Testing the Effects of Glyphosate and a Possible Tradeoff with Immunity on Native And

Total Page:16

File Type:pdf, Size:1020Kb

Testing the Effects of Glyphosate and a Possible Tradeoff with Immunity on Native And Testing the effects of glyphosate and a possible tradeoff with immunity on native and non-native species of crickets Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Lydia Rose Mullins Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Thesis Committee Dr. Susan Gershman, Advisor Dr. Ian Hamilton Dr. Roman Lanno 1 Copyrighted by Lydia Rose Mullins 2020 2 Abstract Introduced insects can compete with native species and alter population and community dynamics. To minimize these effects and potential threats to biodiversity, it is necessary to understand the mechanisms that lie behind successful colonization of novel environments by introduced species, including anthropogenic factors such as herbicides. Glyphosate, the active ingredient of Roundup, is a broad-spectrum herbicide that is commonly applied to various types of land across the world. Its application increased dramatically after the introduction of glyphosate-resistant crops, leading glyphosate to become the top-selling herbicide worldwide. Although it is so widely used, its effects on wildlife are extremely under-studied. Of the few studies examining glyphosate’s effects on non-target organisms, it has been shown to affect locomotion, reproduction, memory and learning of various species of arthropods. It is necessary to understand how glyphosate may be impacting invasion success of non-native insects. The present study examines these effects on native and non-native species of crickets. Further, competition with invasive species and exposure to herbicides may reveal or emphasize existing tradeoffs between traits. For example, many crickets trade off effort devoted to reproduction and immunity. Crickets commonly face immune challenges in the wild, so it is possible that a trade-off may lie in managing exposure to agrochemicals like herbicides and investment into immune function. If present, this trade-off may be contributing to the ii success of non-native species competing with native species and colonizing novel environments. Therefore, in the present study, I examine the effects of glyphosate and a possible trade-off with immunity on lifespan, calling effort and fecundity in the native fall field cricket, Gryllus pennsylvanicus and the non-native Japanese burrowing cricket Velarifictorus micado. G. pennsylvanicus and V. micado occupy a similar niche and therefore are expected to be in competition with each other for resources. V. micado has also been observed in higher abundance than G. pennsylvanicus in the field, suggesting higher success in competition for resources. In this study, we found that glyphosate decreases survival of juvenile Gryllus vocalis and has no effect on adult lifespan of Gryllus pennsylvanicus or Velarifictorus micado. Both G. pennsylvanicus and V. micado females produce more eggs when sprayed with glyphosate. G. pennsylvanicus females also show an interaction between glyphosate and immune challenge; those sprayed with glyphosate and provided with an induced immune challenge produce fewer eggs than females sprayed with glyphosate that are not immune challenged. Because this interaction is not present in V. micado females, this could potentially explain the successful establishment of V. micado. Glyphosate does not affect male calling effort of either G. pennsylvanicus or V. micado. These results suggest that glyphosate may impact survival and reproduction of non-target organisms and has varying effects based on species and may contribute to colonization by non-native species. The survival effect that we observed may be due to additional ingredients in commercial formulations of glyphosate such as surfactants, rather than pure glyphosate. In order to minimize the potential contribution of glyphosate to colonization of novel habitats by non-native species, further iii studies are needed to better understand the potential consequences of this extensively used herbicide and to disentangle whether these effects are actually caused by glyphosate or other ingredients commonly found in Roundup. iv Dedicated to my Papaw, my Mamaw, and my Poppy – You are so missed v Acknowledgments I would like to thank my advisor, Susan Gershman, for her continued support and guidance. Without her assistance, this work would not have been possible. I would also like to thank the other members of my committee, Ian Hamilton and Roman Lanno, for their valuable help throughout this process. This work would also not have been completed without the help of Salvatore Sidoti, Bridget Brown, Jaret Cingel, Leigh Carrabia, Erin Schuster, Marisa Nicol, Malek Soumakieh, Nihit Tyagi and Haley Ries. To my parents, my brother and my grandma Carolyn – I would be lost without your unwavering love and support. Thank you to the faculty and my fellow graduate students in EEOB for being so welcoming and encouraging. To my friends Jimmy Chiucchi, Chloe Flanigan, Drew Spacht, and Kunal Chatterjee – thank you for your endless support and helping me grow as a teacher, a graduate student, and most of all as a person along the way. vi Vita May 2018…………………………………………………………………….B.S. Biology, The Ohio State University 2018-2020………………...…………….…………………..Graduate Teaching Associate, The Ohio State University Fields of Study Major Field: Evolution, Ecology and Organismal Biology vii Table of Contents Abstract ............................................................................................................................... ii Dedication ........................................................................................................................... v Acknowledgments .............................................................................................................. vi Vita .................................................................................................................................... vii List of Tables ..................................................................................................................... ix List of Figures ..................................................................................................................... x Introduction ......................................................................................................................... 