthquakes called 'marsquake'. It's historic! ... the InSight mission has recorded marsquakes since the seismometer is in place on Martian soil. The recording of one of these marsquakes is visible online on: https://insight.oca.eu/fr/data-insight Using the 'Marsview' software, note the arrival delay of the S waves from the P waves ... and using the hodochron, evaluate the distance between the SES sensor marsquake epicenter and InSight. Fill in the earthquake information: o earth time of the earthquake (to)> hh / mm / ss o The delay between the arrival of S and P waves (ts-tp)> ss o The epicentral distance estimated by the hodochrone> kms Question 10 The identified marsquake is 4440 km from the Arsia Mons volcano (one of Tharsis volcanoes). A distance far too big to evoke an earthquake due to a possible volcanic eruption. And yet, on a recent image of the Mars Express probe, from the top of Arsia Mons, a long white plume extending over 1500 km was photographed! Mars Express Visual Monitoring Camera - September 13, 2018 What phenomenon can it be? o A plume of smoke showing that the volcano is still active o A cloud of ice particles that develops under the wind o A whirlwind of sand and dust called 'dust devil' o The trace of a meteorite entering the Martian atmosphere o Formation of solid carbon dioxide under the effect of altitude PART II - Hello here the Earth? InSight and the planet Mars are followed by other students than you often in distant schools. You must contact a school participating in the challenge and discover with questions the following information: In which city is the semi-detached school to yours? How far are you from both schools? What is the most remarkable geological object near this school? A photo of the group of students from the twinned school with its logo? Procedure for this question: 1 / write to Namazu to have the contact of the twinned school to yours 2 / contact this school when Namazu will send you this contact 3 / ask your correspondents for your answers The points awarded for this part will be distributed in the same way to the two twinned schools. Part III. Reproduce the daily evolution of the temperature in the laboratory Tracking the temperature on the surface of Mars. The data coming from March also concern thermometers installed either outside or under the shield of the seismometer. Below is the regular evolution over several days (abscissa in terrestrial days / from February 14 to 19, 2019) of the data of these thermometers. The data is on the same scale. Temperature under the shield Outside temperature 14/02/19 15/02/19 16/02/19 17/02/19. 18/02/19. 19/02/19 On Mars, the atmosphere is held, so there are sudden changes in the outside temperature that are related to the appearance and disappearance of the sun. In the morning on Mars, the sun rises and this causes an increase in the outside temperature which reaches a maximum during the day. Then at the end of the day, the solar energy decreases and the outside temperature too. At the same time, the temperature under the shield shows the same daily evolution but with less amplitude and slight shift. This is proof that the heat shield placed on the seismometer is effective to limit thermal variations. You will reproduce this phenomenon in class. It will be necessary to realize a small experiment (described below), to film it and to transmit it to us. Use two similar thermometers, warm the atmosphere close to these thermometers for a few seconds (dry hair, heating, your hands!), Then let the thermometers cool down. However, leave a thermometer in the open air, and place the second in a box, a container equipped with an insulator (plastic bubble, polystyrene ...). Note the evolution of the two thermometers when they are heating, then note the decrease of the temperature of each sensor being cooled. The two thermometers are warmed up Evolution of the temperature ? Isolated sensor Possible help on> http://edumed.unice.fr/fr/contents/news/tools-lab/RISSC > THERMO sensor .
