Influence of Phosphorus on Initial Growth and Production of Fresh Biomass of Legumes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Jack Bean (Canavalia Ensiformis) Leaves
Plant Physiol. (1975) 55, 975-977 In Vitro Synthesis of Ureidohomoserine by an Enzyme from Jack Bean (Canavalia ensiformis) Leaves Received for publication December 9, 1974 and in revised form February 19, 1975 THOMAS DENNY O'NEAL Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12181 ABSTRACT Identification of the products employed the use of one- dimensional TLC on Silica Gel G An enzyme was extensively purified from jack bean leaves plates, using phenol-H2O (Canavalia (77:23, v/v) or secbutanol-16% NH,OH, (3:1, v/v) as the ensiformis L.) which produced o-ureidohomoserine solvents. Citrulline and from L-canaline and carbamyl phosphate. The most ureidohomoserine were located by highly puri- with or fied preparations catalyzed both this reaction and citrulline syn- spraying ninhydrin Ehrlich's reagent (2% w/v p-di- thesis from ornithine and and the ratio methylaminobenzaldehyde in 5% HCI). Both ureidohomo- carbamyl phosphate, of serine and the two activities remained nearly constant during purification. citrulline had approximately the same RF value When hydrated jack bean seeds were the in either solvent, and reacted with both reagents. enzyme source, orni- The thine carbamyltransferase (EC 2.1.3.3) activity was high but enzymes were assayed at 37 C for 10 min. The assay synthesis of ureidohomoserine was barely detectable. Both contained enzyme, 3 mM L-ornithine or L-canaline, 6 mM ornithine carbamyltransferase and the ureidohomoserine syn- carbamyl phosphate, 33 mm tris-HCl buffer, pH 7.8 (for thesizing enzyme had similar Km values for carbamyl phos- CCT' or pH 8.3 (for OCT) and H20 to a final volume of phate. -
Sunn Hemp (Crotalaria Juncea) Plant Guide
Plant Guide for the stem to harden and the leaves to fill out, while still SUNN HEMP remaining short enough for goats to reach leaves. Crotalaria juncea L. The leaves of C. juncea can be used for cattle forage Plant Symbol = CRJU during late summer and early fall, but the amount of fiber in stems is too high 6 weeks after planting to be used as Contributed by: USDA NRCS Cape May Plant Materials suitable forage (Mansoer et al., 1997). Mannetje (2012) Center, Cape May, NJ found that the leaves and stems must be dried before fed to cattle and sheep. Cover crop/green manure: C. juncea is used as a nitrogen-fixing green manure to improve soil quality, reduce soil erosion, conserve soil moisture, suppress weeds and nematodes, and recycle plant nutrients. It grows quickly and can produce more than 5,000 lb dry matter/acre and 120 lb nitrogen/acre in 9–12 weeks (Clark, 2007). Fertilized and hand-weeded plots have yielded 5.6–6.2 T (short tons) per acre (Duke, 1983). Leaves have a nitrogen concentration between 2–5% and roots and stems have between 0.6–2% (Treadwell and Alligood, 2008). Its fast growth makes it ideally suited for planting in late summer rotations before fall cash crops. Sunn hemp (Crotalaria juncea).(Photo by Chris Miller, USDA-NRCS, Wildlife: Deer will browse plants and turkey and quail Cape May Plant Materials Center) will use C. juncea for shelter and food. Alternate Names Ethnobotany Alternate Common Names: Indian hemp, Madras hemp, C. juncea has been grown as a fiber crop in India since brown hemp 600 BC (Treadwell and Alligood, 2008) and is still used for fiber production in India and Pakistan (Wang and Scientific Alternate Names: McSorley, 2009). -
An Evolutionary Perspective on Human Cross-Sensitivity to Tree Nut and Seed Allergens," Aliso: a Journal of Systematic and Evolutionary Botany: Vol
