Methemoglobinemia: Etiology, Pharmacology, and Clinical Management

Total Page:16

File Type:pdf, Size:1020Kb

Methemoglobinemia: Etiology, Pharmacology, and Clinical Management REVIEW Methemoglobinemia: Etiology, Pharmacology, and Clinical Management From the Department of Pediatrics, Robert O Wright, MD* Methemoglobin (MHb) may arise from a variety of etiologies Division of Emergency Medicine, William J Lewander, MD* including genetic, dietary, idiopathic, and toxicologic sources. Hasbro Children’s Hospital, Brown Alan D Woolf, MD, MPH‡ Medical School, Rhode Island Poison Symptoms vary from mild headache to coma/death and may Control Center, Providence, RI*; and not correlate with measured MHb concentrations. Toxin- Department of Medicine, Program in induced MHb may be complicated by the drug’s effect on other Clinical Toxicology, Boston Children’s Hospital; Harvard Medical School, organ systems such as the liver or lungs. The existence of Massachusetts Poison Control System, underlying heart, lung, or blood disease may exacerbate the ‡ Boston, MA. toxicity of MHb. The diagnosis may be complicated by the Received for publication effect of MHb on arterial blood gas and pulse oximeter oxygen July 24, 1998. Revisions received February 8, 1999, and saturation results. In addition, other dyshemoglobins may be June 28, 1999. Accepted for confused with MHb. Treatment with methylene blue can be publication August 23, 1999. complicated by the presence of underlying enzyme deficiencies, Address for correspondence: including glucose-6-phosphate dehydrogenase deficiency. Robert O Wright, MD, Rhode Island Hospital, Davol Building, Experimental antidotes for MHb may provide alternative 593 Eddy Street, Providence, RI treatments in the future, but require further study. 02903; 401-444-6680, fax 401-444-4307; [Wright RO, Lewander WJ, Woolf AD: Methemoglobinemia: E-mail [email protected]. Etiology, pharmacology, and clinical management. Ann Emerg Copyright © 1999 by the American Med November 1999;34:646-656.] College of Emergency Physicians. 0196-0644/99/$8.00 + 0 47/1/102246 INTRODUCTION Methemoglobinemia refers to the oxidation of ferrous iron (Fe++) to ferric iron (Fe+++) within the hemoglo- bin molecule.1 This reaction impairs the ability of hemoglobin to transport oxygen and carbon dioxide, leading to tissue hypoxemia and in severe cases, death. Methemoglobinemia most commonly results from expo- sure to an oxidizing chemical, but may also arise from genetic, dietary, or even idiopathic etiologies.2,3 This review focuses on acquired forms of methemoglobine- mia. Because of these disparate causes, confusion may arise in the recognition and management of methe- moglobinemia. Physicians may be aware of one etiology, such as dietary nitrites in well water, but may be unfa- miliar with others, such as the ingestion of teething gels. Furthermore, laboratory data, which clinicians may 646 ANNALS OF EMERGENCY MEDICINE 34:5 NOVEMBER 1999 METHEMOGLOBINEMIA Wright, Lewander & Woolf believe to be diagnostic, may instead be falsely normal in variety of enzymatic systems exist that protect the RBC methemoglobinemia, leading to misdiagnosis and under- from oxidation reactions. However, unlike other cells, recognition of the condition. Therefore, the purposes of RBCs lack a nucleus and cannot synthesize new protein.9 this review are fourfold: (1) to summarize the biochemi- Enzymes that normally detoxify oxidant agents degrade cal properties by which methemoglobin (MHb) is with time. Therefore, older cells are more susceptible to formed, (2) to bring together its disparate etiologies into oxidation, as they cannot detoxify drugs as well as their common endpoints, (3) to illustrate diagnostic tests younger cells.9 Furthermore, RBCs also lack mitochon- that yield falsely normal results in methemoglobinemia dria and are less efficient than other cells in generating and those that provide reliable results, and (4) to high- energy and cofactors necessary for chemical detoxifica- light issues surrounding treatment and its potential com- tion. These properties explain why blood toxicity, mani- plications. festing as hemolysis and methemoglobinemia, occurs more frequently than oxidative toxicity in other tissues. METHEMOGLOBINEMIA AND INTRACELLULAR OXIDATION PHYSICAL PROPERTIES OF METHEMOGLOBIN To understand oxidative toxicity and its potential compli- Hemoglobin molecules contain iron within a porphyrin cations, certain biochemical properties must first be heme structure. The iron in hemoglobin is normally reviewed. Oxidation involves the extraction