Recommended publications
  • Planetary Report Report
    The PLANETARYPLANETARY REPORT REPORT Volume XXIX Number 1 January/February 2009 Beyond The Moon From The Editor he Internet has transformed the way science is On the Cover: Tdone—even in the realm of “rocket science”— The United States has the opportunity to unify and inspire the and now anyone can make a real contribution, as world’s spacefaring nations to create a future brightened by long as you have the will to give your best. new goals, such as the human exploration of Mars and near- In this issue, you’ll read about a group of amateurs Earth asteroids. Inset: American astronaut Peggy A. Whitson who are helping professional researchers explore and Russian cosmonaut Yuri I. Malenchenko try out training Mars online, encouraged by Mars Exploration versions of Russian Orlan spacesuits. Background: The High Rovers Project Scientist Steve Squyres and Plane- Resolution Camera on Mars Express took this snapshot of tary Society President Jim Bell (who is also head Candor Chasma, a valley in the northern part of Valles of the rovers’ Pancam team.) Marineris, on July 6, 2006. Images: Gagarin Cosmonaut Training This new Internet-enabled fun is not the first, Center. Background: ESA nor will it be the only, way people can participate in planetary exploration. The Planetary Society has been encouraging our members to contribute Background: their minds and energy to science since 1984, A dust storm blurs the sky above a volcanic caldera in this image when the Pallas Project helped to determine the taken by the Mars Color Imager on Mars Reconnaissance Orbiter shape of a main-belt asteroid.
    [Show full text]
  • Esa Publications
    number 172 | 4th quarter 2017 bulletin → united space in europe European Space Agency The European Space Agency was formed out of, and took over the rights and The ESA headquarters are in Paris. obligations of, the two earlier European space organisations – the European Space Research Organisation (ESRO) and the European Launcher Development The major establishments of ESA are: Organisation (ELDO). The Member States are Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, ESTEC, Noordwijk, Netherlands. Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Slovenia is an Associate Member. Canada ESOC, Darmstadt, Germany. takes part in some projects under a cooperation agreement. Bulgaria, Cyprus, Malta, Latvia, Lithuania and Slovakia have cooperation agreements with ESA. ESRIN, Frascati, Italy. ESAC, Madrid, Spain. In the words of its Convention: the purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European EAC, Cologne, Germany. States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications ECSAT, Harwell, United Kingdom. systems: ESEC, Redu, Belgium. → by elaborating and implementing a long-term European space policy, by recommending space objectives to the Member States, and by concerting the policies of the Member States with respect to other national
    [Show full text]
  • MSS/1: Single‐Station and Single‐Event Marsquake Inversion
    RESEARCH ARTICLE MSS/1: Single‐Station and Single‐Event 10.1029/2020EA001118 Marsquake Inversion Special Section: Mélanie Drilleau1,2 , Éric Beucler3 , Philippe Lognonné1 , Mark P. Panning4 , InSight at Mars 5 4 6,7 8 Brigitte Knapmeyer‐Endrun , W. Bruce Banerdt , Caroline Beghein , Savas Ceylan , Martin van Driel8 , Rakshit Joshi9 , Taichi Kawamura1, Amir Khan8,10 , Key Points: Sabrina Menina1 , Attilio Rivoldini11 , Henri Samuel1 , Simon Stähler8 , Haotian Xu6 , • In the framework on the InSight 3 8 8 1 12 mission, a synthetic seismogram Mickaël Bonnin , John Clinton , Domenico Giardini , Balthasar Kenda , Vedran Lekic , 3 2 13 4 using a 3‐D crust and a 1‐D velocity Antoine Mocquet , Naomi Murdoch , Martin Schimmel , Suzanne E. Smrekar , model below is proposed Éléonore Stutzmann1 , Benoit Tauzin14,15 , and Saikiran Tharimena4 • This signal is used to present inversion methods, relying on 1Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS F‐7500511, Université Paris Diderot, Paris, France, different parameterizations, to 2ISAE‐SUPAERO, Toulouse University, Toulouse, France, 3Laboratoire de Planétologie et de Géodynamique, Université constrain the 1‐D structure of Mars 4 • The results demonstrate the de Nantes, Université d'Angers, Nantes, France, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, feasibility of the strategy to retrieve CA, USA, 5Bensberg Observatory, University of Cologne, Cologne, Germany, 6Department of Earth, Planetary, and Space 7 8 VS in the crust, and a fairly good Sciences,
