End of Phase I Technologv Generation Report

Total Page:16

File Type:pdf, Size:1020Kb

End of Phase I Technologv Generation Report Eastern Africa Agricultural Productivity Project END OF PHASE I TECHNOLOGY GENERATION REPORT MARCH 2016 EAAPP Technology generation end of Phase I final report © Kenya Agricultural and Livestock Research Organization 2016 The contents of this publication may be used with acknowledgement to the publisher Published by: Kenya Agricultural and Livestock Research Organization KALRO headquarters PO. Box 57811-00200,Nairobi, KENYA Tel: +254 0709 104 000, 0722 206 986, 0722 206 988 Email: [email protected], Website: www.kalro.org Compiled and edited by: Foustine Wandera Jedidah Maina Tobias Onyango David Mbugua Tobias K’Oloo Rahab Muinga Design and Layout: Nogrecia Mnene Citation: Wandera et al., (eds) 2016. East African Agricultural Productivity Project [EAAPP]: Technology Generation Report 2016. Kenya Agricultural and Livestock Research Organization [KALRO], Nairobi, Kenya ISBN: 978-9966-30-023-2N: Abbreviations and acronyms ADF Acid Detergent Fibre AEZ AgroEcological Zone AI Artificial Insemination AMOVA Analysis of Molecular Variance ANOVA Analysis of variance AOAC Association of Official Analytical Chemists ART Assisted Reproductive Technologies ASARECA Association for Strengthening Agricultural Research in Eastern and Central Africa ATC Agricultural Training Centre AYT Annual Yield Trial CAN Calcium Ammonium Nitrate CBO Community Based Organization CBSD Cassava Brown Streak Disease CCPP Contagious Caprine Pleuropneumonia CD Compact Disc CIAT International Center for Tropical Agriculture CMD Cassava Mossaic Disease CMT California Mastitis Test COMESA Common Market for East and Southern Africa CP Crude Protein CRBD Complete Randomized Block Design DAP Diammonium Phosphate DAO District Agricultural Officer DH Double Hundle DLPO District Livestock Production Officer DM Dry Matter DMD Dry Matter Digestibility DMI Dry Matter Intake DNA Deoxyribonucleic acid EAAPP Eastern Africa Agricultural Productivity Programme ECA East and Central Africa ECF East Coast Fever EIAR Ethiopian Institute of Agricultural Research ELISA Enzyme Linked Immunosorbent Assay ES Estrus Synchronization FAO Food and Agricultural Organization FFS Farmer Field School FMD Food and Mouth Disease FCRI Food Crops Research Institute GLM General Linear Model GPS Global Positioning System HACCP Hazard Analysis and Critical Control Points ICIPE International Centre for Insect Physiology and Ecology ILRI International Livestock Research Institute IRRI International Rice Research Institute ITK Indigenous Technical Knowledge iii KAGRC Kenya Animal Genetic Resource Centre KALRO Kenya Agricultural and Livestock Research Organization KEBS Kenya Bureau of Standards KES Kenya Shillings KEVEVAPI Kenya Veterinary Vaccines Production Institute KLBO Kenya Livestock Breeders Organization KICC Kenyatta International Convention Centre KIRDI Kenya Industrial Research and Development Institute KVA Kenya Veterinary Association LAT Latex Agglutination Test LSD Least Significant Difference MAFSC Ministry of Agriculture Food Security and Cooperatives MLDF Ministry of Livestock Development and Fisheries MOET Multiple Ovulation and Embryo Transfer NAADS National Agricultural Advisory Services NACRRI National Crops Resources Research Institute NAGRC National Animal Genetics Resource Centre NALIRRI National Livestock Resources Research Institute NARS National Agricultural Research Systems NCPB National Cereals and Produce Board NDF Neutral Detergent Fibre NEPAD New Partnership for Africa’s Development NERICA New Rice for Africa NGO Non Governmental Organization NLMC National Livestock Multiplication Centre NPT National Performance Trial NRC National Research Council NSD Napier Stunt Disease NSS National Sahiwal Stud PCR Polymerase Chain Reaction PI Principal Investigator PRA Participatory Rural Appraisal RCoE Regional Centre of Excellence RDCoE Regional Dairy Centre of Excellence RNA Ribonucleic Acid RWA Russian Wheat Aphid SAS Statistical Analysis Software SEAZ Small East Africa Zebu SHGs Self Help Groups SNF Solid Non Fat SOPs Standard Operating Procedures SSR Simple Sequence Repeat SPSS Statistical Package for Social Scientists SRS Sire Reference Schemes TALIRI Tanzania Livestock Research Institute TIMP Technology, Innovation and Management Practice TMR Total Mixed Ration TOT Trainer of Trainers