FIBRINOLYSIS Paper Read During the Annual Meeting of the Royal College of Surgeons of England on 17Th December 1966 by G

Total Page:16

File Type:pdf, Size:1020Kb

FIBRINOLYSIS Paper Read During the Annual Meeting of the Royal College of Surgeons of England on 17Th December 1966 by G FIBRINOLYSIS Paper read during the Annual Meeting of the Royal College of Surgeons of England on 17th December 1966 by G. R. Fearnley, M.D., F.R.C.P. Consultant Physician, North Gloucestershire Area To MOST PEOPLE the term fibrinolytic therapy means the use of exogenous thrombolytic agents like streptokinase for the treatment of established thrombosis, either arterial or venous. This aspect, and it is only one aspect of fibrinolysis, has evoked little interest in this country, and one reason for this in respect of arterial thrombosis is the question: Once the blood supply has diminished sufficiently to produce infarction what good can be expected from dissolving the putative cause, and in any case how often can we be certain that a fibrinous thrombus is present? These objec- tions certainly apply to the thrombolytic treatment of cerebral and coronary infarctions; but have less cogency in the case of venous thrombosis. First, because the problem of infarction does not arise and, secondly, because, while the platelet may be of greater importance in arterial ob- struction, fibrin contributes significantly to the bulk of venous thrombi. Theoretically, then, thrombolytic therapy might be more relevant to venous than to arterial obstruction, but experience of the use of thrombolytic agents in venous thrombosis is both limited and in general uncontrolled. Nevertheless there is good evidence confirmed by phlebography that streptokinase can dissolve occlusive venous thrombi. Be this as it may, 1 propose to consider the possibility that endogenous fibrinolytic activity may play a part in the prevention of and perhaps recovery from venous thrombosis, and further to suggest that it may prove possible to enhance the body's own fibrinolytic activity by means of drugs as a prophylactic measure against venous thrombo-embolism. Activator + Plasminogen Plasmin Plasmin + Fibrin - Fibrinolysis First, however, since fibrinolysis is not too familiar to everybody, may I briefly outline its mechanism? The end-product of the fibrinolytic system is plasmin, a proteolytic enzyme. Plasmin derives from an in- active precursor, plasminogen, present in plasma and other body fluids; and for the conversion of plasminogen to plasmin and hence for fibrino- lysis to take place an activator or activating system is required. Activators of plasminogen are present in the tissues, the blood and other body fluids, such as the urine. Blood activator appears to arise mainly from the endothelium of veins and venules, and the evidence for this is as follows: As first shown by Clarke and his colleagues (1960), venous occlusion of a limb by means of a cuff is followed by a rise of fibrinolytic activity in the trapped venous blood. My colleagues and I (Chakrabarti et al., 1963) have shown that when a vein exposed at operation is traumatized by 51 G. R. FEARNLEY pinching with forceps the fibrinolytic activity of blood down stream from the point of trauma increases, and that if a venous segment is isolated by clamps and the blood is aspirated from it and replaced by non-fibrinolytic plasma, such plasma acquires considerable fibrinolytic activity within two minutes of being placed in the vein. By the technique of fibrinolysis autography, in which a thin layer of tissue is incubated in contact with a layer of fibrin, the preparation being subsequently stained and examined under the microscope, Todd (1959) has shown that veins and venules, especially their endothelium, are a rich source of fibrinolytic activity. By contrast arterial endothelium appears to be deficient in such activity. There is therefore good evidence that venous endothelium releases a plasminogen activator into contiguous blood, and that the blood level of activator is increased by venous stasis and by trauma to the vein. This mechanism may be concerned in the maintenance and restoration of venous patency. A majority of investigators have shown that fibrinous thrombi have plasminogen incorporated within them and plasminogen activators appear capable of penetrating such thrombi by diffusion, and J \44 a b Fig. 1. (a) Mural venous thrombus: exposed to activator from passing blood, and also from contiguous venous endothelium. (b) Occlusive venous thrombus: exposed to activator secreted by contiguous venous endothelium. there converting the contained plasminogen to plasmin with consequent lysis of the thrombus. If we picture a deposit of fibrin on a venous wall, it will be exposed to activator on all sides, on the one hand from passing blood and on the other from contiguous venous endothelium (Fig. la). Such a mechanism could be concerned in maintaining the patency ofveins. If occlusive thrombosis occurs, activator penetration is still available from the venous wall (Fig. lb) and may in time dissolve the thrombus. Direct proof that this happens is difficult to obtain in Man, but circumstantial evidence favours the