224 Subpart H—Hematology Kits and Packages

Total Page:16

File Type:pdf, Size:1020Kb

224 Subpart H—Hematology Kits and Packages § 864.7040 21 CFR Ch. I (4–1–02 Edition) Subpart H—Hematology Kits and the treatment of venous thrombosis or Packages pulmonary embolism by measuring the coagulation time of whole blood. § 864.7040 Adenosine triphosphate re- (b) Classification. Class II (perform- lease assay. ance standards). (a) Identification. An adenosine [45 FR 60611, Sept. 12, 1980] triphosphate release assay is a device that measures the release of adenosine § 864.7250 Erythropoietin assay. triphosphate (ATP) from platelets fol- (a) Identification. A erythropoietin lowing aggregation. This measurement assay is a device that measures the is made on platelet-rich plasma using a concentration of erythropoietin (an en- photometer and a luminescent firefly zyme that regulates the production of extract. Simultaneous measurements red blood cells) in serum or urine. This of platelet aggregation and ATP re- assay provides diagnostic information lease are used to evaluate platelet for the evaluation of erythrocytosis function disorders. (increased total red cell mass) and ane- (b) Classification. Class I (general mia. controls). (b) Classification. Class II. The special [45 FR 60609, Sept. 12, 1980] control for this device is FDA’s ‘‘Docu- ment for Special Controls for Erythro- § 864.7060 Antithrombin III assay. poietin Assay Premarket Notification (a) Identification. An antithrombin III (510(k)s).’’ assay is a device that is used to deter- [45 FR 60612, Sept. 12, 1980, as amended at 52 mine the plasma level of antithrombin FR 17733, May 11, 1987; 65 FR 17144, Mar. 31, III (a substance which acts with the 2000] anticoagulant heparin to prevent co- agulation). This determination is used § 864.7275 Euglobulin lysis time tests. to monitor the administration of hep- (a) Identification. A euglobulin lysis arin in the treatment of thrombosis. time test is a device that measures the The determination may also be used in length of time required for the lysis the diagnosis of thrombophilia (a con- (dissolution) of a clot formed from genital deficiency of antithrombin III). fibrinogen in the euglobulin fraction (b) Classification. Class II (perform- (that fraction of the plasma responsible ance standards). for the formation of plasmin, a clot [45 FR 60609, Sept. 12, 1980] lysing enzyme). This test evaluates natural fibrinolysis (destruction of a § 864.7100 Red blood cell enzyme blood clot after bleeding has been ar- assay. rested). The test also will detect accel- (a) Identification. Red blood cell en- erated fibrinolysis. zyme assay is a device used to measure (b) Classification. Class II (perform- the activity in red blood cells of clini- ance standards). cally important enzymatic reactions and their products, such as pyruvate [45 FR 60612, Sept. 12, 1980] kinase or 2,3-diphosphoglycerate. A red § 864.7290 Factor deficiency test. blood cell enzyme assay is used to de- termine the enzyme defects responsible (a) Identification. A factor deficiency for a patient’s hereditary hemolytic test is a device used to diagnose spe- anemia. cific coagulation defects, to monitor (b) Classification. Class II (perform- certain types of therapy, to detect co- ance standards). agulation inhibitors, and to detect a carrier state (a person carrying both a [45 FR 60610, Sept. 12, 1980] recessive gene for a coagulation factor § 864.7140 Activated whole blood clot- deficiency such as hemophilia and the ting time tests. corresponding normal gene). (b) Classification. Class II (perform- (a) Identification. An activated whole ance standards). blood clotting time tests is a device, used to monitor heparin therapy for [45 FR 60613, Sept. 12, 1980] 224 VerDate Apr<18>2002 06:36 Apr 28, 2002 Jkt 197069 PO 00000 Frm 00224 Fmt 8010 Sfmt 8010 Y:\SGML\197069T.XXX pfrm12 PsN: 197069T Food and Drug Administration, HHS § 864.7415 § 864.7300 Fibrin monomer § 864.7360 Erythrocytic glucose-6-phos- paracoagulation test. phate dehydrogenase assay. (a) Identification. A fibrin monomer (a) Identification. An erythrocytic paracoagulation test is a device used to glucose-6-phosphate dehydrogenase detect fibrin monomer in the diagnosis assay is a device used to measure the of disseminated intravascular coagula- activity of the enzyme glucose-6-phos- tion (nonlocalized clotting within