1 Materials and Methods ........................................................................................................ 8 Results ............................................................................................................................... 16 Discussion ......................................................................................................................... 20 Conclusions ....................................................................................................................... 26 Bibliography ..................................................................................................................... 40 viii List of Tables Table 1. Summary of studies examining the effects of glyphosate on non-target terrestrial arthropods ......................................................................................................................... 28 ix List of Figures Figure 1. Recruitment of crickets for treatments .............................................................. 29 Figure 2. Effect of glyphosate on juvenile G. vocalis survival ......................................... 30 Figure 3. Effect of glyphosate on water consumption ...................................................... 31 Figure 4. Effect of glyphosate on food consumption ........................................................ 32 Figure 5. Effect of spray and injection on G. pennsylvanicus fecundity .......................... 33 Figure 6. Effect of spray and injection on V. micado fecundity ....................................... 34 Figure 7. Effect of species on fecundity ........................................................................... 35 Figure 8. Effect of species on adult lifespan ..................................................................... 36 Figure 9. Effect of spray and injection on lifespan of G. pennsylvanicus adults .............. 37 Figure 10. Effect of spray and injection on lifespan of V. micado adults ......................... 38 Figure 11. Effect of species, injection and spray on calling effort ................................... 39 x Introduction Introduced insect species are highly successful at becoming established in novel environments (Brockerhoff and Liebhold 2017). They play influential roles in ecosystems, including various roles in food web interactions and contributions to numerous ecosystem processes such as nutrient cycling and pollination. Therefore, they may have drastic impacts on recipient habitats, including altering community dynamics and threatening biodiversity (Brockerhoff and Liebhold 2017; Fahrner and Aukema 2018). To become established, invasive species must compete with native species that occupy similar niches. This could potentially lead to niche displacement or competitive exclusion of native species (Mooney and Cleland 2001). Considering the various impacts non-native insects may have on natural systems, it is necessary to understand the mechanisms that lie behind their successful establishment. In addition to competition with introduced species, insects face other challenges in the wild such as immune challenges and negative effects
Recommended publications
  • Soundscape of Urban-Tolerant Crickets (Orthoptera: Gryllidae, Trigonidiidae) in a Tropical Southeast Asia City, Singapore Ming Kai Tan
    Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a tropical Southeast Asia city, Singapore Ming Kai Tan To cite this version: Ming Kai Tan. Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a tropical Southeast Asia city, Singapore. 2020. hal-02946307 HAL Id: hal-02946307 https://hal.archives-ouvertes.fr/hal-02946307 Preprint submitted on 23 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a 2 tropical Southeast Asia city, Singapore 3 4 Ming Kai Tan 1 5 6 1 Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire 7 naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France; 8 Email: [email protected] 9 10 11 1 12 Abstract 13 14 Urbanisation impact biodiversity tremendously, but a few species can still tolerate the harsh 15 conditions of urban habitats. Studies regarding the impact of urbanisation on the soundscape 16 and acoustic behaviours of sound-producing animals tend to overlook invertebrates, including 17 the crickets. Almost nothing is known about their acoustic community in the urban 18 environment, especially for Southeast Asia where rapid urbanisation is widespread.
    [Show full text]
  • Leonard, A.S. and Hedrick, A.V. 2009
    Animal Behaviour 77 (2009) 151–159 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/yanbe Single versus multiple cues in mate discrimination by males and females Anne S. Leonard*, Ann V. Hedrick 1 Department of Neurobiology, Physiology and Behavior, University of California, Davis article info Courtship communication can function in both species recognition and mate choice. Little is known Article history: about how animals prioritize signals or cues for species identification versus intraspecific mate choice Received 28 June 2008 when several information sources are available, such as when communication spans several sensory Initial acceptance 4 August 2008 modalities or spatiotemporal scales. Cricket courtship, for example, involves transmission of acoustic Final acceptance 4 September 2008 signals as well as chemosensory contact. We explored how chemical cues function in sex and species Published online 14 November 2008 recognition for both male and female crickets, and then evaluated their use in a mating context where MS. number: A08-00417 additional stimuli were available. First, we observed the response of female and male Gryllus integer to the chemical cues of conspecifics and sympatric G. lineaticeps. Males’ strongest response was to Keywords: conspecific female chemical cues. Although females responded most strongly to male chemical cues, they courtship did not show species discrimination. Next, we compared the responses of male and female G. integer to Gryllus integer conspecifics and heterospecifics in mating trials. Females directed more aggressive behaviour and less Gryllus lineaticeps mating preferences chemosensory behaviour towards heterospecific males, but males courted females of both species with multiple cues equal intensities.