possibility. It is a matter of common observation that venous thrombosis in the human being may resolve quite rapidly, and artificial thrombi induced in the ear-veins of rabbits and the pulmonary arteries of dogs tend to disappear within 24 hours. It is hard to see what else but fibrinolysis could be responsible. It is possible, therefore, that the natural fibrinolytic mechanism is concerned in maintaining and re- storing venous patency, and that failure of this mechanism might contri- bute to venous thrombo-embolic disease. This would be supported if defective fibrinolysis were associated with a tendency to venous thrombosis. The spontaneous fibrinolytic activity of blood is known to be low in patients with extensive arteriosclerosis and in patients and healthy people 52 FIBRINOLYSIS who are obese. Low fibrinolytic activity has been reported in patients who in the past have had a deep vein thrombosis (Ellison and Brown, 1965). There is therefore some evidence of an association between defective fibrinolysis and phlebothrombosis and with conditions believed to pre- dispose to it. Hence there would seem to be an a priori case for enhancing blood fibrinolytic activity of such people when they are exposed to con- ditions which favour the occurrence of phlebothrombosis; namely hospitalization. Can this be done? During the past seven years we have been investigating the possibility of enhancing blood fibrinolytic activity with drugs given by mouth and we now have a combination of drugs which seems capable of producing a sustained increase of fibrinolytic activity in nearly all patients except those whose fibrinolytic activity is naturally high. The level of plasminogen activator in blood is measured either by the time required for lysis of a clot made with thrombin from diluted blood or from the euglobulin fraction of plasma, the former being known as the blood clot lysis time or B.L.T. for short, and the latter as the euglobulin lysis time or E.L.T. for short. Lysis time and fibrinolytic activity are, ofcourse, inversely related. Hence a long lysis time means low fibrinolytic activity and a short lysis time means high fibrinolytic activity. Drugs which increase fibrinolytic activity therefore shorten both the dilute blood clot and euglobulin lysis times. For a given blood sample the blood clot lysis time is about 3-4 times that of the euglobulin lysis time. A slide was shown giving the results of a two-year study of the effect of various drugs on the blood fibrinolytic activity of 18 patients with occlusive vascular disease of the heart or lower limb. The upper of the two bottom curves showed the blood clot lysis time and the lower showed the euglobulin lysis time. The mean values for the 18 patients were given throughout the trial. It could be seen that metformin on the one hand and phenformin on the other gave a temporary fibrinolytic effect, but that when phenformin was combined with ethyloestrenol a sustained reduction of both the blood clot and euglobulin lysis times was obtained over a year which is when the slide was made. Serum cholesterol and plasma fibrinogen levels were also reduced. Since resistance develops to the fibrinolytic effect of ethyloe- strenol alone even more rapidly than it does to that of phenformin, the two drugs given together seem to exercise a synergistic effect on fibrinolysis. The fibrinolytic effect of phenformin plus ethyloestrenol has been confirmed in about 80 survivors of myocardial infarction who are at present receiving this treatment. The slide gives only the mean values, but individual anal- ysis of these and the coronary patients indicates that this combination of drugs increases fibrinolytic activity in about 80 per cent of people so treated, and that the most marked effect is in those whose blood fibrinolytic activity islow. The euglobulinlysis time is believed to measure directlyplasminogen activator, so that this combination of drugs seems to raise the level of blood activator. We are at present trying to discover whether this is 53 G. R. FEARNLEY achieved by increasing the rate of formation of activator, that is its release from veins, or by decreasing its removal or excretion. It is thus possible to produce a sustained increase of blood fibrinolytic activity with drugs given by mouth, and in respect of the venous system this might provide an alternative to anticoagulant prophylaxis. Its value or otherwise could be determined only by clinical trial; but at present there is one considerable difficulty. These drugs do not achieve their maximal fibrinolytic effect until they have been given for 2-3 weeks, and we know of no way of accelerating this. In fact experience with other drugs which affect fibrinolysis suggests that this kind of slow response is a feature of the fibrinolytic system. Further research may uncover a pharmacological means of increasing fibrinolytic activity quickly, but unless this becomes possible pharmacological fibrinolysis is obviously not viable as a treatment for phlebothrombosis. It might be possible to evaluate it as a prophylactic measure, although the latent interval before a fibrinolytic response is obtained would make this difficult.