a phate dehydrogenase or of glucose-6- blood vessel) or in the differential diag- phosphate dehydrogenase isoenzymes. nosis between disseminated The results of this assay are used in intravascular coagulation and primary the diagnosis and treatment of fibrinolysis (dissolution of the fibrin in nonspherocytic congenital hemolytic a blood clot). anemia or drug-induced hemolytic ane- mia associated with a glucose-6-phos- (b) Classification. Class II. The special phate dehydrogenase deficiency. This control for this device is FDA’s ‘‘In generic device includes assays based on Vitro Diagnostic Fibrin Monomer fluorescence, electrophoresis, Paracoagulation Test.’’ methemoglobin reduction, catalase in- [45 FR 60614, Sept. 12, 1980, as amended at 52 hibition, and ultraviolet kinetics. FR 17733, May 11, 1987; 65 FR 17144, Mar. 31, (b) Classification. Class II (perform- 2000] ance standards). § 864.7320 Fibrinogen/fibrin degrada- [45 FR 60616, Sept. 12, 1980] tion products assay. § 864.7375 Glutathione reductase (a) Identification. A fibrinogen/fibrin assay. degradation products assay is a device (a) Identification. A glutathione re- used to detect and measure fibrinogen ductase assay is a device used to deter- degradation products and fibrin deg- mine the activity of the enzyme gluta- radation products (protein fragments thione reductase in serum, plasma, or produced by the enzymatic action of erythrocytes by such techniques as flu- plasmin on fibrinogen and fibrin) as an orescence and photometry. The results aid in detecting the presence and de- of this assay are used in the diagnosis gree of intravascular coagulation and of liver disease, glutathione reductase fibrinolysis (the dissolution of the deficiency, or riboflavin deficiency. fibrin in a blood clot) and in moni- (b) Classification. Class II (perform- toring therapy for disseminated ance standards). intravascular coagulation (nonlocal- ized clotting in the blood vessels). [45 FR 60616, Sept. 12, 1980] (b) Classification. Class II (perform- § 864.7400 Hemoglobin A2 assay. ance standards). (a) Identification. A hemoglobin A2 [45 FR 60615, Sept. 12, 1980] assay is a device used to determine the hemoglobin A2 content of human blood. § 864.7340 Fibrinogen determination The measurement of hemoglobin A2 is system. used in the diagnosis of the (a) Identification. A fibrinogen deter- thalassemias (hereditary hemolytic mination system is a device that con- anemias characterized by decreased sists of the instruments, reagents, synthesis of one or more types of he- standards, and controls used to deter- moglobin polypeptide chains). mine the fibrinogen levels in dissemi- (b) Classification. Class II (perform- nated intravascular coagulation (non- ance standards). localized clotting within the blood ves- [45 FR 60617, Sept. 12, 1980] sels) and primary fibrinolysis (the dis- solution of fibrin in a blood clot). § 864.7415 Abnormal hemoglobin assay. (b) Classification. Class II (perform- (a) Identification. An abnormal hemo- ance standards). globin assay is a device consisting of [45 FR 60615, Sept. 12, 1980] the reagents, apparatus, instrumenta- tion, and controls necessary to isolate 225 VerDate Apr<18>2002 06:36 Apr 28, 2002 Jkt 197069 PO 00000 Frm 00225 Fmt 8010 Sfmt 8010 Y:\SGML\197069T.XXX pfrm12 PsN: 197069T § 864.7425 21 CFR Ch. I (4–1–02 Edition) and identify abnormal genetically de- (b) Classification. Class II (perform- termined hemoglobin types. ance standards). (b) Classification. Class II (perform- [45 FR 60620, Sept. 12, 1980] ance standards). [45 FR 60618, Sept. 12, 1980] § 864.7470 Glycosylated hemoglobin assay. § 864.7425 Carboxyhemoglobin assay. (a) Identification. A glycosylated he- (a) Identification. A carboxy- moglobin assay is a device used to hemoglobin assay is a device used to measure the glycosylated hemoglobins determine the carboxyhemoglobin (the (A1a, A1b, and A1c) in a patient’s blood compound formed when hemoglobin is by a column chromatographic proce- exposed to carbon monoxide) content of dure. Measurement of glycosylated he- human blood as an aid in the diagnosis moglobin is used to assess the level of of carbon monoxide poisoning. This control of a patient’s diabetes and to measurement may be made using determine the proper insulin dosage for methods such as spectroscopy, colorim- a patient. Elevated levels of etry, spectrophotometry, and