    [Show full text]
  • Retour Des Réponses Le 06/01/2020 À [email protected] PARTIE I
    Episode 2 – Énoncé des énigmes le 04/11/2019 ; retour des réponses le 06/01/2020 à [email protected] PARTIE I – Questions à choix multiples – Trouver la bonne réponse pour chacune des questions ! Question 1. Comparons nos deux planètes telluriques voisines La Terre et Mars. Quelle est la réponse fausse parmi les suivantes ? o Le diamètre de la planète Mars est plus petit que celui de la Terre o Ces deux planètes rocheuses ont la même masse volumique o Ces deux planètes sont rocheuses et ont chacune au moins un satellite o L’atmosphère de Mars est 61 fois plus fine que celle de la Terre o la gravité de surface sur Mars est seulement 38 % de celle de la Terre Question 2. Il n'y a pas que sur la Terre qu'il y a des volcans. Le volcanisme de la planète Mars serait apparu il y a près de quatre milliards d'années. Il aurait connu son intensité maximale à entre 3,7 et 3,2 Ga, puis se serait progressivement affaibli. Il a produit de nombreux volcans tels que Olympus Mons, Pavonis Mons, Ascraeus Mons, Elysium Mons, Arsia Mons. Localisez chacun de ces volcans sur la carte ci dessous : o volcan 1 > o volcan 2 > o volcan 3 > o volcan 4 > o volcan 5 > Question 3. Classez ces volcans par altitude. Le plus haut en premier (A), le moins haut en dernier (E) o volcan A le plus haut > o volcan B > o volcan C > o volcan D > o volcan E le moins haut > Question 4.
    [Show full text]
  • Scientific Rationale and Requirements for a Global Seismic Network on Mars
    SCIENTIFIC RATIONALE AND REQUIREMENTS FOR A GLOBAL SEISMIC NETWORK ON MARS MARS Model AR 90 EARTH 180 (NASA-CR-188806) SCIENTIFIC RATIONALE AND N92-14949 REQUIREMENTS FOR A GLOBAL SEISMIC NETWORK ON MARS (Lunar and Planetary Inst.) 48 p CSCL 03B Unclas G3/91 0040098 LPI Technical Report Number 91-02 LUNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON TX 77058-4399 LPI/TR-91-02 SCIENTIFIC RATIONALE AND REQUIREMENTS FOR A GLOBAL SEISMIC NETWORK ON MARS Sean C. Solomon, Don L. Anderson, W. Bruce Banerdt, Rhett G. Butler, Paul M. Davis, Frederick K. Duennebier, Yosio Nakamura, Emile A. Okal, and Roger J. Phillips Report of a Workshop Held at Morro Bay, California May 7-9, 1990 Lunar and Planetary Institute 3303 NASA Road 1 Houston TX 77058 LPI Technical Report Number 91-02 LPI/TR-91-02 Compiled in 1991 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4574 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Solomon S. C. et al. (1991) Scientific Rationale and Requirements far a Global Seismic Network on Mars. LPI Tech. Rpt. 91-02, Lunar and Planetary Institute, Houston. 51 pp. This report is distributed by: ORDER DEPARTMENT Lunar and Planetary Institute 3303 NASA Road 1 Houston TX 77058-4399 Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • A Singular Seasonally Recurrent Double Vortex on Mars
    A singular seasonally recurrent double vortex on Mars Agustín Sanchez-Lavega1, A. Garro1, R. Hueso1, T. del Rio-Gaztelurrutia1, Hao Chen Chen1, I. Ordoñez-Etxeberria1, A. Cardesin-Moinelo2, D. Titov3, S. Wood4, M. Dias-Almeida5 1. Dpto. Física Aplicada I, Universidad del País Vasco UPV/EHU, Bilbao, Spain. 2. European Space Agency - ESAC, Madrid, Spain. 3. European Space Agency - ESTEC, Noorwijk, Netherlands. 4. European Space Agency - ESOC, Darmstadt, Germany. 5. Dias Almeida Data Processing and Systems, Ittigen, Switzerland From Mars Express to Exomars – 28 February 2018 Visual Monitoring Camera (VMC) – Mars Express (MEx) VMC * Beagle descent * Outreach Science Instrument (*) Detector • CMOS • Bayer RGB (COLOR) • Wavelength: 400-650 nm VMC/MEx (June-July 2012) Additional images used in this study (NASA – PDS) MARCI/Mars Reconnaissance Orbiter Navigation PLIA software MOC/Mars Global Surveyor (*) Sánchez-Lavega A. et al., Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express, Icarus, 299, 194 (2018). PLIA software: Hueso et al., Adv. Space Res. , 2010 From Mars Express to Exomars – 28 February 2018 Vortex properties MEx-VMC June 18, 2012 The vortex repeat in location and date Latitude: 60°N Longitude: 70W – 110W ( 800 Km East of PHOENIX lander) LS = 120-140° (Northern summer solstice: LS =90°) Size (each vortex): 600 - 800 km Wavelength 90 Wavenumber m = 4 From Mars Express to Exomars – 28 February 2018 Vortex Motion June 15-23 (2012) - MEx/VMC 1- UTC: 12-06-15 / 05:26:12 Local