Recommended publications
  • Urokinase, a Promising Candidate for Fibrinolytic Therapy for Intracerebral Hemorrhage
    LABORATORY INVESTIGATION J Neurosurg 126:548–557, 2017 Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage *Qiang Tan, MD,1 Qianwei Chen, MD1 Yin Niu, MD,1 Zhou Feng, MD,1 Lin Li, MD,1 Yihao Tao, MD,1 Jun Tang, MD,1 Liming Yang, MD,1 Jing Guo, MD,2 Hua Feng, MD, PhD,1 Gang Zhu, MD, PhD,1 and Zhi Chen, MD, PhD1 1Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and 2Department of Neurosurgery, 211st Hospital of PLA, Harbin, People’s Republic of China OBJECTIVE Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fi- brinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study. METHODS Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor–κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH. RESULTS In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH.
    [Show full text]
  • Fibrinolysis and Anticoagulant Potential of a Metallo Protease Produced by Bacillus Subtilis K42
    Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42 WESAM AHASSANEIN, ESSAM KOTB*, NADIA MAWNY and YEHIA AEL-ZAWAHRY Department of Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt 44519 *Corresponding author (Email, [email protected]) In this study, a potent fibrinolytic enzyme-producing bacterium was isolated from soybean flour and identified as Bacillus subtilis K42 and assayed in vitro for its thrombolytic potential. The molecular weight of the purified enzyme was 20.5 kDa and purification increased its specific activity 390-fold with a recovery of 14%. Maximal activity was attained at a temperature of 40°C (stable up to 65°C) and pH of 9.4 (range: 6.5–10.5). The enzyme retained up to 80% of its original activity after pre-incubation for a month at 4°C with organic solvents such as diethyl ether (DE), toluene (TO), acetonitrile (AN), butanol (BU), ethyl acetate (EA), ethanol (ET), acetone (AC), methanol (ME), isopropanol (IP), diisopropyl fluorophosphate (DFP), tosyl-lysyl-chloromethylketose (TLCK), tosyl-phenylalanyl chloromethylketose (TPCK), phenylmethylsulfonylfluoride (PMSF) and soybean trypsin inhibitor (SBTI). Aprotinin had little effect on this activity. The presence of ethylene diaminetetraacetic acid (EDTA), a metal-chelating agent and two metallo protease inhibitors, 2,2′-bipyridine and o-phenanthroline, repressed the enzymatic activity significantly. This, however, could be restored by adding Co2+ to the medium. The clotting time of human blood serum in the presence of this enzyme reached a relative PTT of 241.7% with a 3.4-fold increase, suggesting that this enzyme could be an effective antithrombotic agent.