TSP Triple Super Phosphate ZARDI Zonal Agricultural Research and Development Institute iv Foreword The overall goal of EAAPP is to contribute to increased agricultural productivity and improved livelihoods. The program objective is to strengthen and scale up regional cooperation in generation and dissemination of technologies, training and improved availability of seed and livestock germplasm for regional priority commodities. To promote this objective, specialized Regional Centres of Excellence (RCoE) spearhead research, technology generation and dissemination in Dairy, Wheat, Cassava and Rice. Technology investments in one country are expected to create substantial spillover benefits in participating EAAPP countries with shared agro-ecological zones and markets. Efforts have therefore been made for optimized use of resources through elimination of duplication of research within the EAAPP countries and emphasis placed on regional information and technology sharing among the EAAPP countries and eventually within ASARECA countries. This report provides information generated from research activities on specific thematic areas identified by regional teams addressing common constraints in within the Eastern Africa region. The report also covers results of work done to address national priority areas specific to Kenya. Generally the broad areas covered are: Dairy-Genetic improvement, Feeds and feeding, Value addition, Animal health (vaccines and diagnostics), and Marketing; Wheat/Rice/Cassava- Varietal development for disease tolerance/resistance, crop management, mechanization, value addition. The report provides progress made on technology generation and dissemination. The information generated under this project has enhanced the body of knowledge, which is crucial for the advancement of the agricultural sector in the country. For example the Assisted Reproductive Technologies used in this project has shown the potential of quickly increasing the numbers of replacement heifers intended to solve the perennial shortage of these animals in the region. Secondly, establishment of viable seed system for upland rice (NERICA) has expanded land under rice, while the wheat stem rust resistant varieties have improved wheat productivity from 3.2 to 4.5 t/ha. I wish to sincerely thank all the project Principal Investigators and implementation teams for efforts made and making timely report submissions. Eliud K. Kireger (PhD) Director General, KALRO v Preface This report provides information generated from research activities from the various EAAPP research thematic areas in Kenya, Uganda, Ethiopia and Tanzania and involving dairy, wheat, cassava and rice commodity value chains. Dairy- based projects have reports under thematic areas of breeds’ improvement; fodder and pasture research; feeds and feeding research; crop residue and agro-industrial by-products; food and feed safety; dairy health management; Value addition and socio-economics. Similarly, national and regional reports were received on crop research in rice, wheat and cassava. Thirteen regional projects involving Dairy (5) Wheat (3), Cassava (3) and Rice (2) were implemented. Similarly, the project delivered on 48 National projects in Dairy (19), “Wheat” (22), Cassava (3) and Rice (4). Research projects under the priority thematic areas were implemented using multi-institutional and multi-disciplinary teams approach. This report is a compilation of results from both regional and national projects. The project realized at least 92 Technologies Innovations and Management Practices (TIMPs) out of which 44 were from dairy, wheat (16), Cassava (22) and Rice (10) research. The TIMPs have demonstrated to increase agricultural productivity, improve availability and quality of feed, add value to primary agricultural produce, enhance early disease detection, multiply disease tolerant germplasm as well as reduce labour and farming costs. Focus for further work should be on the recommendations made from individual projects to consolidate on gains made under the EAAPP Phase I. These new TIMPs shall now be used to update the baseline inventory of technologies in the four commodities, which was done at the beginning of the project. Among the key achievements under regional research projects were in capacity building and backstopping of project implementation teams, sharing of research protocols, exchange of crop and livestock