Assessment of Grain Safety in Developing Nations

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Grain Safety in Developing Nations ASSESSMENT OF GRAIN SAFETY IN DEVELOPING NATIONS by José Rodrigo Mendoza Jiménez A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Food Science & Technology Under the Supervision of Professors Andréia Bianchini and Jayne E. Stratton Lincoln, Nebraska December, 2020 ASSESSMENT OF GRAIN SAFETY IN DEVELOPING NATIONS José Rodrigo Mendoza Jiménez, Ph.D. University of Nebraska, 2020 Advisor: Andréia Bianchini Grains are the most widely consumed foods worldwide, with maize (Zea mays) being frequently consumed in developing countries where it feeds approximately 900 million people under the poverty line of 2 USD per day. While grain handling practices are acceptable in most developed nations, many developing nations still face challenges such as inadequate field management, drying, and storage. Faulty grain handling along with unavoidably humid climates result in recurrent fungal growth and spoilage, which compromises both the end-quality and safety of the harvest. This becomes particularly problematic where there is little awareness about health risks associated with poor quality grain. Fungi are contaminants of maize and some can produce toxins, known as mycotoxins, that both devalue crop marketability and have detrimental health effects, especially to those malnourished. As some households depend on their harvest for self- consumption, losses due to fungi endanger their food security. To abate the threat posed by mycotoxigenic fungi on maize among developing nations, this research was conducted as a compilation of works in several countries. More specifically, it describes agricultural practices currently in use in developing nations, provides an overview of mycotoxin prevalence and approaches that can be used to improve grain safety post-harvest through proper storage. Additionally, it provides a platform to evaluate the economic feasibility of storage technologies for maize storage at household level. While the countries of focus were Guatemala, Honduras and Nepal, findings presented can lead to improved decision- making within any maize production chain to safeguard consumers throughout the developing world. iii Acknowledgements I wish to show my gratitude to every professor, colleague, friend and family member for their support during my doctoral studies journey in the Food Science & Technology department at the University of Nebraska-Lincoln. To my advisers and graduate committee, I appreciate your invaluable guidance. “You cannot hope to build a better world without improving the individuals. To that end, each of us must work for our own improvement.” - Marie Skłodowska Curie iv Preface The present doctoral dissertation is organized in five chapters that provide an overview of mycotoxins in maize production chains, mycotoxin surveying, and potential benefits of interventions aiming to decrease fungal and mycotoxin contamination, from farm to fork. Chapter 1 - Mycotoxins in Cereal Grains. José Rodrigo Mendoza Jiménez1, Lakshmikantha Channaiah2, Andréia Bianchini1 1University of Nebraska–Lincoln. Food Science & Technology. Food Innovation Center. 1901 N 21st St. Lincoln, NE 68588. 2Microbiology. AIB International. PO Box 3999. 1213 Bakers Way. Manhattan, KS 66505-3999, USA Chapter 2 - Assessment of Handling Practices for Maize Growers and Marketers in Food-Insecure Regions of Western Honduras. José Rodrigo Mendoza1,2, Luis Sabillón3, Raúl Espinal5, John Leslie4, Andréia Bianchini1,2 1 Food Science & Technology. University of Nebraska-Lincoln, Lincoln, NE 68588. 2 The Food Processing Center. University of Nebraska-Lincoln, Lincoln, NE 68588. 