    [Show full text]
  • 224 Subpart H—Hematology Kits and Packages
    § 864.7040 21 CFR Ch. I (4–1–02 Edition) Subpart H—Hematology Kits and the treatment of venous thrombosis or Packages pulmonary embolism by measuring the coagulation time of whole blood. § 864.7040 Adenosine triphosphate re- (b) Classification. Class II (perform- lease assay. ance standards). (a) Identification. An adenosine [45 FR 60611, Sept. 12, 1980] triphosphate release assay is a device that measures the release of adenosine § 864.7250 Erythropoietin assay. triphosphate (ATP) from platelets fol- (a) Identification. A erythropoietin lowing aggregation. This measurement assay is a device that measures the is made on platelet-rich plasma using a concentration of erythropoietin (an en- photometer and a luminescent firefly zyme that regulates the production of extract. Simultaneous measurements red blood cells) in serum or urine. This of platelet aggregation and ATP re- assay provides diagnostic information lease are used to evaluate platelet for the evaluation of erythrocytosis function disorders. (increased total red cell mass) and ane- (b) Classification. Class I (general mia. controls). (b) Classification. Class II. The special [45 FR 60609, Sept. 12, 1980] control for this device is FDA’s ‘‘Docu- ment for Special Controls for Erythro- § 864.7060 Antithrombin III assay. poietin Assay Premarket Notification (a) Identification. An antithrombin III (510(k)s).’’ assay is a device that is used to deter- [45 FR 60612, Sept. 12, 1980, as amended at 52 mine the plasma level of antithrombin FR 17733, May 11, 1987; 65 FR 17144, Mar. 31, III (a substance which acts with the 2000] anticoagulant heparin to prevent co- agulation). This determination is used § 864.7275 Euglobulin lysis time tests.
    [Show full text]
  • The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’S Perspective
    International Journal of Molecular Sciences Review The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective Hau C. Kwaan 1,* and Paul F. Lindholm 2 1 Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA 2 Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; [email protected] * Correspondence: [email protected] Abstract: The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone- angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable Citation: Kwaan, H.C.; Lindholm, state.
    [Show full text]
  • ACTIVASE (Alteplase) for Injection, for Intravenous Use Initial U.S
    Application 103172 This document contains: Label for ACTIVASE [Supplement 5203, Action Date 02/13/2015] Also available: Label for CATHFLO ACTIVASE [Supplement 5071, Action Date 01/04/2005] HIGHLIGHTS OF PRESCRIBING INFORMATION Acute Ischemic Stroke These highlights do not include all the information needed to use • Current intracranial hemorrhage. (4.1) ACTIVASE safely and effectively. See full prescribing information for • Subarachnoid hemorrhage. (4.1) ACTIVASE. Acute Myocardial Infarction or Pulmonary Embolism • History of recent stroke. (4.2) ACTIVASE (alteplase) for injection, for intravenous use Initial U.S. Approval: 1987 -----------------------WARNINGS AND PRECAUTIONS-----------------------­ • Increases the risk of bleeding. Avoid intramuscular injections. Monitor for ---------------------------INDICATIONS AND USAGE--------------------------­ bleeding. If serious bleeding occurs, discontinue Activase. (5.1) Activase is a tissue plasminogen activator (tPA) indicated for the treatment of • Monitor patients during and for several hours after infusion for orolingual • Acute Ischemic Stroke (AIS). (1.1) angioedema. If angioedema develops, discontinue Activase. (5.2) • Acute Myocardial Infarction (AMI) to reduce mortality and incidence of • Cholesterol embolism has been reported rarely in patients treated with heart failure. (1.2) thrombolytic agents. (5.3) Limitation of Use in AMI: the risk of stroke may be greater than the benefit • Consider the risk of reembolization from the lysis of underlying deep in patients at low risk of death
    [Show full text]
  • Partial Purification and Properties of a Plasminogen Activator from Human Erythrocytes
    Partial purification and properties of a plasminogen activator from human erythrocytes M. Semar, … , L. Skoza, A. J. Johnson J Clin Invest. 1969;48(10):1777-1785. https://doi.org/10.1172/JCI106144. Research Article The lysis time of euglobulin clots made with whole blood (plasma and red cells) was very much shorter than that of clots made with plasma alone, indicating a fibrinolytic component in red cells. A plasminogen activator was found in the stroma-free hemolysate, and proteolytic activity was found in the stromal fraction. The plasminogen activator, purified by using diethylaminoethyl-cellulose (DEAE-cellulose) in a batch procedure followed by column chromatography, was called erythrokinase (EK). On preliminary characterization, EK appears to activate human and bovine plasminogen in a manner similar to urokinase (UK), as determined by fibrinolytic and caseinolytic assays. The two enzymes can be separated by DEAE chromatography and acrylamide-gel electrophoresis, however, and they hydrolyze acetyl-L-lysine methyl ester and benzoyl arginine methyl ester at different rates. Find the latest version: https://jci.me/106144/pdf Partial Purification and Properties of a Plasminogen Activator from Human Erythrocytes M. SEMAR, L. SKOZA, and A. J. JOHNSON From the Department of Medicine, New York University Medical Center, and the American National Red Cross Research Laboratory, New York 10016 A B S T R A C T The lysis time of euglobulin clots made research on the fibrinolytic components contained in with whole blood (plasma and red cells) was very much the red cell, or on the possible physiologic role of red shorter than that of clots made with plasma alone, in- cells in thrombolysis.