glycosylated hemoglobin indicate un- gasometry. controlled diabetes in a patient. (b) Classification. Class II (perform- (b) Classification. Class II (perform- ance standards). ance standards). [45 FR 60619, Sept. 12, 1980] [45 FR 60621, Sept. 12, 1980] § 864.7440 Electrophoretic hemoglobin § 864.7490 Sulfhemoglobin assay. analysis system. (a) Identification. A sulfhemoglobin (a) Identification. An electrophoretic assay is a device consisting of the re- hemoglobin analysis system is a device agents, calibrators, controls, and in- that electrophoretically separates and strumentation used to determine the identifies normal and abnormal hemo- sulfhemoglobin (a compound of sulfur globin types as an aid in the diagnosis and hemoglobin) content of human of anemia or erythrocytosis (increased blood as an aid in the diagnosis of total red cell mass) due to a hemo- sulfhemoglobinemia (presence of globin abnormality. sulfhemoglobin in
Recommended publications
  • Hereditary Spherocytosis: Clinical Features
    Title Overview: Hereditary Hematological Disorders of red cell shape. Disorders Red cell Enzyme disorders Disorders of Hemoglobin Inherited bleeding disorders- platelet disorders, coagulation factor Anthea Greenway MBBS FRACP FRCPA Visiting Associate deficiencies Division of Pediatric Hematology-Oncology Duke University Health Service Inherited Thrombophilia Hereditary Disorders of red cell Disorders of red cell shape (cytoskeleton): cytoskeleton: • Mutations of 5 proteins connect cytoskeleton of red cell to red cell membrane • Hereditary Spherocytosis- sphere – Spectrin (composed of alpha, beta heterodimers) –Ankyrin • Hereditary Elliptocytosis-ellipse, elongated forms – Pallidin (band 4.2) – Band 4.1 (protein 4.1) • Hereditary Pyropoikilocytosis-bizarre red cell forms – Band 3 protein (the anion exchanger, AE1) – RhAG (the Rh-associated glycoprotein) Normal red blood cell- discoid, with membrane flexibility Hereditary Spherocytosis: Clinical features: • Most common hereditary hemolytic disorder (red cell • Neonatal jaundice- severe (phototherapy), +/- anaemia membrane) • Hemolytic anemia- moderate in 60-75% cases • Mutations of one of 5 genes (chromosome 8) for • Severe hemolytic anaemia in 5% (AR, parents ASx) cytoskeletal proteins, overall effect is spectrin • fatigue, jaundice, dark urine deficiency, severity dependant on spectrin deficiency • SplenomegalSplenomegaly • 200-300:million births, most common in Northern • Chronic complications- growth impairment, gallstones European countries • Often follows clinical course of affected
    [Show full text]
  • Partial Purification and Properties of a Plasminogen Activator from Human Erythrocytes
    Partial purification and properties of a plasminogen activator from human erythrocytes M. Semar, … , L. Skoza, A. J. Johnson J Clin Invest. 1969;48(10):1777-1785. https://doi.org/10.1172/JCI106144. Research Article The lysis time of euglobulin clots made with whole blood (plasma and red cells) was very much shorter than that of clots made with plasma alone, indicating a fibrinolytic component in red cells. A plasminogen activator was found in the stroma-free hemolysate, and proteolytic activity was found in the stromal fraction. The plasminogen activator, purified by using diethylaminoethyl-cellulose (DEAE-cellulose) in a batch procedure followed by column chromatography, was called erythrokinase (EK). On preliminary characterization, EK appears to activate human and bovine plasminogen in a manner similar to urokinase (UK), as determined by fibrinolytic and caseinolytic assays. The two enzymes can be separated by DEAE chromatography and acrylamide-gel electrophoresis, however, and they hydrolyze acetyl-L-lysine methyl ester and benzoyl arginine methyl ester at different rates. Find the latest version: https://jci.me/106144/pdf Partial Purification and Properties of a Plasminogen Activator from Human Erythrocytes M. SEMAR, L. SKOZA, and A. J. JOHNSON From the Department of Medicine, New York University Medical Center, and the American National Red Cross Research Laboratory, New York 10016 A B S T R A C T The lysis time of euglobulin clots made research on the fibrinolytic components contained in with whole blood (plasma and red cells) was very much the red cell, or on the possible physiologic role of red shorter than that of clots made with plasma alone, in- cells in thrombolysis.