3 Family and Consumer Sciences. New Mexico State University. Las Cruces, NM 88003. 4Plant Pathology. Kansas State University, Manhattan, KS. 5 Food Science & Technology. Zamorano University, P.O. Box 93, Honduras. Chapter 3 - Survey on the Occurrence of Aflatoxins in Maize from Western Nepal. José Rodrigo Mendoza1, Emily Robinson2, Ram Kumar Shrestha4, Gopal Bahadur K.C.4, John Leslie3, Jagger Harvey3, Andréia Bianchini1 1 Food Science & Technology. University of Nebraska-Lincoln, Lincoln, NE. 68588. 2 Statistics. University of Nebraska-Lincoln, Lincoln, NE. 68583. 3Plant Pathology. Kansas State University, Manhattan, KS. 4Plant Pathology. Institute of Agriculture and Animal Science, Nepal. Chapter 4 - Evaluating Maize Storage Technologies for the Control of Fungi and Mycotoxins in the Western Highlands of Guatemala. José Rodrigo Mendoza1, María G. Trejo3, Vivian S. Montoya3, Car Reen Kok1, Walfer Martinez4, Ana Silvia Colmenares2, Carlos Campabadal5, Andréia Bianchini1 1 Food Science and Technology. University of Nebraska-Lincoln, Lincoln, NE. 2 Food Engineering. Universidad del Valle de Guatemala. Guatemala City, Guatemala. 3 Biochemistry and Microbiology. Universidad del Valle de Guatemala. Guatemala City, Guatemala. 4 Agronomic Engineering. Centro Universitario de Noroccidente. Universidad de San Carlos de Guatemala. Huehuetenango, Guatemala. 5 Grain Science and Industry. Kansas State University, Manhattan, KS. Chapter 5 - Financial Feasibility Analysis of Maize Storage Alternatives for Smallholder Farm Households: A Case Study in Guatemala. José Rodrigo Mendoza1, Andréia Bianchini1, Fabio L. Mattos2 1 Department of Food Science & Technology, University of Nebraska. Lincoln, NE, USA 2 Department of Agricultural Economics, University of Nebraska. Lincoln, NE, USA v Table of Contents List of Tables………………………………………………………………………………vii List of Figures……………………………………………………………………………...ix Chapter 1 - Mycotoxins in Cereal Grains Abstract……………………………………………………………………………...1 Mycotoxins…………………………………………………………………………..1 Important mycotoxin-producing fungal species and mycotoxins associated with cereal grains……………………………………………………………………….…2 Factors that influence mold growth and mycotoxin production…..….........................9 Controlling mycotoxins in grains and grain-based products…………………...…..11 Mycotoxin sampling……………………………………………………………......40 Mycotoxin detection methods……………………………………………………...44 References…………………………………………………………………….........52 Chapter 2 - Assessment of Handling Practices for Maize Growers and Marketers in Food-Insecure Regions of Western Honduras Abstract………………………………………………………………………….....80 Introduction………………………………………………………………………...80 Materials and Methods……………………………………………………………..82 Results and Discussion……………………………………………………………..85 Conclusions………………………………………………………………………...99 Acknowledgements……………………………………………………………….100 References………………………………………………………………………...100 vi Chapter 3 - Survey on the Occurrence of Aflatoxins in Maize from Western Nepal Abstract…………………………………………………………………………...105 Introduction……………………………………………………………………….106 Materials and Methods……………………………………………………………109 Results and Discussion……………………………………………………………113 Conclusions……………………………………………………………………….121 Acknowledgements……………………………………………………………….121 References………………………………………………………………………...122 Chapter 4 - Evaluating Maize Storage Technologies for the Control of Fungi and Mycotoxins in the Western Highlands of Guatemala Abstract…………………………………………………………………………...128 Introduction……………………………………………………………………….129 Materials and Methods…………………………………………………………....131 Results and Discussion…………………………………………………………....134 Conclusions……………………………………………………………………….141 Acknowledgements……………………………………………………………….141 References………………………………………………………………………...142 Chapter 5 - Financial Feasibility Analysis