    [Show full text]
  • A First in Class Treatment for Thrombosis Prevention. a Phase I
    Journal of Cardiology and Vascular Medicine Research Open Access A First in Class Treatment for Thrombosis Prevention. A Phase I study with CS1, a New Controlled Release Formulation of Sodium Valproate 1,2* 2 3 2 1,2 Niklas Bergh , Jan-Peter Idström , Henri Hansson , Jonas Faijerson-Säljö , Björn Dahlöf 1Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 2 Cereno Scientific AB, Gothenburg, Sweden 3 Galenica AB, Malmö, Sweden *Corresponding author: Niklas Bergh, The Wallenberg Laboratory for Cardiovascular Research Sahlgrenska University Hospi- tal Bruna Stråket 16, 413 45 Göteborg, Tel: +46 31 3421000; E-Mail: [email protected] Received Date: June 11, 2019 Accepted Date: July 25, 2019 Published Date: July 27, 2019 Citation: Niklas Bergh (2019) A First in Class Treatment for Thrombosis Prevention? A Phase I Study With Cs1, a New Con- trolled Release Formulation of Sodium Valproate. J Cardio Vasc Med 5: 1-12. Abstract Several lines of evidence indicate that improving fibrinolysis by valproic acid may be a fruitful strategy for throm- bosis prevention. This study investigated the safety, pharmacokinetics, and effect on biomarkers for thrombosis of CS1, a new advanced controlled release formulation of sodium valproate designed to produce optimum valproic acid concen- trations during the early morning hours, when concentrations of plasminogen activator inhibitor (PAI)-1 and the risk of thrombotic events is highest. Healthy volunteers (n=17) aged 40-65 years were randomized to receive single doses of one of three formulations of CS1 (FI, FII, and FIII). The CS1 FII formulation showed the most favorable pharmacokinetics and was chosen for multiple dosing.
    [Show full text]
  • Sudan University of Science and Technology College of Medical Laboratory Science Department of Hematology
    بسم هللا الرحمن الرحيم Sudan University of Science and Technology College of Medical Laboratory Science Department of Hematology D-dimer, PT and APTT levels among Renal Transplant Patients in Sudan مستويات الدي دايمر ,زمن البروثرومبين و زمن الثرموبوبﻻستين الجزئي المنشط وسط مرضي زراعة الكلى في السودان A thesis submitted for partial fulfillment of requirements of M.Sc. degree in Hematology Student Zubaida Mohamed Ahmed Abdalbagi, B.S.c 2013 Department of Hematology – Faculty of Medical Laboratory Sciences - Khartoum University Supervisor Dr. Hiba Badreldin Khalil, PhD Department of Hematology – Faculty of Medical Laboratory Sciences - Alneelain University 2019 بسم هللا الرحمن الرحيم قال تعالى : ْ اقْرَأْْبِاسْمِْْرَ بِكَْْاَّلِذيْخََلقَْ سورةْالعلقْ صدق هللا العظيمْ List of Contents Contents Page No I اﻵية List of Contents II List of Figures VI List of Tables VII List of Abbreviations VIII Dedication XI Acknowledgement XII Abstract / English Abstract XIII Arabic Abstract XIV / ملخص الدراسة Chapter One 1.1 Chronic Kidney Disease 1 1.1.1 Causes of Chronic Kidney Disease 6 1.1.2 Diagnosis 7 1.1.2.1 Differential diagnosis 7 1.1.3 Severity-Based Stages 7 1.1.4 Treatment of Chronic Kidney Disease 9 1.1.5 Prognosis of Chronic Kidney Disease 10 1.2 Kidney Transplantation 11 1.2.1 History of Kidney Transplantation 11 1.2.2 Indications 13 1.2.3.1Living donors 13 1.2.4 Deceased donors 61 1.2.5 Compatibility 18 1.2.6 Procedure 19 1.2.7 Post Operation 20 1.2.8 Complications 26 1.2.9 Prognosis 22 1.3 Homeostasis and Coagulation 23 1.3.1Nomenclature 24