    [Show full text]
  • First Year of Coordinated Science Observations by Mars Express and Exomars 2016 Trace Gas Orbiter
    MANUSCRIPT PRE-PRINT Icarus Special Issue “From Mars Express to ExoMars” https://doi.org/10.1016/j.icarus.2020.113707 First year of coordinated science observations by Mars Express and ExoMars 2016 Trace Gas Orbiter A. Cardesín-Moinelo1, B. Geiger1, G. Lacombe2, B. Ristic3, M. Costa1, D. Titov4, H. Svedhem4, J. Marín-Yaseli1, D. Merritt1, P. Martin1, M.A. López-Valverde5, P. Wolkenberg6, B. Gondet7 and Mars Express and ExoMars 2016 Science Ground Segment teams 1 European Space Astronomy Centre, Madrid, Spain 2 Laboratoire Atmosphères, Milieux, Observations Spatiales, Guyancourt, France 3 Royal Belgian Institute for Space Aeronomy, Brussels, Belgium 4 European Space Research and Technology Centre, Noordwijk, The Netherlands 5 Instituto de Astrofísica de Andalucía, Granada, Spain 6 Istituto Nazionale Astrofisica, Roma, Italy 7 Institut d'Astrophysique Spatiale, Orsay, Paris, France Abstract Two spacecraft launched and operated by the European Space Agency are currently performing observations in Mars orbit. For more than 15 years Mars Express has been conducting global surveys of the surface, the atmosphere and the plasma environment of the Red Planet. The Trace Gas Orbiter, the first element of the ExoMars programme, began its science phase in 2018 focusing on investigations of the atmospheric composition with unprecedented sensitivity as well as surface and subsurface studies. The coordination of observation programmes of both spacecraft aims at cross calibration of the instruments and exploitation of new opportunities provided by the presence of two spacecraft whose science operations are performed by two closely collaborating teams at the European Space Astronomy Centre (ESAC). In this paper we describe the first combined observations executed by the Mars Express and Trace Gas Orbiter missions since the start of the TGO operational phase in April 2018 until June 2019.
    [Show full text]
  • Magnitude Scales for Marsquakes
    Bulletin of the Seismological Society of America, Vol. XX, No. XX, pp. –, – 2018, doi: 10.1785/0120180037 Ⓔ Magnitude Scales for Marsquakes by Maren Böse,* Domenico Giardini, Simon Stähler, Savas Ceylan, John Francis Clinton, Martin van Driel, Amir Khan, Fabian Euchner, Philippe Lognonné, and William Bruce Banerdt Abstract In anticipation of the upcoming 2018 InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Discovery mission to Mars, we calibrate magnitude scales for marsquakes that incorporate state-of-the-art knowledge on Mars interior structure and the expected ambient and instrumental noise. We re- gress magnitude determinations of 2600 randomly distributed marsquakes, simulated with a spectral element method for 13 published 1D structural models of Mars’ interior. The continuous seismic data from InSight will be returned at 2 samples per second. To account for this limited bandwidth as well as for the expected noise conditions on Mars, we define and calibrate six magnitude scales: (1) local Mars mag- MMa nitude L at a period of 3 s for marsquakes at distances of up to 10°; (2) P-wave mMa mMa magnitude b ; (3) S-wave magnitude bS each defined at a period of 3 s and cali- MMa brated for distances from 5° to 100°; (4) surface-wave magnitude s defined at a MMa MMa period of 20 s, as well as (5) moment magnitudes FB ; and (6) F computed from the low-frequency (10–100 s) plateau of the displacement spectrum for either body waves or body and surface waves, respectively; we calibrate scales (4)–(6) for dis- tances from 5° to 180°.