of Maize Storage Alternatives for Smallholder Farm Households: A Case Study in Guatemala Abstract…………………………………………………………………………...147 Introduction……………………………………………………………………….148 Materials and Methods……………………………………………………………150 Results and Discussion……………………………………………………………159 Conclusions……………………………………………………………………….163 Acknowledgements……………………………………………………………….163 References………………………………………………………………………...164 Concluding Remarks…………………………………………………………………....169 Future Work…………………………………………………………………………......171 Appendix…………………………………………………………………………………172 vii List of Tables Chapter 1 - Mycotoxins in Cereal Grains Table 1. Selected mycotoxins associated with major cereal grains…………………..4 Table 2. Examples of sufficiency and toxicity of mineral elements in crop plants.....17 Table 3. Examples of thermal processing effects on mycotoxins...............................32 Table 4. Examples of methods used for mycotoxin detection…................................47 Chapter 2 - Assessment of Handling Practices for Maize Growers and Marketers in Food-Insecure Regions of Western Honduras Table 1. Location of surveyed maize growers and marketers in Western Honduras..84 Table 2. Timing of pest control by maize growers in regions of Western Honduras...92 Table 3. Marketed maize origin of selected regions within Western Honduras.......96 Table 4. Frequency of pest control for marketers in regions of Western Honduras....97 Table 5. Marketers’ maize fate in selected regions within Western Honduras...........99 Chapter 3 - Survey on the Occurrence of Aflatoxins in Maize from Western Nepal Table 1. Maize mycotoxin recovery assays via fluorometry…………………....…113 Table 2. Summarized aflatoxin contamination levels in maize collected from districts of Western Nepal, Round 1 (March - April, 2018)……………………………...…115 Table 3. Summarized aflatoxin contamination levels in maize collected from districts of Western Nepal, Round 2 (October - November, 2018)…………………………116 Table 4. Estimated probability of having aflatoxin contamination in maize from Western Nepal. Probabilities
Recommended publications
  • Paper 2 USES and PROCESSING of GRAIN MAIZE in NEW ZEALAND P .L
    Paper 2 USES AND PROCESSING OF GRAIN MAIZE IN NEW ZEALAND P .L. Chappell Cereal Development Manager, Wattie Industries Ltd., Auckland. INTRODUCTION Table 1: Composition of the kernel of mature dent maize. Maize grain use in New Zealand is split approximately Dry weight Starch Fat Protein 700Jo in the feed industry, 190Jo in the wet milling industry (llJo) (OfoDM) (%DM) (%DM) and lOOJo in the dry milling industry. A small quantity may be used for alcohol manufacture, but for reasons of Endosperm 83 86 1 9 commercial confidentiality I have been unable to determine Germ 11 7 35 18 the quantity used in that industry. Pericarp 6 7 1 4 In this paper I will discuss each industry in turn, but Whole kernel 100 73 5 10 first I will digress to briefly describe the composition of the (DM =dry matter) dent maize kernel because this broadly dictates the processing uses of maize, both because of its chemical The endosperm is the principal source of starch which composition and physical state. is in two forms; large starch granules with a thin protein Aleurone matrix lightly packed together in the floury endosperm; and layer Dent smaller starch granules which are surrounded by a thicker Pericorp protein matrix tightly packed in the horny endosperm. The germ, or embryo, is the principal source of fat, which is the Floury endosperm basis of the oil industry. The protein, which is more Scutellum uniformly distributed, is an important ingredient in animal feed. Horny endosperm Pnmary FEED GRAIN INDUSTRY shoot Maize is an important grain in the compound feed Embryonic Germ Q)liS industry in New Zealand.