    [Show full text]
  • Effect of Diet Quanitity and Quality on Female Sampling Behaviour and Mating Preferences in a Field Cricket
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of Winter 12-2011 EFFECT OF DIET QUANITITY AND QUALITY ON FEMALE SAMPLING BEHAVIOUR AND MATING PREFERENCES IN A FIELD CRICKET Heidi L. Bulfer University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Life Sciences Commons Bulfer, Heidi L., "EFFECT OF DIET QUANITITY AND QUALITY ON FEMALE SAMPLING BEHAVIOUR AND MATING PREFERENCES IN A FIELD CRICKET" (2011). Dissertations and Theses in Biological Sciences. 35. https://digitalcommons.unl.edu/bioscidiss/35 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EFFECT OF DIET QUANITITY AND QUALITY ON FEMALE SAMPLING BEHAVIOUR AND MATING PREFERENCES IN A FIELD CRICKET by Heidi L. Bulfer A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Biological Sciences Under the Supervision of Professor William E. Wagner, Jr. Lincoln, Nebraska December, 2011 EFFECT OF DIET QUANITITY AND QUALITY ON FEMALE SAMPLING BEHAVIOUR AND MATING PREFERENCES IN A FIELD CRICKET Heidi L. Bulfer, M.S. University of Nebraska, 2011 Advisor: William E. Wagner, Jr. Understanding the adaptive significance of variation in female mating behaviour is important because variation may often be favored by selection instead of a change in mean mating behaviour, particularly in variable environments.
    [Show full text]
  • Discrete Modes of Life Cycle in Velarifictorus Micado Species Complex (Orthoptera: Gryllidae)
    Hindawi Publishing Corporation ISRN Entomology Volume 2013, Article ID 851581, 5 pages http://dx.doi.org/10.1155/2013/851581 Research Article Discrete Modes of Life Cycle in Velarifictorus micado Species Complex (Orthoptera: Gryllidae) Zhuqing He and Makio Takeda Graduate School of Agricultural Science, Kobe University, 1-1 Rokko–Dai, Nada, Kobe, Hyogo 657-8501, Japan Correspondence should be addressed to Makio Takeda; [email protected] Received 27 October 2013; Accepted 19 November 2013 Academic Editors: Y. Abe and C. J. Bidau Copyright © 2013 Z. He and M. Takeda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Different modes of climatic adaptation often lead to a split in reproductive cohesion and stimulate speciation between populations with different patterns of life cycle. We here examined egg development and photoperiodic adaptations in the nymphal development of Velarifictorus micado. We defined fast hatching populations as nymphal diapause and slow hatching populations as egg diapause. ∘ The nymphs were reared under two photoperiods, LD 16 : 8 and LD 12 : 12 at 27.5 C, and the mean days of nymphal development were compared. The results indicate that the nymphal diapause populations showed slower nymphal development under LD 12 :12 than under LD 16 : 8, and this retardation increased with the increase of original latitude. The egg diapause populations showed slower nymphal development under LD 16 : 8 than under LD 12 : 12. These features help synchronizing their overwintering stages. Gene flow from the opposite forms may disturb this synchronization mechanism, and therefore natural selection should favor displacement of the two forms.
    [Show full text]
  • THE QUARTERLY REVIEW of BIOLOGY
    VOL. 43, NO. I March, 1968 THE QUARTERLY REVIEW of BIOLOGY LIFE CYCLE ORIGINS, SPECIATION, AND RELATED PHENOMENA IN CRICKETS BY RICHARD D. ALEXANDER Museum of Zoology and Departmentof Zoology The Universityof Michigan,Ann Arbor ABSTRACT Seven general kinds of life cycles are known among crickets; they differ chieff,y in overwintering (diapause) stage and number of generations per season, or diapauses per generation. Some species with broad north-south ranges vary in these respects, spanning wholly or in part certain of the gaps between cycles and suggesting how some of the differences originated. Species with a particular cycle have predictable responses to photoperiod and temperature regimes that affect behavior, development time, wing length, bod)• size, and other characteristics. Some polymorphic tendencies also correlate with habitat permanence, and some are influenced by population density. Genera and subfamilies with several kinds of life cycles usually have proportionately more species in temperate regions than those with but one or two cycles, although numbers of species in all widely distributed groups diminish toward the higher lati­ tudes. The tendency of various field cricket species to become double-cycled at certain latitudes appears to have resulted in speciation without geographic isolation in at least one case. Intermediate steps in this allochronic speciation process are illustrated by North American and Japanese species; the possibility that this process has also occurred in other kinds of temperate insects is discussed. INTRODUCTION the Gryllidae at least to the Jurassic Period (Zeuner, 1939), and many of the larger sub­ RICKETS are insects of the Family families and genera have spread across two Gryllidae in the Order Orthoptera, or more continents.