of electrons found in the Fe++ state. The iron moiety of hemoglobin from a substrate. Reduction involves the transfer of elec- can be oxidized to the Fe+++ state to form MHb.10 Once trons to a substrate. A substance has been oxidized if it MHb is formed, the molecule loses its ability to carry loses an electron, and if it gains an electron, it has been molecular oxygen. Because RBCs are bathed in oxygen, a reduced. certain amount of physiologic MHb formation occurs Oxidation/reduction reactions are termed “redox” continuously.10 Several endogenous reduction systems reactions because they always occur together, that is, for exist to maintain MHb in the reduced state, and in nor- one substance to be reduced, another must be oxidized.1 mal individuals only about 1% of total hemoglobin is Highly reactive, unstable molecules with redox potential MHb at any given time.10 Because oxidized hemoglobin are often termed “free radicals.” These free radicals can is incapable of carrying oxygen (or carbon dioxide), oxidize cellular enzymes inhibiting their function. These excess MHb leads to cyanosis, impaired aerobic respira- reactions may in turn lead to the formation of more free tion, metabolic acidosis, and in severe cases, death. radicals. Some reactions cause the formation of covalent Hemoglobin is a tetrameric molecule, and the com- bonds between the arylating oxidant agent and cellular/ plete oxidation to MHb would represent a 4-electron membrane proteins.4 This covalent bond may cause dis- loss. However, under conditions of oxidative stress, ruption of cellular membrane integrity and enzymatic partial oxidation of the individual subunits predomi- function. Unchecked, the process ultimately leads to cell nates, and as such 8 different dimers may exist (there 5,6 α β lysis and death. When oxidation occurs within the are 4 subunits to hemoglobin ( 2 2) and 2 iron heme moiety of hemoglobin, MHb is formed. Inevitably, valences (Fe++ and Fe+++); thus, 8 different states can oxidation is also occurring elsewhere in the cell and may exist.1,10 The nonoxidized portions of these hybrid cause damage to other cellular enzymes and organelles. valence forms have a high affinity for oxygen and shift Whereas some agents may be specific in reacting with the oxygen dissociation curve to the left.10 In other hemoglobin, most are not and methemoglobinemia is words, any oxygen that is carried by the nonoxidized usually accompanied by some degree of hemolysis. In hemoglobin subunits is held on to more tightly and addition, if these oxidative reactions occur outside poorly released to tissues. This property is important the vascular space, cell damage may also occur in other clinically. For example, a patient with 35% MHb has a organs, such as the lungs or liver. theoretical oxygen-carrying capacity of 65% of his or RBCs are uniquely susceptible to oxidant stress. RBCs her hemoglobin. Functionally, however, this is not the carry oxygen in high concentration and are therefore con- case, because allosteric changes to the hemoglobin tinuously exposed to oxygen free radicals.7,8 Blood serves molecule cause oxygen to bind more tightly in the par- as the transport medium for oxidant xenobiotic agents tially oxidized hemoglobin molecules. This increased after absorption from the gut, exposing RBCs to further affinity causes a left shift in the hemoglobin-oxygen sat- potential oxidation. To combat these processes, a wide uration curve. NOVEMBER 1999 34:5 ANNALS OF EMERGENCY MEDICINE 647 METHEMOGLOBINEMIA Wright, Lewander & Woolf Oxidation also results in a net positive charge to the confusing because the 2-enzyme system is referred to as MHb molecule compared with normal hemoglobin. a single enzyme, NADH-MHb reductase. MHb has high affinity for negative anions such as cyanide, fluoride, or chloride (CN–, F–, and Cl–) as Reduced nicotinamide adenine dinucleotide phosphate–MHb reductase opposed to the uncharged binding ligands (CO2, CO, 1,10 and O2) of normal hemoglobin. Another enzyme that reduces MHb is reduced nicotinamide adenine dinucleotide phosphate DIRECT ENDOGENOUS REDUCTION (NADPH)–MHb reductase. Also known as NADPH- flavin reductase and NADPH-MHb–diaphorase, under Even in the absence of exogenous oxidative stress, normal conditions this enzyme plays a negligible role endogenous oxidation from molecular oxygen would in reducing MHb. It is actually a generalized reductase eventually convert enough hemoglobin to MHb to with an affinity for dyes, such as methylene blue, Nile impair cellular respiration.10 To combat this process, blue, and divicine.12-14 In the presence of the cofactor there are several enzyme systems in the RBC that inhibit NADPH, this enzyme will reduce these dyes, which in oxidation or reduce MHb back to hemoglobin. The turn reduce MHb (Figure 1). The primary function of cytochrome-b5–MHb reductase system is the predomi- this reductase is probably to metabolize oxidant xeno- nant system and accounts for approximately 99% of daily biotics and not MHb. It is somewhat fortuitous that the MHb reduction.10 Ascorbic acid and glutathione reduced form of methylene blue has a high affinity for account