    [Show full text]
  • Single Kernel Analysis of Fumonisins and Other Fungal Metabolites In
    Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers Jesper Mølgaard Mogensen, Stine Mørcholdt Sørensen, Michael Sulyok, Liana van der Westhuizen, Gordon Shephard, Jens Christian Frisvad, Ulf Thrane, Rudolf Krska, Kristian Fog Nielsen To cite this version: Jesper Mølgaard Mogensen, Stine Mørcholdt Sørensen, Michael Sulyok, Liana van der Westhuizen, Gordon Shephard, et al.. Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers. Food Additives and Contaminants, 2011, pp.1. 10.1080/19440049.2011.611823. hal-00744827 HAL Id: hal-00744827 https://hal.archives-ouvertes.fr/hal-00744827 Submitted on 24 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers Journal: Food Additives and Contaminants Manuscript ID: TFAC-2011-122.R2 Manuscript Type: Original Research Paper Date
    [Show full text]
  • Maize Processing in Tanzania: Prospects for SME Participation
    Maize Processing in Tanzania: Prospects for SME Participation Project Brief, June 2020 ES/S0001352/1 Dr H.B.Lunogelo, Dr Hazel Gray and Professor Fortunata Makene www.iiap.info Project Overview Innovation and Inclusion Industrialisation in Agro-Processing is a two-year collaboration between researchers from the University of Edinburgh, the University of Johannesburg, and the Economic and Social Research Foundation, Tanzania. The project is a comparative study conducted across Tanzania and South Africa focusing on three value chains: maize meal, citrus and dairy. The three aims of the study are: First, to describe the factors that determine innovation and inclusion in agro-processing Second, explain the challenges to promoting SME participation in agro-processing value chains Third, to use these findings to support industrial policy formulation at the national and regional level In this project brief, we set out the key issues arising from our scoping work on maize milling in Tanzania. 1: Summary As an economic crop, maize accounts for 74.3% of cereals production and 66% of all crops harvested annually (NBS, 2017)1. It contributes about 40% of calorific foods consumed (Bymolt et.al., 20172). Maize flour is used to make a meal popularly known as ‘ugali’. SMEs play a major role in the midstream of the maize value chain. Micro and small-scale maize millers are particularly prominent in rural settings and small trading centres but they also operate in larger towns and cities. The maize milling business has also attracted medium and large- scale investors with national and regional market outreach for their milled and packaged products.
    [Show full text]
  • Determination of Good Milling Quality of White Maize For
    THE SOUTHERN AFRICAN GRAIN LABORATORY NPC Quality is our passion DETERMINATION OF GOOD MILLING QUALITY OF WHITE MAIZE FOR HUMAN CONSUMPTION USING NIT March 2016 Wiana Louw Technical experts: Dr Corinda Erasmus Foss Grain Network Meeting Network Grain Foss Dr Paul Williams nd 22 INTRODUCTION MAIZE PRODUCTION IN SOUTH AFRICA MAIZE PROCESSING AND CONSUMPTION IN SOUTH AFRICA WHY DEVELOP A MILLING INDEX CALIBRATION PROCESS FOLLOWED TO DEVELOP THE CALIBRATION MODEL OUTLINE OF THE OF THE PRESETATION OUTLINE CONCLUSIONS AND ROLL-OUT PROCESS TOTAL RSA AREA UTILIZED FOR MAIZE PRODUCTION (11 SEASONS) 4.000.000 3.000.000 White Yellow 2.000.000 Ha Total 1.000.000 0 2013/14 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 Season MAIZE PRODUCTION IN SOUTH AFRICA IN PRODUCTION MAIZE MAIZE PRODUCTION IN RSA (11 SEASONS) 15.000.000 14.000.000 13.000.000 12.000.000 11.000.000 10.000.000 White 9.000.000 Yellow 8.000.000 Total Tons Tons 7.000.000 6.000.000 5.000.000 4.000.000 3.000.000 2.000.000 2011/12 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2012/13 2013/14 MAIZE PRODUCTION IN SOUTH AFRICA IN PRODUCTION MAIZE Season MAIZE YIELD IN RSA (11 SEASONS) 6,00 5,00 White Yellow 4,00 t/ha Total 3,00 2,00 2003/04 2004/05 2005/06 2006/07 2007/08 2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 Season MAIZE PRODUCTION IN SOUTH AFRICA IN PRODUCTION MAIZE MAIZE IMPORTS AND EXPORTS (10 MARKETING SEASONS) 3000 2500 2000 1500 1000 Thousand Ton Thousand 500 0 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13
    [Show full text]
  • Instituto Superior De Ciências Da Saúde Egas Moniz