    [Show full text]
  • Population Dynamics and Seed Feeding Tendencies of Field Crickets (Gryllidae) in Wild Blueberry Fields
    POPULATION DYNAMICS AND SEED FEEDING TENDENCIES OF FIELD CRICKETS (GRYLLIDAE) IN WILD BLUEBERRY FIELDS by Janelle MacKeil Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia July, 2021 © Copyright by Janelle MacKeil, 2021 DEDICATION PAGE To my younger self. ii TABLE OF CONTENTS LIST OF TABLES .............................................................................................................. v LIST OF FIGURES ........................................................................................................... vi ABSTRACT ...................................................................................................................... vii LIST OF ABBREVIATIONS USED .............................................................................. viii ACKNOWLEDGEMENTS ............................................................................................... ix CHAPTER 1: INTRODUCTION ....................................................................................... 1 1.1 Nova Scotia Wild Blueberry Industry ....................................................................... 1 1.2 Weed Management in Wild Blueberry Fields ........................................................... 2 1.3 Integrated Weed Management in Wild Blueberry Fields.......................................... 4 1.4 Gryllidae as Natural Enemies .................................................................................... 8 1.5 Research Objectives and Hypothesis
    [Show full text]
  • Influence of Female Cuticular Hydrocarbon (CHC) Profile on Male Courtship Behavior in Two Hybridizing Field Crickets Gryllus
    Heggeseth et al. BMC Evolutionary Biology (2020) 20:21 https://doi.org/10.1186/s12862-020-1587-9 RESEARCH ARTICLE Open Access Influence of female cuticular hydrocarbon (CHC) profile on male courtship behavior in two hybridizing field crickets Gryllus firmus and Gryllus pennsylvanicus Brianna Heggeseth1,2, Danielle Sim3, Laura Partida3 and Luana S. Maroja3* Abstract Background: The hybridizing field crickets, Gryllus firmus and Gryllus pennsylvanicus have several barriers that prevent gene flow between species. The behavioral pre-zygotic mating barrier, where males court conspecifics more intensely than heterospecifics, is important because by acting earlier in the life cycle it has the potential to prevent a larger fraction of hybridization. The mechanism behind such male mate preference is unknown. Here we investigate if the female cuticular hydrocarbon (CHC) profile could be the signal behind male courtship. Results: While males of the two species display nearly identical CHC profiles, females have different, albeit overlapping profiles and some females (between 15 and 45%) of both species display a male-like profile distinct from profiles of typical females. We classified CHC females profile into three categories: G. firmus-like (F; including mainly G. firmus females), G. pennsylvanicus-like (P; including mainly G. pennsylvanicus females), and male-like (ML; including females of both species). Gryllus firmus males courted ML and F females more often and faster than they courted P females (p < 0.05). Gryllus pennsylvanicus males were slower to court than G. firmus males, but courted ML females more often (p < 0.05) than their own conspecific P females (no difference between P and F).
    [Show full text]
  • Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs
    20182018 Green RoofsUrban and Naturalist Urban Biodiversity SpecialSpecial Issue No. Issue 1:16–38 No. 1 A. Nagase, Y. Yamada, T. Aoki, and M. Nomura URBAN NATURALIST Developing Biodiverse Green Roofs for Japan: Arthropod and Colonizer Plant Diversity on Harappa and Biotope Roofs Ayako Nagase1,*, Yoriyuki Yamada2, Tadataka Aoki2, and Masashi Nomura3 Abstract - Urban biodiversity is an important ecological goal that drives green-roof in- stallation. We studied 2 kinds of green roofs designed to optimize biodiversity benefits: the Harappa (extensive) roof and the Biotope (intensive) roof. The Harappa roof mimics vacant-lot vegetation. It is relatively inexpensive, is made from recycled materials, and features community participation in the processes of design, construction, and mainte- nance. The Biotope roof includes mainly native and host plant species for arthropods, as well as water features and stones to create a wide range of habitats. This study is the first to showcase the Harappa roof and to compare biodiversity on Harappa and Biotope roofs. Arthropod species richness was significantly greater on the Biotope roof. The Harappa roof had dynamic seasonal changes in vegetation and mainly provided habitats for grassland fauna. In contrast, the Biotope roof provided stable habitats for various arthropods. Herein, we outline a set of testable hypotheses for future comparison of these different types of green roofs aimed at supporting urban biodiversity. Introduction Rapid urban growth and associated anthropogenic environmental change have been identified as major threats to biodiversity at a global scale (Grimm et al. 2008, Güneralp and Seto 2013). Green roofs can partially compensate for the loss of green areas by replacing impervious rooftop surfaces and thus, contribute to urban biodiversity (Brenneisen 2006).