Recommended publications
  • 224 Subpart H—Hematology Kits and Packages
    § 864.7040 21 CFR Ch. I (4–1–02 Edition) Subpart H—Hematology Kits and the treatment of venous thrombosis or Packages pulmonary embolism by measuring the coagulation time of whole blood. § 864.7040 Adenosine triphosphate re- (b) Classification. Class II (perform- lease assay. ance standards). (a) Identification. An adenosine [45 FR 60611, Sept. 12, 1980] triphosphate release assay is a device that measures the release of adenosine § 864.7250 Erythropoietin assay. triphosphate (ATP) from platelets fol- (a) Identification. A erythropoietin lowing aggregation. This measurement assay is a device that measures the is made on platelet-rich plasma using a concentration of erythropoietin (an en- photometer and a luminescent firefly zyme that regulates the production of extract. Simultaneous measurements red blood cells) in serum or urine. This of platelet aggregation and ATP re- assay provides diagnostic information lease are used to evaluate platelet for the evaluation of erythrocytosis function disorders. (increased total red cell mass) and ane- (b) Classification. Class I (general mia. controls). (b) Classification. Class II. The special [45 FR 60609, Sept. 12, 1980] control for this device is FDA’s ‘‘Docu- ment for Special Controls for Erythro- § 864.7060 Antithrombin III assay. poietin Assay Premarket Notification (a) Identification. An antithrombin III (510(k)s).’’ assay is a device that is used to deter- [45 FR 60612, Sept. 12, 1980, as amended at 52 mine the plasma level of antithrombin FR 17733, May 11, 1987; 65 FR 17144, Mar. 31, III (a substance which acts with the 2000] anticoagulant heparin to prevent co- agulation). This determination is used § 864.7275 Euglobulin lysis time tests.
    [Show full text]
  • Hereditary Spherocytosis: Clinical Features
    Title Overview: Hereditary Hematological Disorders of red cell shape. Disorders Red cell Enzyme disorders Disorders of Hemoglobin Inherited bleeding disorders- platelet disorders, coagulation factor Anthea Greenway MBBS FRACP FRCPA Visiting Associate deficiencies Division of Pediatric Hematology-Oncology Duke University Health Service Inherited Thrombophilia Hereditary Disorders of red cell Disorders of red cell shape (cytoskeleton): cytoskeleton: • Mutations of 5 proteins connect cytoskeleton of red cell to red cell membrane • Hereditary Spherocytosis- sphere – Spectrin (composed of alpha, beta heterodimers) –Ankyrin • Hereditary Elliptocytosis-ellipse, elongated forms – Pallidin (band 4.2) – Band 4.1 (protein 4.1) • Hereditary Pyropoikilocytosis-bizarre red cell forms – Band 3 protein (the anion exchanger, AE1) – RhAG (the Rh-associated glycoprotein) Normal red blood cell- discoid, with membrane flexibility Hereditary Spherocytosis: Clinical features: • Most common hereditary hemolytic disorder (red cell • Neonatal jaundice- severe (phototherapy), +/- anaemia membrane) • Hemolytic anemia- moderate in 60-75% cases • Mutations of one of 5 genes (chromosome 8) for • Severe hemolytic anaemia in 5% (AR, parents ASx) cytoskeletal proteins, overall effect is spectrin • fatigue, jaundice, dark urine deficiency, severity dependant on spectrin deficiency • SplenomegalSplenomegaly • 200-300:million births, most common in Northern • Chronic complications- growth impairment, gallstones European countries • Often follows clinical course of affected
    [Show full text]
  • Sickle Cell: It's Your Choice