germplasm, holding joint technology dissemination workshops and joint publication of research findings. At least 25 journal papers, two books, three book chapters, 118 conference papers and diverse dissemination materials were realized from research activities across the four commodities in Kenya. Partnerships developed in the course of project implementation involved Regional, National Agricultural Research Systems (NARS), Government ministries involved in agriculture, research for development as well as the private sector. Finally I wish to recognize the efforts made by all the commodity coordinators, Dr. Tobias Onyango for dairy, Dr. Theresia Munga for cassava, Ms. Ruth Wanyera for wheat and Mrs. Winnie Kore for rice, in coordinating the development of projects and their execution. All the Principal Investigators and their teams for
Recommended publications
  • Paper 2 USES and PROCESSING of GRAIN MAIZE in NEW ZEALAND P .L
    Paper 2 USES AND PROCESSING OF GRAIN MAIZE IN NEW ZEALAND P .L. Chappell Cereal Development Manager, Wattie Industries Ltd., Auckland. INTRODUCTION Table 1: Composition of the kernel of mature dent maize. Maize grain use in New Zealand is split approximately Dry weight Starch Fat Protein 700Jo in the feed industry, 190Jo in the wet milling industry (llJo) (OfoDM) (%DM) (%DM) and lOOJo in the dry milling industry. A small quantity may be used for alcohol manufacture, but for reasons of Endosperm 83 86 1 9 commercial confidentiality I have been unable to determine Germ 11 7 35 18 the quantity used in that industry. Pericarp 6 7 1 4 In this paper I will discuss each industry in turn, but Whole kernel 100 73 5 10 first I will digress to briefly describe the composition of the (DM =dry matter) dent maize kernel because this broadly dictates the processing uses of maize, both because of its chemical The endosperm is the principal source of starch which composition and physical state. is in two forms; large starch granules with a thin protein Aleurone matrix lightly packed together in the floury endosperm; and layer Dent smaller starch granules which are surrounded by a thicker Pericorp protein matrix tightly packed in the horny endosperm. The germ, or embryo, is the principal source of fat, which is the Floury endosperm basis of the oil industry. The protein, which is more Scutellum uniformly distributed, is an important ingredient in animal feed. Horny endosperm Pnmary FEED GRAIN INDUSTRY shoot Maize is an important grain in the compound feed Embryonic Germ Q)liS industry in New Zealand.
    [Show full text]
  • Assessment of Grain Safety in Developing Nations
    ASSESSMENT OF GRAIN SAFETY IN DEVELOPING NATIONS by José Rodrigo Mendoza Jiménez A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Food Science & Technology Under the Supervision of Professors Andréia Bianchini and Jayne E. Stratton Lincoln, Nebraska December, 2020 ASSESSMENT OF GRAIN SAFETY IN DEVELOPING NATIONS José Rodrigo Mendoza Jiménez, Ph.D. University of Nebraska, 2020 Advisor: Andréia Bianchini Grains are the most widely consumed foods worldwide, with maize (Zea mays) being frequently consumed in developing countries where it feeds approximately 900 million people under the poverty line of 2 USD per day. While grain handling practices are acceptable in most developed nations, many developing nations still face challenges such as inadequate field management, drying, and storage. Faulty grain handling along with unavoidably humid climates result in recurrent fungal growth and spoilage, which compromises both the end-quality and safety of the harvest. This becomes particularly problematic where there is little awareness about health risks associated with poor quality grain. Fungi are contaminants of maize and some can produce toxins, known as mycotoxins, that both devalue crop marketability and have detrimental health effects, especially to those malnourished. As some households depend on their harvest for self- consumption, losses due to fungi endanger their food security. To abate the threat posed by mycotoxigenic fungi on maize among developing nations, this research was conducted as a compilation of works in several countries. More specifically, it describes agricultural practices currently in use in developing nations, provides an overview of mycotoxin prevalence and approaches that can be used to improve grain safety post-harvest through proper storage.