    [Show full text]
  • Sickle Cell: It's Your Choice
    Sickle Cell: It’s Your Choice What Does “Sickle Cell” Mean? Sickle is a type of hemoglobin. Hemoglobin is the substance that carries oxygen in the blood and gives blood its red color. A person’s hemoglobin type is not the same thing as blood type. The type of hemoglobin we have is determined by genes that we inherit from our parents. The majority of individuals have only the “normal” type of hemoglobin (A). However, there are a variety of other hemoglobin types. Sickle hemoglobin (S) is one of these types. There Are Two Forms of Sickle Cell. Sickle cell occurs in two forms. Sickle cell trait is not a disease; Sickle cell anemia (or sickle cell disease) is a disease. Sickle Cell Trait (or Sickle Trait) Sickle cell trait is found primarily in African Americans, people from areas around the Mediterranean Sea, and from islands in the Caribbean. Sickle cell trait occurs when a person inherits one sickle cell gene from one parent and one normal hemoglobin gene from the other parent. A person with sickle cell trait is healthy and usually is not aware that he or she has the sickle cell gene. A person who has sickle trait can pass it on to their children. If one parent has sickle cell trait and the other parent has the normal type of hemoglobin, there is a 50% (1 in 2) chance with EACH pregnancy that the baby will be born with sickle cell trait. When ONE parent has sickle cell trait, the child may inherit: • 50% chance for two normal hemoglobin genes (normal hemoglobin- AA), OR • 50% chance for one normal hemoglobin gene and one sickle cell gene (sickle cell trait- AS).
    [Show full text]
  • Sudan University of Science and Technology College of Medical Laboratory Science Department of Hematology
    بسم هللا الرحمن الرحيم Sudan University of Science and Technology College of Medical Laboratory Science Department of Hematology D-dimer, PT and APTT levels among Renal Transplant Patients in Sudan مستويات الدي دايمر ,زمن البروثرومبين و زمن الثرموبوبﻻستين الجزئي المنشط وسط مرضي زراعة الكلى في السودان A thesis submitted for partial fulfillment of requirements of M.Sc. degree in Hematology Student Zubaida Mohamed Ahmed Abdalbagi, B.S.c 2013 Department of Hematology – Faculty of Medical Laboratory Sciences - Khartoum University Supervisor Dr. Hiba Badreldin Khalil, PhD Department of Hematology – Faculty of Medical Laboratory Sciences - Alneelain University 2019 بسم هللا الرحمن الرحيم قال تعالى : ْ اقْرَأْْبِاسْمِْْرَ بِكَْْاَّلِذيْخََلقَْ سورةْالعلقْ صدق هللا العظيمْ List of Contents Contents Page No I اﻵية List of Contents II List of Figures VI List of Tables VII List of Abbreviations VIII Dedication XI Acknowledgement XII Abstract / English Abstract XIII Arabic Abstract XIV / ملخص الدراسة Chapter One 1.1 Chronic Kidney Disease 1 1.1.1 Causes of Chronic Kidney Disease 6 1.1.2 Diagnosis 7 1.1.2.1 Differential diagnosis 7 1.1.3 Severity-Based Stages 7 1.1.4 Treatment of Chronic Kidney Disease 9 1.1.5 Prognosis of Chronic Kidney Disease 10 1.2 Kidney Transplantation 11 1.2.1 History of Kidney Transplantation 11 1.2.2 Indications 13 1.2.3.1Living donors 13 1.2.4 Deceased donors 61 1.2.5 Compatibility 18 1.2.6 Procedure 19 1.2.7 Post Operation 20 1.2.8 Complications 26 1.2.9 Prognosis 22 1.3 Homeostasis and Coagulation 23 1.3.1Nomenclature 24
    [Show full text]
  • Sickle Cell Disease Brochure
    What is sickle cell trait? Who can have sickle cell disease and sickle cell trait? Sickle Cell Trait (AS) is an inherited condition which affects the hemoglobin in your red blood cells. » It is estimated that SCD affects 90,000 to 100,000 people in the United States, mainly Blacks or It is important to know if you have sickle cell trait. African Americans. All About: Sickle cell trait is inherited from your parents, » The disease occurs in about 1 of every 500 Black like hair or eye color. If one parent has sickle cell or African American births and in about 1 of every trait, there is a 50% (1 in 2) chance with each 36,000 Hispanic American births. Sickle Cell pregnancy of having a child with sickle cell trait. Sickle cell trait rarely causes any health problems. » SCD affects millions of people throughout the Some people may develop health problems under world and is particularly common among those certain conditions, such as: whose ancestors come from sub-Saharan Africa, Disease & regions in the Western Hemisphere (South » Dehydration – from not drinking enough water America, the Caribbean, and Central America), » Low oxygen – from over-exertion Saudi Arabia, India, and Mediterranean countries » High altitudes – from low oxygen levels such as Turkey, Greece, and Italy. Sickle Cell » About 1 of every 12 African Americans has sickle How do you know if you have sickle cell cell trait and about 1 of every 100 Hispanics has trait or disease? sickle cell trait. Trait » It is possible for a person of any race or nationality to have sickle cell trait.