    Sickle Cell: It’s Your Choice What Does “Sickle Cell” Mean? Sickle is a type of hemoglobin. Hemoglobin is the substance that carries oxygen in the blood and gives blood its red color. A person’s hemoglobin type is not the same thing as blood type. The type of hemoglobin we have is determined by genes that we inherit from our parents. The majority of individuals have only the “normal” type of hemoglobin (A). However, there are a variety of other hemoglobin types. Sickle hemoglobin (S) is one of these types. There Are Two Forms of Sickle Cell. Sickle cell occurs in two forms. Sickle cell trait is not a disease; Sickle cell anemia (or sickle cell disease) is a disease. Sickle Cell Trait (or Sickle Trait) Sickle cell trait is found primarily in African Americans, people from areas around the Mediterranean Sea, and from islands in the Caribbean. Sickle cell trait occurs when a person inherits one sickle cell gene from one parent and one normal hemoglobin gene from the other parent. A person with sickle cell trait is healthy and usually is not aware that he or she has the sickle cell gene. A person who has sickle trait can pass it on to their children. If one parent has sickle cell trait and the other parent has the normal type of hemoglobin, there is a 50% (1 in 2) chance with EACH pregnancy that the baby will be born with sickle cell trait. When ONE parent has sickle cell trait, the child may inherit: • 50% chance for two normal hemoglobin genes (normal hemoglobin- AA), OR • 50% chance for one normal hemoglobin gene and one sickle cell gene (sickle cell trait- AS).
    [Show full text]
  • Sickle Cell Disease Brochure
    What is sickle cell trait? Who can have sickle cell disease and sickle cell trait? Sickle Cell Trait (AS) is an inherited condition which affects the hemoglobin in your red blood cells. » It is estimated that SCD affects 90,000 to 100,000 people in the United States, mainly Blacks or It is important to know if you have sickle cell trait. African Americans. All About: Sickle cell trait is inherited from your parents, » The disease occurs in about 1 of every 500 Black like hair or eye color. If one parent has sickle cell or African American births and in about 1 of every trait, there is a 50% (1 in 2) chance with each 36,000 Hispanic American births. Sickle Cell pregnancy of having a child with sickle cell trait. Sickle cell trait rarely causes any health problems. » SCD affects millions of people throughout the Some people may develop health problems under world and is particularly common among those certain conditions, such as: whose ancestors come from sub-Saharan Africa, Disease & regions in the Western Hemisphere (South » Dehydration – from not drinking enough water America, the Caribbean, and Central America), » Low oxygen – from over-exertion Saudi Arabia, India, and Mediterranean countries » High altitudes – from low oxygen levels such as Turkey, Greece, and Italy. Sickle Cell » About 1 of every 12 African Americans has sickle How do you know if you have sickle cell cell trait and about 1 of every 100 Hispanics has trait or disease? sickle cell trait. Trait » It is possible for a person of any race or nationality to have sickle cell trait.
    [Show full text]
  • Inborn Defects in the Antioxidant Systems of Human Red Blood Cells
    Free Radical Biology and Medicine 67 (2014) 377–386 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Review Article Inborn defects in the antioxidant systems of human red blood cells Rob van Zwieten a,n, Arthur J. Verhoeven b, Dirk Roos a a Laboratory of Red Blood Cell Diagnostics, Department of Blood Cell Research, Sanquin Blood Supply Organization, 1066 CX Amsterdam, The Netherlands b Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands article info abstract Article history: Red blood cells (RBCs) contain large amounts of iron and operate in highly oxygenated tissues. As a result, Received 16 January 2013 these cells encounter a continuous oxidative stress. Protective mechanisms against oxidation include Received in revised form prevention of formation of reactive oxygen species (ROS), scavenging of various forms of ROS, and repair 20 November 2013 of oxidized cellular contents. In general, a partial defect in any of these systems can harm RBCs and Accepted 22 November 2013 promote senescence, but is without chronic hemolytic complaints. In this review we summarize the Available online 6 December 2013 often rare inborn defects that interfere with the various protective mechanisms present in RBCs. NADPH Keywords: is the main source of reduction equivalents in RBCs, used by most of the protective systems. When Red blood cells NADPH becomes limiting, red cells are prone to being damaged. In many of the severe RBC enzyme Erythrocytes deficiencies, a lack of protective enzyme activity is frustrating erythropoiesis or is not restricted to RBCs. Hemolytic anemia Common hereditary RBC disorders, such as thalassemia, sickle-cell trait, and unstable hemoglobins, give G6PD deficiency Favism rise to increased oxidative stress caused by free heme and iron generated from hemoglobin.