Aliso: A Journal of Systematic and Evolutionary Botany Volume 33 | Issue 2 Article 3 2015 An Evolutionary Perspective on Human Cross- sensitivity to Tree Nut and Seed Allergens Amanda E. Fisher Rancho Santa Ana Botanic Garden, Claremont, California, [email protected] Annalise M. Nawrocki Pomona College, Claremont, California, [email protected] Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, Evolution Commons, and the Nutrition Commons Recommended Citation Fisher, Amanda E. and Nawrocki, Annalise M. (2015) "An Evolutionary Perspective on Human Cross-sensitivity to Tree Nut and Seed Allergens," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 33: Iss. 2, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol33/iss2/3 Aliso, 33(2), pp. 91–110 ISSN 0065-6275 (print), 2327-2929 (online) AN EVOLUTIONARY PERSPECTIVE ON HUMAN CROSS-SENSITIVITY TO TREE NUT AND SEED ALLERGENS AMANDA E. FISHER1-3 AND ANNALISE M. NAWROCKI2 1Rancho Santa Ana Botanic Garden and Claremont Graduate University, 1500 North College Avenue, Claremont, California 91711 (Current affiliation: Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840); 2Pomona College, 333 North College Way, Claremont, California 91711 (Current affiliation: Amgen Inc., [email protected]) 3Corresponding author ([email protected]) ABSTRACT Tree nut allergies are some of the most common and serious allergies in the United States. Patients who are sensitive to nuts or to seeds commonly called nuts are advised to avoid consuming a variety of different species, even though these may be distantly related in terms of their evolutionary history. -
Growth and Production of Pulses - Virender Sardana, Pushp Sharma and Parvender Sheoran
SOILS, PLANT GROWTH AND CROP PRODUCTION - Vo.III - Growth and Production of Pulses - Virender Sardana, Pushp Sharma and Parvender Sheoran GROWTH AND PRODUCTION OF PULSES Virender Sardana, Pushp Sharma and Parvender Sheoran Punjab Agricultural University, Ludhiana, 141 004, India Keywords: Black gram, breeding, chick-pea, classification, green gram, lentil, pigeon pea, pulses. Contents 1. Introduction 2. Pigeon Pea. 2.1. History 2.2. Classification 2.3. Plant Description 2.4. Breeding 2.5. Agronomy 2.5.1. Growing Conditions 2.5.2. Cropping Season 2.5.3. Land Husbandry 2.5.4. Fertilization 2.5.5. Pests and Diseases 2.6. Use 3. Green Gram and Black Gram 3.1. History 3.2. Classification 3.3. Plant Description 3.4. Breeding 3.5. Agronomy 3.5.1. Growing Conditions 3.5.2. Cropping Season 3.5.3. Land Husbandry 3.5.4. Fertilization 3.5.5. Pests and Diseases 3.6. Use 4. Chick-PeaUNESCO – EOLSS 4.1. History 4.2. Classification 4.3. Plant DescriptionSAMPLE CHAPTERS 4.4. Breeding 4.5. Agronomy 4.5.1. Growing Conditions 4.5.2. Cropping Season 4.5.3. Land Husbandry 4.5.4. Fertilization 4.5.5. Pests and Diseases 4.6. Use 5. Lentil ©Encyclopedia of Life Support Systems (EOLSS) SOILS, PLANT GROWTH AND CROP PRODUCTION - Vo.III - Growth and Production of Pulses - Virender Sardana, Pushp Sharma and Parvender Sheoran 5.1. History 5.2. Classification 5.3. Plant Description 5.4. Breeding 5.5. Agronomy 5.5.1. Growing Conditions 5.5.2. Cropping Season 5.5.3. Land Husbandry 5.5.4. -
Nutritional Aspects of Legumes - Ildikó Schuster-Gajzágó
CULTIVATED PLANTS, PRIMARILY AS FOOD SOURCES – Vol. I – Nutritional Aspects of Legumes - Ildikó Schuster-Gajzágó NUTRITIONAL ASPECTS OF LEGUMES Ildikó Schuster-Gajzágó Department of Technology, Central Food Research Institute, Hungary Keywords: taxonomy, distribution, chemical composition, food, feed, non-feed uses of legumes, agronomy, yield, production. Contents 1. Introduction 2. History, taxonomy and distribution 2.1. History 2.2. Taxonomy 2.3. Distribution 3. Chemical composition 3.1. Legume seeds as a source of protein 3.2. Legume seeds as a source of carbohydrate and dietary fibre 3.3. Fat content of Legume seeds 3.4. Legume seeds as a source of minor components with major health effects 4. Food, feed and non-food