    [Show full text]
  • Inborn Defects in the Antioxidant Systems of Human Red Blood Cells
    Free Radical Biology and Medicine 67 (2014) 377–386 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Review Article Inborn defects in the antioxidant systems of human red blood cells Rob van Zwieten a,n, Arthur J. Verhoeven b, Dirk Roos a a Laboratory of Red Blood Cell Diagnostics, Department of Blood Cell Research, Sanquin Blood Supply Organization, 1066 CX Amsterdam, The Netherlands b Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands article info abstract Article history: Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, Received 16 January 2013 these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include Received in revised form prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair 20 November 2013 of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and Accepted 22 November 2013 promote senescence, but is without chronic hemolytic complaints. In this review we summarize the Available online 6 December 2013 often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH Keywords: is the main source of reduction equivalents in RBCs, used by most of the protective systems. When Red blood cells NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme Erythrocytes deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Hemolytic anemia Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give G6PD deficiency Favism rise to increased oxidative stress caused by free heme and iron generated from hemoglobin.
    [Show full text]
  • Some Haematological Observations in Cardio- the Melrose Oxygenator
    Thorax: first published as 10.1136/thx.19.2.170 on 1 March 1964. Downloaded from Thorax (1964), 19, 170 Some haematological observations in cardio- pulmonary bypass at normothermia using the Melrose oxygenator R. A. CUMMING, S. H. DAVIES, K. KAMEL,' G. J. MACKENZIE, A. MASSON, AND J. D. WADE From the Cardiopulmonary Bypass Unit, The Royal Infirmary, Edinburgh Haemostasis is now generally accepted to be a FIG. 1. The clotting process. dynamic mechanism. In injury, haemostasis is Stage 1. Production of intrinsic thromboplastin or effected by a series of processes resulting finally in prothrombin activator the formation of a blood clot. This process involves Hageman factor (factor XII)-activated by contact capillary retraction whereby the severed vessel end with damaged vessel is narrowed; this is followed by the accretion of Plasma thromboplastin antecedent (factor XI) an occlusive platelet thrombus, and finally the Antihaemophilic factor (factor VIII) formation of a clot in the now static blood. Pro- Christmas factor (factor IX) Factor V (labile factor) gression of this process is probably limited and Stuart-Prower factor (factor X) controlled by the increased production of anti- Platelet factor 3 (co-factor 3) thrombin (and probably of other natural inhibi- Ca++ copyright. and the mechanism that tors), by fibrinolytic so Stage 2. Thrombin formation thrombus formation does not undergo retrograde Prothrombin Intrinsic Thrombin spread to involve the whole vascular tree. The fibrinolytic mechanism is also reparative and is thromboplastin active in the healing process. In normal health a Stage 3. Fibrin clot http://thorax.bmj.com/ fine balance between the haemostatic and fibrino- Fibrinogen Thrombin Fibrin lytic systems is said to maintain the integrity of the organism (Mole, 1948; Copley, 1954; Astrup, 1956 a and b; Jensen, 1956).