    [Show full text]
  • Maize Processing in Tanzania: Prospects for SME Participation
    Maize Processing in Tanzania: Prospects for SME Participation Project Brief, June 2020 ES/S0001352/1 Dr H.B.Lunogelo, Dr Hazel Gray and Professor Fortunata Makene www.iiap.info Project Overview Innovation and Inclusion Industrialisation in Agro-Processing is a two-year collaboration between researchers from the University of Edinburgh, the University of Johannesburg, and the Economic and Social Research Foundation, Tanzania. The project is a comparative study conducted across Tanzania and South Africa focusing on three value chains: maize meal, citrus and dairy. The three aims of the study are: First, to describe the factors that determine innovation and inclusion in agro-processing Second, explain the challenges to promoting SME participation in agro-processing value chains Third, to use these findings to support industrial policy formulation at the national and regional level In this project brief, we set out the key issues arising from our scoping work on maize milling in Tanzania. 1: Summary As an economic crop, maize accounts for 74.3% of cereals production and 66% of all crops harvested annually (NBS, 2017)1. It contributes about 40% of calorific foods consumed (Bymolt et.al., 20172). Maize flour is used to make a meal popularly known as ‘ugali’. SMEs play a major role in the midstream of the maize value chain. Micro and small-scale maize millers are particularly prominent in rural settings and small trading centres but they also operate in larger towns and cities. The maize milling business has also attracted medium and large- scale investors with national and regional market outreach for their milled and packaged products.
    [Show full text]
  • Determination of Good Milling Quality of White Maize For
    THE SOUTHERN AFRICAN GRAIN LABORATORY NPC Quality is our passion DETERMINATION OF GOOD MILLING QUALITY OF WHITE MAIZE FOR HUMAN CONSUMPTION USING NIT March 2016 Wiana Louw Technical experts: Dr Corinda Erasmus Foss Grain Network Meeting Network Grain Foss Dr Paul Williams nd 22 INTRODUCTION MAIZE PRODUCTION IN SOUTH AFRICA MAIZE PROCESSING AND CONSUMPTION IN SOUTH AFRICA WHY DEVELOP A MILLING INDEX CALIBRATION PROCESS FOLLOWED TO DEVELOP THE CALIBRATION MODEL OUTLINE OF THE OF THE PRESETATION OUTLINE CONCLUSIONS AND ROLL-OUT PROCESS TOTAL RSA AREA UTILIZED FOR MAIZE PRODUCTION (11 SEASONS) 4.000.000 3.000.000 White Yellow 2.000.000 Ha Total 1.000.000 0 2013/14 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 Season MAIZE PRODUCTION IN SOUTH AFRICA IN PRODUCTION MAIZE MAIZE PRODUCTION IN RSA (11 SEASONS) 15.000.000 14.000.000 13.000.000 12.000.000 11.000.000 10.000.000 White 9.000.000 Yellow 8.000.000 Total Tons Tons 7.000.000 6.000.000 5.000.000 4.000.000 3.000.000 2.000.000 2011/12 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2012/13 2013/14 MAIZE PRODUCTION IN SOUTH AFRICA IN PRODUCTION MAIZE Season MAIZE YIELD IN RSA (11 SEASONS) 6,00 5,00 White Yellow 4,00 t/ha Total 3,00 2,00 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 Season MAIZE PRODUCTION IN SOUTH AFRICA IN PRODUCTION MAIZE MAIZE IMPORTS AND EXPORTS (10 MARKETING SEASONS) 3000 2500 2000 1500 1000 Thousand Ton Thousand 500 0 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13
    [Show full text]
  • Post-Harvest Operations
    MAIZE Post-harvest Operations - Post-harvest Compendium MAIZE: Post-Harvest Operation Organisation:Food and Agriculture Organization of the United Nations (FAO), AGST Author: Danilo Mejía, PhD, AGST. Edited by AGST/FAO: Danilo Mejía, PhD, FAO (Technical) Last reviewed: 15/05/2003 1. Introduction ........................................................................................................................ 2 1.1 Economic and Social Impact. ...................................................................................... 7 1.2 World trade ................................................................................................................ 12 1.3 Maize primary products. ............................................................................................ 15 1.4 Secondary and derived products from maize ............................................................. 