    [Show full text]
  • Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK
    Planet Mars III 28 March- 2 April 2010 POSTERS: ABSTRACT BOOK Recent Science Results from VMC on Mars Express Jonathan Schulster1, Hannes Griebel2, Thomas Ormston2 & Michel Denis3 1 VCS Space Engineering GmbH (Scisys), R.Bosch-Str.7, D-64293 Darmstadt, Germany 2 Vega Deutschland Gmbh & Co. KG, Europaplatz 5, D-64293 Darmstadt, Germany 3 Mars Express Spacecraft Operations Manager, OPS-OPM, ESA-ESOC, R.Bosch-Str 5, D-64293, Darmstadt, Germany. Mars Express carries a small Visual Monitoring Camera (VMC), originally to provide visual telemetry of the Beagle-2 probe deployment, successfully release on 19-December-2003. The VMC comprises a small CMOS optical camera, fitted with a Bayer pattern filter for colour imaging. The camera produces a 640x480 pixel array of 8-bit intensity samples which are recoded on ground to a standard digital image format. The camera has a basic command interface with almost all operations being performed at a hardware level, not featuring advanced features such as patchable software or full data bus integration as found on other instruments. In 2007 a test campaign was initiated to study the possibility of using VMC to produce full disc images of Mars for outreach purposes. An extensive test campaign to verify the camera’s capabilities in-flight was followed by tuning of optimal parameters for Mars imaging. Several thousand images of both full- and partial disc have been taken and made immediately publicly available via a web blog. Due to restrictive operational constraints the camera cannot be used when any other instrument is on. Most imaging opportunities are therefore restricted to a 1 hour period following each spacecraft maintenance window, shortly after orbit apocenter.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • Mars Insight Launch Press Kit
    Introduction National Aeronautics and Space Administration Mars InSight Launch Press Kit MAY 2018 www.nasa.gov 1 2 Table of Contents Table of Contents Introduction 4 Media Services 8 Quick Facts: Launch Facts 12 Quick Facts: Mars at a Glance 16 Mission: Overview 18 Mission: Spacecraft 30 Mission: Science 40 Mission: Landing Site 53 Program & Project Management 55 Appendix: Mars Cube One Tech Demo 56 Appendix: Gallery 60 Appendix: Science Objectives, Quantified 62 Appendix: Historical Mars Missions 63 Appendix: NASA’s Discovery Program 65 3 Introduction Mars InSight Launch Press Kit Introduction NASA’s next mission to Mars -- InSight -- will launch from Vandenberg Air Force Base in California as early as May 5, 2018. It is expected to land on the Red Planet on Nov. 26, 2018. InSight is a mission to Mars, but it is more than a Mars mission. It will help scientists understand the formation and early evolution of all rocky planets, including Earth. A technology demonstration called Mars Cube One (MarCO) will share the launch with InSight and fly separately to Mars. Six Ways InSight Is Different NASA has a long and successful track record at Mars. Since 1965, it has flown by, orbited, landed and roved across the surface of the Red Planet. None of that has been easy. Only about 40 percent of the missions ever sent to Mars by any space agency have been successful. The planet’s thin atmosphere makes landing a challenge; its extreme temperature swings make it difficult to operate on the surface. But if a spacecraft survives the trip, there’s a bounty of science to be collected.
    [Show full text]