    [Show full text]
  • Genetics: Sickle Beta Plus Thalassemia
    Genetics: Sickle beta plus thalassemia Sickle beta plus thalassemia (THAL-UH-SEE-ME-AH) is a blood condition that is similar to sickle cell anemia. Sickle cell anemia is a disease that causes red blood cells (RBCs) to have an abnormal shape. Sickle red blood cells can get stuck in blood vessels and block the flow of blood and oxygen in the body. When this happens is can cause severe pain, serious infections, organ damage, or even stroke. What is hemoglobin and what does it do? Red blood cells contain hemoglobin (HEE-MUH-GLOW-BIN). Hemoglobin is a protein that carries oxygen around the body. There are several types of abnormal hemoglobin. Sickled hemoglobin is the type that causes sickle cell anemia. It is usually written as Hb-S. Beta thalassemia causes your child's body to make less normal hemoglobin (Hb-A). When this happens, your child's body makes more sickled cells and has symptoms similar to sickle cell anemia. The amount of sickled cells is different in each child with beta thalassemia. When a person has one copy of Hb-S and one copy of beta thalassemia, it is called sickle beta thalassemia. In general, people who have sickle beta plus thalassemia make more normal hemoglobin than people who have sickle beta zero thalassemia. How does a person get sickle beta plus thalassemia? Sickle beta thalassemia is genetic disorder, meaning it is passed on from parents to their children just like hair, eye, and skin color. You are born with sickle beta thalassemia disease. It is not contagious.
    [Show full text]
  • Hemolytic Anemia and the Reactive Sulfhydryl Groups of the Erythrocyte Membrane
    HEMOLYTIC ANEMIA AND THE REACTIVE SULFHYDRYL GROUPS OF THE ERYTHROCYTE MEMBRANE by Erwin Peter GABOR, M.D., C.M. A thesis presented to the Faculty of Graduate Studies and Research ~n partial fulfillment of the requirements for 1 the degree of Master of Science in Experimental Medicine. McGill University Clinic and Royal Victoria Hospital, Montreal, Quebec. April, 1964. HEMOLITIC ANEMIA AND THE REACTIVE SULFHYDR!L GROUPS OF THE ER'YTHROCITE MEMBRANE by Erwin Peter Gabor ( Abstract ) Membrane sul.fhydryl ( SH) groups have been reported to be important for the maintenance of red cell integrity E, ~ ( Jacob and Jandl, 1962 ). A technique has been developed for the determination of reactive membrane sulfhydryl content in intact erythrocytes, utilizing sub­ hemolytic concentrations of p-chloromercuribenzoate (PMB). The erythrocyte membrane of 52 healthy subjects contained 2.50 - 2.85 x lo-16 moles of reactive SH groups ( mean 2.50 ·~ 0.20 ) per erythrocyte, when determined by this method. A 27-56% reduction of erythrocyte membrane SH content was observed in various conditions characterized by accelerated red cell destruction, including glucose- 6-phosphate dehydrogenase ( G6PD ) deficiency, drug-induced, auto- immune and other acquired hemolytic anemias and congenital spherocytosis. Normal membrane sulfhydryl content was found in iron deficiency anemia, pernicious anemia in relapse, and in other miscellaneous hematological conditions. Inhibition of membrane SH groups with PMB caused marked potassium leakage from the otherwise intact cells. The possible role of membrane suli'hydryl groups in the development of certain types of hemolytic anemias,and in the maintenance of active transmembrane cation transport in the erythrocyte is discussed.