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Comum INSTITUTO SUPERIOR DE CIÊNCIAS DA SAÚDE EGAS MONIZ MESTRADO INTEGRADO EM CIÊNCIAS FARMACÊUTICAS ASPERGILLUS NIGER: SUA UTILIZAÇÃO NA INDÚSTRIA FARMACÊUTICA Trabalho submetido por Sara de Oliveira Mateus Afonso para a obtenção do grau de Mestre em Ciências Farmacêuticas Outubro de 2015 INSTITUTO SUPERIOR DE CIÊNCIAS DA SAÚDE EGAS MONIZ MESTRADO INTEGRADO EM CIÊNCIAS FARMACÊUTICAS ASPERGILLUS NIGER: SUA UTILIZAÇÃO NA INDÚSTRIA FARMACÊUTICA Trabalho submetido por Sara de Oliveira Mateus Afonso para a obtenção do grau de Mestre em Ciências Farmacêuticas Trabalho orientado por Prof. Doutora Maria Helena Barroso Outubro de 2015 Aspergillus niger: sua utilização na Indústria Farmacêutica 2 Agradecimentos Quero agradecer aos meus pais, Fátima e Carlos, e ao meu irmão João, pelo apoio incondicional, paciência e motivação que me deram, durante a execução da monografia. Ao Tiago, obrigado pelas palavras de encorajamento e apoio que me deste nestes últimos meses. À Andreia Reis, Raquel Pereira, Débora Rodrigues, Inês Martins e Filipa Matilde, pelo enorme apoio, amizade e carinho. Gostaria de agradecer às minhas colegas e amigas com quem partilhei estes cinco anos de curso, à Filipa Cantiga, Inês Santos, Inês Mouquinho, Isabel Silva, Rita Pires, Rita Pinto e Sara Coelho. Em especial à Chantelle Teixeira, pela amizade, carinho, motivação e apoio durante este percurso. Aos professores do Instituto Superior de Ciências da Saúde Egas Moniz, pelos conhecimentos que me transmitiram e por me terem feito gostar, cada vez mais, da profissão. Aos Serviços Farmacêuticos do Hospital São José e às colegas estagiárias, Joana Camilo e Íris Mendonça, pela amizade, gargalhadas e entreajuda durante o estágio.
    [Show full text]
  • Post-Harvest Operations
    MAIZE Post-harvest Operations - Post-harvest Compendium MAIZE: Post-Harvest Operation Organisation:Food and Agriculture Organization of the United Nations (FAO), AGST Author: Danilo Mejía, PhD, AGST. Edited by AGST/FAO: Danilo Mejía, PhD, FAO (Technical) Last reviewed: 15/05/2003 1. Introduction ........................................................................................................................ 2 1.1 Economic and Social Impact. ...................................................................................... 7 1.2 World trade ................................................................................................................ 12 1.3 Maize primary products. ............................................................................................ 15 1.4 Secondary and derived products from maize ............................................................. 21 1.5 Requirements for export and quality assurance. ........................................................ 28 1.6 Consumer preferences. ............................................................................................... 30 1.7 Others. ........................................................................................................................ 32 2. Post-production Operations ......................................................................................... 38 2.1. Pre-harvest operations. .............................................................................................. 38 2.2. Harvesting ................................................................................................................
    [Show full text]
  • Status of Commercial Maize Milling Industry and Flour Fortification in Kenya
    Vol. 13(3) pp. 65-82, March 2019 DOI: 10.5897/AJFS2018.1782 Article Number: 07E25A260478 ISSN: 1996-0794 Copyright ©2019 Author(s) retain the copyright of this article African Journal of Food Science http://www.academicjournals.org/AJFS Full Length Research Paper Status of commercial maize milling industry and flour fortification in Kenya S. Khamila1*, D. S. Ndaka1, A. Makokha1, F. Kyallo1, P. K. Kinyanjui1, O. J. Kanensi1 and J. Mwai2 1Department of Food Science and Technology, Faculty of Agriculture, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00100, Nairobi, Kenya. 2Ministry of Health (Government of Kenya), P. O. Box 30016-100, Nairobi, Kenya. Received 15 December, 2018; Accepted 28 February, 2019 Maize is the most widely consumed staple food by the Kenyan population. Its wide consumption and centralized processing make it an appropriate fortification vehicle to supply essential micronutrients to the population. The legislation was enacted in 2012 that makes it mandatory for all commercial maize mills in Kenya to fortify the maize flour with specified micronutrients as a public health effort to reduce the prevalence of micronutrient deficiencies. However, there is limited information on the current status of maize milling and implementation of the flour fortification programme by these mills. A cross- sectional study was therefore carried out to characterize the commercial maize mills and determine the status of flour fortification in Kenya. Questionnaires were used to collect data. Information was obtained from 22 large-scale, 25 medium-scale and 31 small-scale mills. These mills had an installed capacity of 6084 metric tons/day of flour using roller and hammer mills.