uses of legumes 4.1. Food use of legumes 4.2. Feed uses of legumes 4.3. Non-food uses of legumes 5. Agronomy, yield and production Glossary Bibliography Biographical Sketch Summary Legumes have been important source of protein, starch, oil, minerals, vitamins and health protecting compounds from the beginning of human history. Their seeds play an important role in the traditional diet of many peoples of the world and are a valuable basic material for the food and animal feed industries. Legume UNESCOseeds contain 200-250 g pr otein/kg;– EOLSS the protein is rich in lysine, and is therefore complementary to cereals in lysine balance. The main protein fractions are albumins and globulins;SAMPLE these fractions are differentCHAPTERS in their amino acid composition, molecular weight and physico-chemical properties. Grain legumes with their 390-510 g/kg starch content are important energy sources. The chemical composition of legume starch is characterized by high amylopectin content. -
Reconstructing the Deep-Branching Relationships of the Papilionoid Legumes
SAJB-00941; No of Pages 18 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Reconstructing the deep-branching relationships of the papilionoid legumes D. Cardoso a,⁎, R.T. Pennington b, L.P. de Queiroz a, J.S. Boatwright c, B.-E. Van Wyk d, M.F. Wojciechowski e, M. Lavin f a Herbário da Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil b Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH5 3LR Edinburgh, UK c Department of Biodiversity and Conservation Biology, University of the Western Cape, Modderdam Road, \ Bellville, South Africa d Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, 2006 Auckland Park, Johannesburg, South Africa e School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA f Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA article info abstract Available online xxxx Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume Edited by J Van Staden subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Keywords: Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relation- Leguminosae ships of the early-branching lineages due to limited sampling. -
Canavalia Ensiformis) for Human Consumption in Tanzania
International Journal of Agriculture and Food Security ISSN: 0812-3497 Vol. 3 (3), pp. 039-049, March 2017. Available online at www.advancedscholarsjournals.org © Advanced Scholars Journals Full length Research paper Utilization of jack beans (Canavalia ensiformis) for human consumption in Tanzania *Nakaaya Karoli, Jakaya O. Sumari and Hasheem Marealle Department of Food Technology, Nutrition and Consumer Sciences, Sokoine University of Agriculture, Morogoro, Tanzania. Accepted 18 February, 2017. Population increase is forcing mankind to look for alternative food sources from underutilized plants. Jack bean has been earmarked as one of these food sources. The only barrier for its utilization is the presence of inherent toxic compounds that should be removed, to make it edible to humans. A number of researchers have tried various ways in an effort to reach that goal. This study has also tried to perform a number of treatments on jack beans, which included soaking, treatment with trona (magadi soda) and germination. The samples of jack beans were brought from Mlingano Agricultural Research Institute and transported to the Sokoine University of Agriculture, Tanzania. Proximate analysis, mineral and phenolic compounds content were carried out on the treated samples. Acceptability tests were performed on products prepared from composite flour, made from 48 h. germinated jack beans. The products included porridges, breads and buns. Soaking results in lowering mineral concentrations. However, treatment with trona increased mineral profile. The levels of calcium, iron and zinc for the jack bean seeds analysed, gave 8.99, 3.83 and 1.76 mg/100 g, respectively. Proximate analysis revealed that moisture, protein, fibre, fat, ash and carbohydrate content were 4.6, 29.7, 5.2, 3.3, 3.4 and 53.9%, respectively. -