    [Show full text]
  • (Tpa) As a Novel Treatment for Refractory COVID
    Journal of Trauma and Acute Care Surgery, Publish Ahead of Print DOI: 10.1097/TA.0000000000002694 Is There a Role for Tissue Plasminogen Activator (tPA) as a Novel Treatment for Refractory COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS)? Hunter B. Moore1, Christopher D. Barrett2,3, Ernest E. Moore1,4, Robert C. McIntyre1, Peter K. Moore5, Daniel S. Talmor6, Frederick A. Moore7, and Michael B. Yaffe2,3,8 1 Department of Surgery, University of Colorado Denver, Denver, CO USA 2 Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge MA, USA 3 Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA 4 Ernest E Moore Shock Trauma Center at Denver Health, Department of Surgery, Denver, CO USA 5 Department of Medicine, University of Colorado Denver, Denver CO USA 6 Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA 7 Department of Surgery, University of Florida, Gainesville, FL USA 8 ACCEPTED To whom correspondence should be addressed: E-mail: [email protected], Ph: 617- 452-2103, Fax: 617-452-2978 1 This work was supported by NIH Grants UM1-HL120877 (EEM, MBY), F32-HL134244 (CDB), and L30-GM120751 (CDB); and DoD Peer Reviewed Medical Research Program, Contract Number W81XWH-16-1-0464 (MBY). Keywords: COVID-19; Acute Respiratory Distress Syndrome (ARDS); Tissue Plasminogen Activator (tPA); Pulmonary Failure; Fibrinolysis This is an open-access article distributed under the terms of the Creative Commons Attribution- Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited.
    [Show full text]
  • Therapeutic Fibrinolysis How Efficacy and Safety Can Be Improved
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL.68,NO.19,2016 ª 2016 PUBLISHED BY ELSEVIER ON BEHALF OF THE ISSN 0735-1097/$36.00 AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION http://dx.doi.org/10.1016/j.jacc.2016.07.780 THE PRESENT AND FUTURE REVIEW TOPIC OF THE WEEK Therapeutic Fibrinolysis How Efficacy and Safety Can Be Improved Victor Gurewich, MD ABSTRACT Therapeutic fibrinolysis has been dominated by the experience with tissue-type plasminogen activator (t-PA), which proved little better than streptokinase in acute myocardial infarction. In contrast, endogenous fibrinolysis, using one-thousandth of the t-PA concentration, is regularly lysing fibrin and induced Thrombolysis In Myocardial Infarction flow grade 3 patency in 15% of patients with acute myocardial infarction. This efficacy is due to the effects of t-PA and urokinase plasminogen activator (uPA). They are complementary in fibrinolysis so that in combination, their effect is synergistic. Lysis of intact fibrin is initiated by t-PA, and uPA activates the remaining plasminogens. Knockout of the uPA gene, but not the t-PA gene, inhibited fibrinolysis. In the clinic, a minibolus of t-PA followed by an infusion of uPA was administered to 101 patients with acute myocardial infarction; superior infarct artery patency, no reocclusions, and 1% mortality resulted. Endogenous fibrinolysis may provide a paradigm that is relevant for therapeutic fibrinolysis. (J Am Coll Cardiol 2016;68:2099–106) © 2016 Published by Elsevier on behalf of the American College of Cardiology Foundation. n occlusive intravascular thrombus triggers fibrinolysis, as shown by it frequently not being A the cardiovascular diseases that are the lead- identified specifically in publications on clinical ing causes of death and disability worldwide.