    [Show full text]
  • Hemostasis and Thrombosis
    PROCEDURES FOR HEMOSTASIS AND THROMBOSIS A Clinical Test Compendium PROCEDURES FOR HEMOSTASIS AND THROMBOSIS: A CLINICAL TEST COMPENDIUM Test No. Test Name Profile Includes Specimen Requirements Bleeding Profiles and Screening Tests 117199 aPTT Mixing Studies aPTT; aPTT 1:1 mix normal plasma (NP); aPTT 1:1 mix saline; aPTT 2 mL citrated plasma, frozen 1:1 mix, incubated; aPTT 1:1 mix NP, incubated control 116004 Abnormal Bleeding Profile PT; aPTT; thrombin time; platelet count 5 mL EDTA whole blood, one tube citrated whole blood (unopened), and 2 mL citrated plasma, frozen Minimum: 5 mL EDTA whole blood, one tube citrated whole blood (unopened), and 1 mL citrated plasma, frozen 503541 Bleeding Diathesis With Normal α2-Antiplasmin assay; euglobulin lysis time; factor VIII activity; 7 mL (1mL in each of 7 tubes) platelet-poor aPTT/PT Profile (Esoterix) factor VIII chromogenic; factor IX activity; factor XI activity; factor citrated plasma, frozen XIII activity; fibrinogen activity; PAI-1 activity with reflex to PAI-1 antigen and tPA; von Willebrand factor activity; von Willebrand factor antigen 336572 Menorrhagia Profile PT; aPTT; factor IX activity; factor VIII activity; factor XI activity; 3 mL citrated plasma, frozen von Willebrand factor activity; von Willebrand factor antigen Minimum: 2 mL citrated plasma, frozen 117866 Prolonged Protime Profile Factor II activity; factor V activity; factor VII activity; factor 3 mL citrated plasma, frozen X activity; fibrinogen activity; dilute prothrombin time Minimum: 2 mL citrated plasma, frozen
    [Show full text]
  • Genetics: Sickle Beta Plus Thalassemia
    Genetics: Sickle beta plus thalassemia Sickle beta plus thalassemia (THAL-UH-SEE-ME-AH) is a blood condition that is similar to sickle cell anemia. Sickle cell anemia is a disease that causes red blood cells (RBCs) to have an abnormal shape. Sickle red blood cells can get stuck in blood vessels and block the flow of blood and oxygen in the body. When this happens is can cause severe pain, serious infections, organ damage, or even stroke. What is hemoglobin and what does it do? Red blood cells contain hemoglobin (HEE-MUH-GLOW-BIN). Hemoglobin is a protein that carries oxygen around the body. There are several types of abnormal hemoglobin. Sickled hemoglobin is the type that causes sickle cell anemia. It is usually written as Hb-S. Beta thalassemia causes your child's body to make less normal hemoglobin (Hb-A). When this happens, your child's body makes more sickled cells and has symptoms similar to sickle cell anemia. The amount of sickled cells is different in each child with beta thalassemia. When a person has one copy of Hb-S and one copy of beta thalassemia, it is called sickle beta thalassemia. In general, people who have sickle beta plus thalassemia make more normal hemoglobin than people who have sickle beta zero thalassemia. How does a person get sickle beta plus thalassemia? Sickle beta thalassemia is genetic disorder, meaning it is passed on from parents to their children just like hair, eye, and skin color. You are born with sickle beta thalassemia disease. It is not contagious.
    [Show full text]
  • Changes in the Fibrinolytic System Components During Extracorporeal Circulation
    Thorax: first published as 10.1136/thx.21.3.215 on 1 May 1966. Downloaded from Thorax (1966), 21, 215. Changes in the fibrinolytic system components during extracorporeal circulation K. KAMEL1, S. H. DAVIES, AND R. A. CUMMING From the Haematology Department and Blood Transfusion Service, the Royal Infirmary, Edinburgh In 1954 Gibbon, after many years of experimental and Gerbode, 1956). Excessive fibrinolysis, how- work, achieved the first successful total body ever, has been the most commonly reported perfusion in a human patient using a form of disturbance and has sometimes given rise to cardiopulmonary bypass. A prime aim of all serious bleeding (Perkins, Osborn, and Gerbode, workers in this field since then has been to produce 1958). Activation of the fibrinolytic system has safe and adequate anticoagulation of the blood since been shown to be due to an in vivo factor, during such a procedure, and to reverse it swiftly which has sometimes apparently been dependent and safely at the end of the operation. Further- on the rate and duration of perfusion and on the more it seems advisable that there should be no pH changes occurring during this (von Kaulla (or at the most a minimal and insignificant) altera- and Swan, 1958), but the time of onset of tion in both the cellular and humoral elements maximum fibrinolytic activity has borne no of the blood due to this procedure. Although satis- relation to any specific cause. Reports on altera- factory results have been achieved, the methods tions of components of the fibrinolytic system used are still far from perfect.