Canavalia Ensiformis) and Sword Beans (Canavalia Gladiata)
Annals. Food Science and Technology 2018 COMPARATIVE PHYTOCHEMICALS AND IN VITRO ANTIOXIDATIVE EFFECTS OF JACK BEANS (CANAVALIA ENSIFORMIS) AND SWORD BEANS (CANAVALIA GLADIATA) Soetan Kehinde Olugboyega1*, Antia Richard Edem2 1Department of Veterinary Physiology and Biochemistry, University of Ibadan, Ibadan, Nigeria. 2Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria. *E-mail:[email protected] Abstract Jack Bean (JB) (Canavalia ensiformis) and Sword Bean (SB) (Canavalia gladiata) are lesser-known and underutilized legumes with many food and medicinal benefits. Phytochemical screening and the in vitro antioxidant assays of aqueous extracts of jack bean and sword bean were carried out using standard methods. DPPH (2, 2-diphenyl -1- picrylhydrazyl) scavenging activity, total phenolic content (TPC), total flavonoids contents (TFC) and reducing power were assayed as determinant of in vitro antioxidant effects. Phytochemical screening showed the presence of saponins, tannins, flavonoids, steroids and alkaloids in both JB and SB while cardiac glycosides and anthraquinones were absent in both JB and SB. However, SB contained terpenoids which were absent in JB. The results of in vitro antioxidant assays showed that aqueous extract of sword bean had a significantly higher (P<0.05) DPPH (2, 2-diphenyl -1- picrylhydrazyl) scavenging activity than aqueous extract of jack bean. The total phenolic content (TPC) of sword bean was not different from the TPC of jack bean. Aqueous extract of sword bean had a significantly higher (P<0.05) total flavonoid content (TFC) than aqueous extract of jack bean and sword bean had a significantly higher (P<0.05) reducing power effects than the jack bean. The study concluded that jack bean and sword bean exhibited in vitro antioxidative effects and both JB and SB should be exploited as functional foods for the benefit of human and animals. -
Identity and Host Relations of the Elsinoe of Lima Bean '
IDENTITY AND HOST RELATIONS OF THE ELSINOE OF LIMA BEAN ' By S. C. BRUNEK, chief, Department of Entomology and Plant Pathology, Agri-' cultural Experiment Station, Santiago de las Vegas, Cuba, and ANNA E. JEN- KINS, associate pathologist. Division of Mycology and Disease Survey, Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION This paper presents the results of inoculation tests on legumes with the fungus causing scab of the lima bean (Phaseolus lunatus macro- carpus Benth.). This organism was tentatively identified^ as Elsinoe canavaliae Rac, causing scab of Canavalia in the Orient. The plants inoculated were wild or naturalized lima bean, known in Cuba as ''frijol caballero''; several common horticultural varieties of lima bean, including Fordhook Bush, Henderson Bush, Henderson Pole, and Challenger Pole; and some other leguminous plants, namely, Oalopogonium caeruleum (Benth.) Hemsl., Canavalia gladiata (Jacq.) DC, C, ensiformis (L.) DC, Dolichos lablab L., Phaseolus vulgaris L., Pisum sativum L., and Stizolohium deeringianum Bort. The object of the investigations was to obtam additional data on the host range of the organism, which would be of value taxonomically and otherwise, and also to determine some of the environmental conditions necessary for infection of the lima bean. MATERIALS AND METHODS The inoculations were made at the Agricultural Experiment Sta- tion, Santiago de las Vegas, Cuba, from 1930 to 1932 by the senior writer. The plants of Oalopogonium caeruleum and some of those of Canavalia ensiformis were inoculated on the station grounds where they were growing. The other inoculations were made in the plant- quarantine house. The sides of this house were protected with panels of fine copper-wire screening, which made it practically insect-proof but not fungus-proof. -