21 1.5 Requirements for export and quality assurance. ........................................................ 28 1.6 Consumer preferences. ............................................................................................... 30 1.7 Others. ........................................................................................................................ 32 2. Post-production Operations ......................................................................................... 38 2.1. Pre-harvest operations. .............................................................................................. 38 2.2. Harvesting ................................................................................................................
    [Show full text]
  • Status of Commercial Maize Milling Industry and Flour Fortification in Kenya
    Vol. 13(3) pp. 65-82, March 2019 DOI: 10.5897/AJFS2018.1782 Article Number: 07E25A260478 ISSN: 1996-0794 Copyright ©2019 Author(s) retain the copyright of this article African Journal of Food Science http://www.academicjournals.org/AJFS Full Length Research Paper Status of commercial maize milling industry and flour fortification in Kenya S. Khamila1*, D. S. Ndaka1, A. Makokha1, F. Kyallo1, P. K. Kinyanjui1, O. J. Kanensi1 and J. Mwai2 1Department of Food Science and Technology, Faculty of Agriculture, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00100, Nairobi, Kenya. 2Ministry of Health (Government of Kenya), P. O. Box 30016-100, Nairobi, Kenya. Received 15 December, 2018; Accepted 28 February, 2019 Maize is the most widely consumed staple food by the Kenyan population. Its wide consumption and centralized processing make it an appropriate fortification vehicle to supply essential micronutrients to the population. The legislation was enacted in 2012 that makes it mandatory for all commercial maize mills in Kenya to fortify the maize flour with specified micronutrients as a public health effort to reduce the prevalence of micronutrient deficiencies. However, there is limited information on the current status of maize milling and implementation of the flour fortification programme by these mills. A cross- sectional study was therefore carried out to characterize the commercial maize mills and determine the status of flour fortification in Kenya. Questionnaires were used to collect data. Information was obtained from 22 large-scale, 25 medium-scale and 31 small-scale mills. These mills had an installed capacity of 6084 metric tons/day of flour using roller and hammer mills.
    [Show full text]
  • Effect of Processing on Total Amino Acid Profile of Maize and Cowpea Grains
    www.sospublication.co.in Journal of Advanced Laboratory Research in Biology We- together to save yourself society e-ISSN 0976-7614 Volume 4, Issue 2, April 2013 Research Article Effect of Processing on Total Amino Acid Profile of Maize and Cowpea Grains Malomo Olu*, Alamu, A.E. and Oluwajoba, S.O. *College of Food Science, Bells University of Technology, Ota P.M.B. 1015, Ota, Ogun State, Nigeria. Abstract: During the processing of cereal grains, a substantial proportion of the nutrients are lost, most especially the proteins in the form of the smallest moiety called amino acids. The objective of this study is to investigate the proportional loss due to processing, in order to throw more light in external fortification of the processed grains as may be necessary for the future. This investigation carried out the amino acid profile of drum dried; freeze dried and spray dried products of processed maize and cowpea grains in order to establish the after effects of these processing methods on the amino acid profile of the residual products. The processed methods investigated have been reported to be ideal for the preservation of processed grains in the powdered forms and amino acids availability in the products will determine the final protein nutritional value of the processed food products. Keywords: Cereal grains processing, Cereal proteins, Sprouting, Drying. 1. Introduction Kent (1980) classified the series of operations in dry maize milling as follows: 1.1 Modern Processing 1. Cleaning 2. Conditioning classifying 1.1.1 Modern Dry Milling of Cereal Grains 3. Degerminating A good amount of work has been carried out on 4.