    [Show full text]
  • Hemolytic Anemia and the Reactive Sulfhydryl Groups of the Erythrocyte Membrane
    HEMOLYTIC ANEMIA AND THE REACTIVE SULFHYDRYL GROUPS OF THE ERYTHROCYTE MEMBRANE by Erwin Peter GABOR, M.D., C.M. A thesis presented to the Faculty of Graduate Studies and Research ~n partial fulfillment of the requirements for 1 the degree of Master of Science in Experimental Medicine. McGill University Clinic and Royal Victoria Hospital, Montreal, Quebec. April, 1964. HEMOLITIC ANEMIA AND THE REACTIVE SULFHYDR!L GROUPS OF THE ER'YTHROCITE MEMBRANE by Erwin Peter Gabor ( Abstract ) Membrane sul.fhydryl ( SH) groups have been reported to be important for the maintenance of red cell integrity E, ~ ( Jacob and Jandl, 1962 ). A technique has been developed for the determination of reactive membrane sulfhydryl content in intact erythrocytes, utilizing sub­ hemolytic concentrations of p-chloromercuribenzoate (PMB). The erythrocyte membrane of 52 healthy subjects contained 2.50 - 2.85 x lo-16 moles of reactive SH groups ( mean 2.50 ·~ 0.20 ) per erythrocyte, when determined by this method. A 27-56% reduction of erythrocyte membrane SH content was observed in various conditions characterized by accelerated red cell destruction, including glucose- 6-phosphate dehydrogenase ( G6PD ) deficiency, drug-induced, auto- immune and other acquired hemolytic anemias and congenital spherocytosis. Normal membrane sulfhydryl content was found in iron deficiency anemia, pernicious anemia in relapse, and in other miscellaneous hematological conditions. Inhibition of membrane SH groups with PMB caused marked potassium leakage from the otherwise intact cells. The possible role of membrane suli'hydryl groups in the development of certain types of hemolytic anemias,and in the maintenance of active transmembrane cation transport in the erythrocyte is discussed.
    [Show full text]
  • Methemoglobinemia: Etiology, Pharmacology, and Clinical Management
    REVIEW Methemoglobinemia: Etiology, Pharmacology, and Clinical Management From the Department of Pediatrics, Robert O Wright, MD* Methemoglobin (MHb) may arise from a variety of etiologies Division of Emergency Medicine, William J Lewander, MD* including genetic, dietary, idiopathic, and toxicologic sources. Hasbro Children’s Hospital, Brown Alan D Woolf, MD, MPH‡ Medical School, Rhode Island Poison Symptoms vary from mild headache to coma/death and may Control Center, Providence, RI*; and not correlate with measured MHb concentrations. Toxin- Department of Medicine, Program in induced MHb may be complicated by the drug’s effect on other Clinical Toxicology, Boston Children’s Hospital; Harvard Medical School, organ systems such as the liver or lungs. The existence of Massachusetts Poison Control System, underlying heart, lung, or blood disease may exacerbate the ‡ Boston, MA. toxicity of MHb. The diagnosis may be complicated by the Received for publication effect of MHb on arterial blood gas and pulse oximeter oxygen July 24, 1998. Revisions received February 8, 1999, and saturation results. In addition, other dyshemoglobins may be June 28, 1999. Accepted for confused with MHb. Treatment with methylene blue can be publication August 23, 1999. complicated by the presence of underlying enzyme deficiencies, Address for correspondence: including glucose-6-phosphate dehydrogenase deficiency. Robert O Wright, MD, Rhode Island Hospital, Davol Building, Experimental antidotes for MHb may provide alternative 593 Eddy Street, Providence, RI treatments in the future, but require further study. 02903; 401-444-6680, fax 401-444-4307; [Wright RO, Lewander WJ, Woolf AD: Methemoglobinemia: E-mail [email protected]. Etiology, pharmacology, and clinical management. Ann Emerg Copyright © 1999 by the American Med November 1999;34:646-656.] College of Emergency Physicians.
    [Show full text]