    [Show full text]
  • Leukocyte Peroxidase Test. (A) Identification
    Food and Drug Administration, HHS § 864.7675 may be made by methods such as elec- (b) Classification. Class II (perform- trophoresis, alkali denaturation, col- ance standards). umn chromatography, or radial [45 FR 60622, Sept. 12, 1980] immunodiffusion. (b) Classification. Class II (perform- § 864.7525 Heparin assay. ance standards). (a) Identification. A heparin assay is a [45 FR 60620, Sept. 12, 1980] device used to determine the level of the anticoagulant heparin in the pa- § 864.7470 Glycosylated hemoglobin tient’s circulation. These assays are assay. quantitative clotting time procedures using the effect of heparin on activated (a) Identification. A glycosylated he- coagulation factor X (Stuart factor) or moglobin assay is a device used to procedures based on the neutralization measure the glycosylated hemoglobins of heparin by protamine sulfate (a pro- (A , A , and A ) in a patient’s blood 1a 1b 1c tein that neutralizes heparin). by a column chromatographic proce- (b) Classification. Class II (perform- dure. Measurement of glycosylated he- ance standards). moglobin is used to assess the level of control of a patient’s diabetes and to [45 FR 60623, Sept. 12, 1980] determine the proper insulin dosage for a patient. Elevated levels of § 864.7660 Leukocyte alkaline phos- phatase test. glycosylated hemoglobin indicate un- controlled diabetes in a patient. (a) Identification. A leukocyte alka- (b) Classification. Class II (perform- line phosphatase test is a device used ance standards). to identify the enzyme leukocyte alka- line phosphatase in neutrophilic [45 FR 60621, Sept. 12, 1980] granulocytes (granular leukocytes stainable by neutral dyes). The § 864.7490 Sulfhemoglobin assay. cytochemical identification of alkaline (a) Identification.
    [Show full text]
  • Genetic Screening for Heritable Traits Contents
    Chapter 7 Genetic Screening for Heritable Traits Contents Red Blood Cell Traits . 89 Glucose-6-Phosphate Dehydrogenase Deficiency and Hemolytic Anemia . 90 Sickle-Cell Trait and Sickle-Cell Anemia . 91 The Thalassemias and Erythroblastic Anemia . 91 NADH Dehydrogenase Deficiency and Methemoglobinemia. .. .. .. .. ... ... ......O 92 Traits Correlated With Lung Disease . 93 Serum Alpha1 Antitrypsin Deficiency and Susceptibility to Emphysema . 93 Aryl Hydrocarbon Hydroxylase Inducibility and Susceptibility to Lung Cancer . 94 Other Characterized Genetic Traits . 95 Acetylation and Susceptibility to Arylamine-Induced Bladder Cancer . 95 HLA and Disease Associations . 96 Carbon Oxidation . 96 Diseases of DNA Repair. 96 Less Well-Characterized Genetic Traits . 97 Superoxide Dismutase . 97 Immunoglobuhn A Deficiency . 97 Paraoxanase Polymorphism . .. ., . .., ... ... ...,. 97 Pseudocholinesterase Variants . 98 Erythrocyte Catalase Deficiency . 98 Dermatological Susceptibility . 98 Conclusions . 98 Priorities for Future Research .......,.. 100 Red Blood Cell Traits . 100 Differential Metabolism of Industrial/Pharmacological Compounds . 100 SAT Deficiency . 101 Chapter preferences . 101 Figure Figure No. Page 8.Distribution of Red Cell Phosphatase Activities in the English Population . 99 Chapter 7 Genetic Screening for Heritable Traits Individuals differ widely in their susceptibility each genetic trait, the following questions were to environmentally induced diseases. Differential asked: susceptibility is known to be affected by devel- What is its prevalence in the population? opmental and aging processes, genetic character- Is it compatible with a normal lifestyle? istics, nutritional status, and the presence of With what diseases does the trait correlate? preexisting diseases (11,12). This chapter assesses In what industrial settings might the traits the way in which genetic factors contribute to cause a person to be at increased risk? the occurrence of differential susceptibility to tox- Is there an increased risk for homozygous ic substances.