    [Show full text]
  • Effect of Processing on Total Amino Acid Profile of Maize and Cowpea Grains
    www.sospublication.co.in Journal of Advanced Laboratory Research in Biology We- together to save yourself society e-ISSN 0976-7614 Volume 4, Issue 2, April 2013 Research Article Effect of Processing on Total Amino Acid Profile of Maize and Cowpea Grains Malomo Olu*, Alamu, A.E. and Oluwajoba, S.O. *College of Food Science, Bells University of Technology, Ota P.M.B. 1015, Ota, Ogun State, Nigeria. Abstract: During the processing of cereal grains, a substantial proportion of the nutrients are lost, most especially the proteins in the form of the smallest moiety called amino acids. The objective of this study is to investigate the proportional loss due to processing, in order to throw more light in external fortification of the processed grains as may be necessary for the future. This investigation carried out the amino acid profile of drum dried; freeze dried and spray dried products of processed maize and cowpea grains in order to establish the after effects of these processing methods on the amino acid profile of the residual products. The processed methods investigated have been reported to be ideal for the preservation of processed grains in the powdered forms and amino acids availability in the products will determine the final protein nutritional value of the processed food products. Keywords: Cereal grains processing, Cereal proteins, Sprouting, Drying. 1. Introduction Kent (1980) classified the series of operations in dry maize milling as follows: 1.1 Modern Processing 1. Cleaning 2. Conditioning classifying 1.1.1 Modern Dry Milling of Cereal Grains 3. Degerminating A good amount of work has been carried out on 4.
    [Show full text]
  • National Resistance Movement Office of the National Chairperson
    National Resistance Movement Office of the National Chairperson Plot 10 Kyadondo Road Box 7778 Kampala Tel: 346295 – 346279 MEMBERS OF CEC, MEMBERS OF NEC, MEMBERS OF THE NRM NATIONAL CONFERENCE, ALL THE NRM MEMBERS AND ALL UGANDANS Greetings from the CEC Members that I have been meeting quite often, the Cabinet, the NRM Caucus in Parliament and the NRM Secretariat. Sorry about the corona pandemic and congratulations on, heroically, fighting this enemy in spite of all the hardships it has caused us. Since March, 18th 2020, I, myself, am like a prisoner in Nakasero and Entebbe. I have managed to sneak out a few times to Karamoja for the Marbles factory, to Jinja for the rising waters of the Lakes and Rivers, Nakasongola for the fire-fighting vehicle manufactured by the Luwero Industries, the factories in Namanve, to Kasese for the landslides and, recently, to Kasubi and Lubigi for the new market and the new anti- flooding channel respectively. Only half of the Ministers meet every Monday in order to keep the numbers small and spread out in your big Entebbe State House Hall that normally seats 600 people. The Members of Parliament had to move out of the building to a big tent outside and have small numbers at a time. 1 We have to wear masks all the time and they are quite uncomfortable. However, health is wealth, the English say. Amagara gakira amagana (life is more important than wealth), the Banyankore say. Asiika obulamu, tassa mukono; here, the Luganda proverb uses the imagery of food (okusiika). It says that when you are frying life, you never relax the arm, different from food frying where you can relax your arm.