    [Show full text]
  • National Resistance Movement Office of the National Chairperson
    National Resistance Movement Office of the National Chairperson Plot 10 Kyadondo Road Box 7778 Kampala Tel: 346295 – 346279 MEMBERS OF CEC, MEMBERS OF NEC, MEMBERS OF THE NRM NATIONAL CONFERENCE, ALL THE NRM MEMBERS AND ALL UGANDANS Greetings from the CEC Members that I have been meeting quite often, the Cabinet, the NRM Caucus in Parliament and the NRM Secretariat. Sorry about the corona pandemic and congratulations on, heroically, fighting this enemy in spite of all the hardships it has caused us. Since March, 18th 2020, I, myself, am like a prisoner in Nakasero and Entebbe. I have managed to sneak out a few times to Karamoja for the Marbles factory, to Jinja for the rising waters of the Lakes and Rivers, Nakasongola for the fire-fighting vehicle manufactured by the Luwero Industries, the factories in Namanve, to Kasese for the landslides and, recently, to Kasubi and Lubigi for the new market and the new anti- flooding channel respectively. Only half of the Ministers meet every Monday in order to keep the numbers small and spread out in your big Entebbe State House Hall that normally seats 600 people. The Members of Parliament had to move out of the building to a big tent outside and have small numbers at a time. 1 We have to wear masks all the time and they are quite uncomfortable. However, health is wealth, the English say. Amagara gakira amagana (life is more important than wealth), the Banyankore say. Asiika obulamu, tassa mukono; here, the Luganda proverb uses the imagery of food (okusiika). It says that when you are frying life, you never relax the arm, different from food frying where you can relax your arm.
    [Show full text]
  • Fortification Handbook
    FORTIFICATION HANDBOOK VITAMIN AND MINERAL FORTIFICATION OF WHEAT FLOUR AND MAIZE MEAL Contributors Quentin Johnson Venkatesh Mannar Peter Ranum Editors Annie Wesley Peter Ranum This manual is based on current information as of June 2004. It will be periodically reviewed and updated to include new or revised data, costs, standards, QC methods, technologies and guidelines on fortification. Any suggestions for changes should be sent to The Micronutrient Initiative at the following email address: [email protected] Table of Contents Table of Contents ........................................................................................................................................... 2 Tables ............................................................................................................................................................. 6 Section 1 INTRODUCTION..................................................................................................................... 7 Micronutrient Malnutrition......................................................................................................................... 7 Milled cereal as a Vehicle for Delivering Deficient Micronutrients .......................................................... 8 Advantages of Flour and Maize Meal as Fortification Vehicles ................................................................ 8 The Flour Fortification Initiative...............................................................................................................