    [Show full text]
  • Curriculum Content Report Anemia Prepared 8/15/17 by Ken Olive, MD
    Curriculum Content Report Anemia Prepared 8/15/17 by Ken Olive, MD Year 1 Course Content Case Oriented Learning anemia in end-stage renal disease case Cellular & Molecular Medicine hemoglobin structure and sickle cell disease Genetics Fanconi anemia as a genetic disease Medical Physiology role of GI tract in pernicious anemia, intestinal iron absorption pathways and mechanisms, celiac disease as a clinical condition that can lead to iron deficiency anemia. Year 2 Immunology Blood group antigens, Blood transfusion reactions, Erythroblastosis fetalis/hemolytic disease of the newborn pathophysiology and treatment, Pernicious Anemia pathophysiology and presentation, Intrinsic factor autoantibodies, Cold and warm autoimmune hemolytic anemia, B12 deficiency and anemia subsequent to Crohn’s disease. Medical Microbiology anemia in intestinal parasitic infections, aplastic anemia induced by viruses Clinical Neuroscience pernicious anemia manifesting as neuropathy Pathology pernicious anemia associated with gastritis, anemia in end-stage renal disease, extensive coverage of various anemias in hematology section (including red cell terms and morphology; Classification of anemia: microcytic anemia, macrocytic anemia, hypochromic, normochromic, blood loss; Hemolysis: intravascular hemolysis, extravascular hemolysis, splenomegaly, hepatomegaly; Hereditary RBC defects: hereditary spherocytosis, G6PD deficiency, pyruvate kinase deficiency; Hemoglobinopathies: sickle cell trait, sickle cell disease, hand-foot syndrome, sickling test, hemoglobin C disease,
    [Show full text]
  • Hereditary Spherocytosis, Elliptocytosis, and Other Red Cell Membrane Disorders☆
    YBLRE-00309; No of Pages 12 Blood Reviews xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect Blood Reviews journal homepage: www.elsevier.com/locate/blre Review Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders☆ Lydie Da Costa a,b,c,d,⁎, Julie Galimand a,1, Odile Fenneteau a, Narla Mohandas e,2 a AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Paris, F-75019, France b Université Paris Diderot, Sorbonne Paris Cité, Paris, F-75010, France c Unité INSERM U773, Faculté de Médecine Bichat-Claude Bernard, Paris, F-75018, France d Laboratoire d'Excellence GR-Ex, France e New York Blood Center, New York, USA article info abstract Available online xxxx Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, Keywords: a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for Hereditary spherocytosis the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in Elliptocytosis linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss Pyropoikilocytosis and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skel- Stomatocytosis eton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease Red cell membrane Hemolysis severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.
    [Show full text]
  • Advances in Hematology
    ADVANCES IN HEMATOLOGY Current Developments in the Management of Hematologic Disorders Hematology Section Editor: Craig M. Kessler, MD The Red Cell Membrane, Part 2: Disorders of the Red Cell Membrane Xiuli An, MD, PhD Associate Member New York Blood Center New York, NY This is part 2 of a 3-part series on the red cell membrane. of malaria epidemics. This leads to many red cell diseases, including sickle cell disease, thalassemia, red cell mem- H&O How common are red cell abnormalities? brane abnormalities, and enzyme-deficiency diseases such as pyruvate kinase deficiency and glucose-6-phosphate XA Anemia, which is the most common symptom of red dehydrogenase (G6PD) deficiency. cell abnormalities, affects approximately one-quarter of people globally. In a report from the Global Burden of H&O Could you discuss these diseases in Disease Study 2010, which was published in the Lancet in greater detail? 2012, anemia was the most important disorder in terms of its overall contribution to global years lived with disability XA Regarding sickle cell disease, people whose red cells (YLDs). The overall burden of anemia was large—68.2 exhibit the sickle trait have a survival advantage over those million YLDs, or almost one-tenth (8.8%) of all YLDs with normal red cells in regions where malaria is endemic. worldwide—reflecting both the high prevalence of ane- Sickle cell trait is the genetic condition selected for in mia and the moderately severe disability it produces, espe- regions of endemic malaria. Sickle cell disease is a neces- cially in cases of severe anemia.
    [Show full text]