    [Show full text]
  • Mycotoxins in Poultry Feed and Feed Ingredients in Nigeria
    Mycotoxin Research https://doi.org/10.1007/s12550-018-0337-y ORIGINAL ARTICLE Mycotoxins in poultry feed and feed ingredients in Nigeria Oyekemi O. Akinmusire1 & Abdul-Dahiru El-Yuguda2 & Jasini A. Musa2 & Oluwawapelumi A. Oyedele3 & Michael Sulyok4 & Yinka M. Somorin5 & Chibundu N. Ezekiel3,4 & Rudolf Krska4,6 Received: 22 April 2018 /Revised: 5 November 2018 /Accepted: 13 November 2018 # The Author(s) 2018 Abstract Mycotoxins are toxic secondary fungal metabolites that can negatively affect animal productivity when ingested through feed. In order to assess mycotoxin contamination of poultry feed and feed ingredients vis-a-vis source tracking of feed contamination in Nigeria, 102 samples of feed (n = 30) and feed ingredients (n = 72) were collected from in-house mills of poultry farms across 12 states of Nigeria and analyzed for multiple mycotoxins using LC/MS-MS. One hundred and forty microbial metabolites were detected in the feed and feed ingredients. The most frequent mycotoxin in the feed was fumonisin B1,occurringin97%ofthe −1 −1 samples at mean concentration of 1014 μgkg .AFB1 occurred in 83% of the feed samples at mean concentration of 74 μgkg and in all feed ingredients except fish meal and other cereals (millet and rice). Feed samples analyzed in this study were contaminated with at least four mycotoxins: aflatoxins and fumonisin co-occurring in 80% of the samples. Peanut cake and maize contributed the most to the levels of aflatoxin and fumonisin, respectively, in the feed. Consequently, there is a need to explore other cereal- and protein-based ingredients for compounding feeds in order to reduce the risk associated with high mycotoxin (e.g.
    [Show full text]
  • Fortification Handbook
    FORTIFICATION HANDBOOK VITAMIN AND MINERAL FORTIFICATION OF WHEAT FLOUR AND MAIZE MEAL Contributors Quentin Johnson Venkatesh Mannar Peter Ranum Editors Annie Wesley Peter Ranum This manual is based on current information as of June 2004. It will be periodically reviewed and updated to include new or revised data, costs, standards, QC methods, technologies and guidelines on fortification. Any suggestions for changes should be sent to The Micronutrient Initiative at the following email address: [email protected] Table of Contents Table of Contents ........................................................................................................................................... 2 Tables ............................................................................................................................................................. 6 Section 1 INTRODUCTION..................................................................................................................... 7 Micronutrient Malnutrition......................................................................................................................... 7 Milled cereal as a Vehicle for Delivering Deficient Micronutrients .......................................................... 8 Advantages of Flour and Maize Meal as Fortification Vehicles ................................................................ 8 The Flour Fortification Initiative...............................................................................................................
    [Show full text]
  • Fumonisin B2 Production by Aspergillus Niger from Thai Coffee Beans Paramee Noonim, Warapa Mahakarnchanakulb, Kristian F Nielsen, Jens Frisvad, Robert a Samson
    Fumonisin B2 production by Aspergillus niger from Thai coffee beans Paramee Noonim, Warapa Mahakarnchanakulb, Kristian F Nielsen, Jens Frisvad, Robert A Samson To cite this version: Paramee Noonim, Warapa Mahakarnchanakulb, Kristian F Nielsen, Jens Frisvad, Robert A Samson. Fumonisin B2 production by Aspergillus niger from Thai coffee beans. Food Additives and Contami- nants, 2009, 26 (01), pp.94-100. 10.1080/02652030802366090. hal-00577319 HAL Id: hal-00577319 https://hal.archives-ouvertes.fr/hal-00577319 Submitted on 17 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Fumonisin B2 production by Aspergillus niger from Thai coffee beans Journal: Food Additives and Contaminants Manuscript ID: TFAC-2008-013.R1 Manuscript Type: Original Research Paper Date Submitted by the 25-Jun-2008 Author: Complete List of Authors: Noonim, Paramee; Kasetsart University, Department of Food Science and Technology; Prince of Songkla University, Surat Thani Campus, Faculty of Technology and Management Mahakarnchanakulb,
    [Show full text]