    [Show full text]
  • Some Haematological Observations in Cardio- the Melrose Oxygenator
    Thorax: first published as 10.1136/thx.19.2.170 on 1 March 1964. Downloaded from Thorax (1964), 19, 170 Some haematological observations in cardio- pulmonary bypass at normothermia using the Melrose oxygenator R. A. CUMMING, S. H. DAVIES, K. KAMEL,' G. J. MACKENZIE, A. MASSON, AND J. D. WADE From the Cardiopulmonary Bypass Unit, The Royal Infirmary, Edinburgh Haemostasis is now generally accepted to be a FIG. 1. The clotting process. dynamic mechanism. In injury, haemostasis is Stage 1. Production of intrinsic thromboplastin or effected by a series of processes resulting finally in prothrombin activator the formation of a blood clot. This process involves Hageman factor (factor XII)-activated by contact capillary retraction whereby the severed vessel end with damaged vessel is narrowed; this is followed by the accretion of Plasma thromboplastin antecedent (factor XI) an occlusive platelet thrombus, and finally the Antihaemophilic factor (factor VIII) formation of a clot in the now static blood. Pro- Christmas factor (factor IX) Factor V (labile factor) gression of this process is probably limited and Stuart-Prower factor (factor X) controlled by the increased production of anti- Platelet factor 3 (co-factor 3) thrombin (and probably of other natural inhibi- Ca++ copyright. and the mechanism that tors), by fibrinolytic so Stage 2. Thrombin formation thrombus formation does not undergo retrograde Prothrombin Intrinsic Thrombin spread to involve the whole vascular tree. The fibrinolytic mechanism is also reparative and is thromboplastin active in the healing process. In normal health a Stage 3. Fibrin clot http://thorax.bmj.com/ fine balance between the haemostatic and fibrino- Fibrinogen Thrombin Fibrin lytic systems is said to maintain the integrity of the organism (Mole, 1948; Copley, 1954; Astrup, 1956 a and b; Jensen, 1956).
    [Show full text]
  • Hemostasis and Thrombosis
    PROCEDURES FOR HEMOSTASIS AND THROMBOSIS A Clinical Test Compendium PROCEDURES FOR HEMOSTASIS AND THROMBOSIS: A CLINICAL TEST COMPENDIUM Test No. Test Name Profile Includes Specimen Requirements Bleeding Profiles and Screening Tests 117199 aPTT Mixing Studies aPTT; aPTT 1:1 mix normal plasma (NP); aPTT 1:1 mix saline; aPTT 2 mL citrated plasma, frozen 1:1 mix, incubated; aPTT 1:1 mix NP, incubated control 116004 Abnormal Bleeding Profile PT; aPTT; thrombin time; platelet count 5 mL EDTA whole blood, one tube citrated whole blood (unopened), and 2 mL citrated plasma, frozen Minimum: 5 mL EDTA whole blood, one tube citrated whole blood (unopened), and 1 mL citrated plasma, frozen 503541 Bleeding Diathesis With Normal α2-Antiplasmin assay; euglobulin lysis time; factor VIII activity; 7 mL (1mL in each of 7 tubes) platelet-poor aPTT/PT Profile (Esoterix) factor VIII chromogenic; factor IX activity; factor XI activity; factor citrated plasma, frozen XIII activity; fibrinogen activity; PAI-1 activity with reflex to PAI-1 antigen and tPA; von Willebrand factor activity; von Willebrand factor antigen 336572 Menorrhagia Profile PT; aPTT; factor IX activity; factor VIII activity; factor XI activity; 3 mL citrated plasma, frozen von Willebrand factor activity; von Willebrand factor antigen Minimum: 2 mL citrated plasma, frozen 117866 Prolonged Protime Profile Factor II activity; factor V activity; factor VII activity; factor 3 mL citrated plasma, frozen X activity; fibrinogen activity; dilute prothrombin time Minimum: 2 mL citrated plasma, frozen
    [Show full text]