    [Show full text]
  • 4. MAIZE AFS- Annexes (July 30, 2016).Pdf
    1 | P a g e Table of Contents Section 3: Annexes.............................................................................................................. 3 3.1 MAIZE Accountability Matrix - Caveats to address during development of CRP2 full proposals..3 3.2 Partnership strategy ........................................................................................................................ 10 3.3 Capacity development strategy ....................................................................................................... 16 3.4 Gender strategy ................................................................................................................................ 21 3.5 Youth strategy .................................................................................................................................. 26 3.6 Results based management ............................................................................................................. 32 3.7 Linkages with other CRPs and site integration ....................................................................................... 38 3.8 Staffing of management team and flagship projects ............................................................................. 65 3.9 Open Access and Open Data Management ......................................................................................... 110 3.10: Intellectual Asset Management ....................................................................................................... 115 3.11 Targeted
    [Show full text]
  • World Bank Document
    TE WORLD BANK FAU9 FA U-09 Public Disclosure Authorized 1 SECTORAL LIBRARY INTERNATIONAL BANK FOR RECONSTRUCTlON AND DEVELOPMENT FEB 12 1986 Public Disclosure Authorized *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Public Disclosure Authorized Agro-Industry Proffles CORN Public Disclosure Authorized PROFILES IN THIS SERIES: OILCROPS - OVERVIEW ........... FAU-01 OIL SEEDS ................ .. FAU-02 OIL PALM. .........*e.o.......... FAU-03 COCONUT. ... * .e.***** e ***oFAU-04 SUGAR. sooe.......* .eo....... **o FAU-05 ETHANOLo........e ee.............FAU-06 WHEATo........o.o..*.......o....o . FAU-07 RICEo....... .o..o.o.o.o.......... FAU-08 CORN. oo ooo... .o.o.. .. o..FAU-09 CASSAVA .........ooo.......... oFAU-10 ANIMAL FEEDS ..o.... ..... ... oFAU-11 FRUITS AND VEGETABLES........FAU-12 RUBBER. ... ... ..........o..o ...oo. FAU-13 COFFEEo.....o.oo................... FAU-14 TEA ....oo.ooo.ooo...o.o.oo..o..FAU-15 COCOA. e.eoe......oooooe geooege..o.FAU-16 COTTON. .. .. ....o.........o...o ..*FAU-17 MEAT. ......... .....o.oo .....oo s o.FAU-18 SPICES AND ESSENTIAL OILSo....FAU-19 - S ABSTRACT The objective of this Profile is to provide processing a review of the corn industry. It outlines the corn industry from harvest and preparation the of raw material to the milling and marketing of the finished product. The Profile specifications provides of composition, yields and uses, a glossary words, and a bibliography of key of useful references. It traces the milling process and reviews marketing aspects, grade/quality, such as uses and characteristics. Environmental concerns, economies of scale, and corn by-products are Annexes also discussed. showing conversion factors, conversion (Metric/US) tables, and examples of investment and operating costs are included at the end of the Profile.
    [Show full text]
  • State-Of-The-Art Process Technology for MAIZE
    State-of-the-art Process Technology for MAIZE Innovations for a better world. State-of-the-art Process Technology for MAIZE Efficient process for maximum performance Combines tradition and innovation Yellow maize raw Yellow maize grits Yellow maize flour White maize raw White maize grits White maize flour Increasing attention for a staple food Bühler provides integrated process solutions for milling maize into premium-quality grits and flour. Furthermore, Bühler’s in- Due to the fact that maize is one of the three most important novative technology enables maximum product yield and food crops worldwide, a divers variety of products exist. In ad- meets the highest sanitation standards. dition, population growth and gluten-free trends have driven an increase in its use for human nutrition. The conventional process can be adapted to special maize- based products such as Arepa Flour, Prime Masa Nixtamal Maize is a staple food for many people around the world. New and Instant Maize Meal. These pre-cooked end products offer technologies, which extend product shelf life and ease prepara- consumers significant time savings and convenience. tion, would greatly impact their daily life. However previously, every attempt to accomplish this had been unsuccessful. Bühler responded to this lack of knowledge and by developing a state- of-the-art process technology for conventional maize milling. Innovative technology and best expertise Benefits Incoming product requires extensive cleaning due to signifi- cant levels of aflatoxin, dust and other impurities. Therefore, – Efficient product handling for maximum yield correct product handling is crucial. Subsequent maize de- – Controlled fat content of grits and flour germination leads to low-fat end products and maximum yield.
    [Show full text]