WRA Species Report
Family: Fabaceae Taxon: Crotalaria juncea Synonym: Crotalaria benghalensis Lam. Common Name: Indian hemp Crotalaria fenestrata Sims Madras hemp Crotalaria porrecta Wall. sann hemp Crotalaria sericea Willd. sunn crotalaria Crotalaria tenuifolia Roxb. Crotalaria viminea Wall. Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 1 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- Intermediate high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or -
Green Manures No. TGM2
Green Manures No. TGM2 Jackbean, Canavalia ensiformis Green manures are plants which are grown mainly for the benefit of the soil. They can be grown as part of a rotation or in an intercropping system to build soil fertility, or as a cover crop to protect bare soil from erosion. Full details on the benefits and practice of using green manures can be found in HDRA’s booklet ‘Green manures/Cover crops’. Canavalia ensiformis is also known as swordbean, horsebean and gotani bean Growing conditions • Annual rainfall: Jackbean tolerates a wide range of rainfall, from 650mm to 2,000mm, that is evenly distributed throughout the year. It tolerates drought and survives salinity and waterlogging. • Altitude: It grows best at altitudes up to 1,800 metres. • Temperature: It grows best between 15° C to 30° C . • Soil type: Jackbean can grow in a soil type from pH 4.5 to 8.0, although it does better in a soil with a pH of 5 to 6. It can tolerate a wide range of soils. Nitrogen fixation Jackbean is a legume. This means that it has nodules on its roots which contain bacteria. These bacteria take nitrogen from the air. This is known as nitrogen fixation. The plant uses this to grow and when the legume is dug into the soil, the extra nitrogen is made available to the next crop. Cultivation Sow jackbean at a rate of 40 to 60 seeds per hectare, 2cm deep and in rows 70cm apart. The application of nitrogen is said to lower yields. HDRA No. -
1Cnv Lichtarge Lab 2006
Pages 1–6 1cnv Evolutionary trace report by report maker March 21, 2010 4.3.3 DSSP 5 4.3.4 HSSP 5 4.3.5 LaTex 5 4.3.6 Muscle 5 4.3.7 Pymol 5 4.4 Note about ET Viewer 5 4.5 Citing this work 5 4.6 About report maker 5 4.7 Attachments 6 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1cnv): Title: Crystal structure of concanavalin b at 1.65 a resolution Compound: Mol id: 1; molecule: concanavalin b; chain: a Organism, scientific name: Canavalia Ensiformis; 1cnv contains a single unique chain 1cnvA (283 residues long). CONTENTS 2 CHAIN 1CNVA 1 Introduction 1 2.1 P49347 overview 2 Chain 1cnvA 1 From SwissProt, id P49347, 95% identical to 1cnvA: 2.1 P49347 overview 1 Description: Concanavalin B precursor (Con B). 2.2 Multiple sequence alignment for 1cnvA 1 Organism, scientific name: Canavalia ensiformis (Jack bean) (Horse bean). 2.3 Residue ranking in 1cnvA 1 Taxonomy: Eukaryota; Viridiplantae; Streptophyta; Embryophyta; 2.4 Top ranking residues in 1cnvA and their position on Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core the structure 1 eudicotyledons; rosids; eurosids I; Fabales; Fabaceae; Papilionoi- 2.4.1 Clustering of residues at 25% coverage. 2 deae; Phaseoleae; Canavalia. 2.4.2 Possible novel functional surfaces at 25% Function: May act as a carbohydrate-binding protein. coverage. 2 Similarity: Belongs to the glycosyl hydrolase 18 family. 3 Notes on using trace results 4 About: This Swiss-Prot entry is copyright. It is produced through a 3.1 Coverage 4 collaboration between the Swiss Institute of Bioinformatics and the 3.2 Known substitutions 4 EMBL outstation - the European Bioinformatics Institute.