    [Show full text]
  • Kobe University Repository : Thesis
    Kobe University Repository : Thesis Molecular taxonomic analysis of the genus Velarifictorus and V. micado 学位論文題目 species complex, and the speciation mechanism in East Title Asia(Velarifictorus属とツヅレサセコオロギ種群の分子系統解析と東ア ジアにおける種分化機構) 氏名 He, Zhuqing Author 専攻分野 博士(学術) Degree 学位授与の日付 2014-03-25 Date of Degree 公開日 2015-03-01 Date of Publication 資源タイプ Thesis or Dissertation / 学位論文 Resource Type 報告番号 甲第6029号 Report Number 権利 Rights JaLCDOI URL http://www.lib.kobe-u.ac.jp/handle_kernel/D1006029 ※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。 PDF issue: 2021-10-01 Doctoral Dissertation 博士論文 Molecular taxonomic analysis of the genus Velarifictorus and V. micado species complex, and the speciation mechanism in East Asia Velarifictorus 属とツヅレサセコオロギ種群の分子系統解析と 東アジアにおける種分化機構 January 2014 平成 26 年 1 月 Graduate School of Agricultural Science, Kobe University 神戸大学大学院農学研究科 何祝清 HE Zhuqing 087A571A CONTENT Chapter 1 General introduction ................................................................................................................ 4 1.1 Taxonomy ....................................................................................................................................... 4 1.2 Geographic distribution and life cycle ............................................................................................ 6 1.3 Photoperiodic response ................................................................................................................... 7 1.4 Wing type ......................................................................................................................................
    [Show full text]
  • Orthoptera: Tettigonioidea)
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/268037110 Acoustic and Molecular Differentiation between Macropters and Brachypters of Eobiana engelhardti engelhardti (Orthoptera: Tettigonioidea) ARTICLE · MAY 2011 READS 19 1 AUTHOR: Yinliang Wang Northeast Normal University 9 PUBLICATIONS 4 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Yinliang Wang letting you access and read them immediately. Retrieved on: 25 November 2015 Zoological Studies 50(5): 636-644 (2011) Acoustic and Molecular Differentiation between Macropters and Brachypters of Eobiana engelhardti engelhardti (Orthoptera: Tettigonioidea) Yin-Liang Wang, Jian Zhang, Xiao-Qiang Li, and Bing-Zhong Ren* Jilin Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal Univ., 5268 Renmin St., Changchun CO130024, China (Accepted May 20, 2011) Yin-Liang Wang, Jian Zhang, Xiao-Qiang Li, and Bing-Zhong Ren (2011) Acoustic and molecular differentiation between macropters and brachypters of Eobiana engelhardti engelhardti (Orthoptera: Tettigonioidea). Zoological Studies 50(5): 636-644. This study focused on the wing dimorphism of Eobiana engelhardti engelhardti (Uvarov 1926). To examine acoustic differences between macropters and brachypters, we recorded and analyzed the calling songs of the 2 forms. Moreover, the vocal organs of E. e. engelhardti were also observed under optical and scanning electric microscopy. As a result, there were 3 “dynamic” song traits which had significant differences between the 2 forms, but no obvious differences were observed in vocal organs. For macropters, we assumed that differentiation of these calling songs showed compensation for a reproductive disadvantage.
    [Show full text]
  • University of Nebraska-Lincoln Digitalcommons@ University Of
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of 4-2014 Costs of Female Mating Behavior in the Variable Field Cricket, Gryllus lineaticeps Cassandra M. Martin University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Behavior and Ethology Commons, and the Biology Commons Martin, Cassandra M., "Costs of Female Mating Behavior in the Variable Field Cricket, Gryllus lineaticeps" (2014). Dissertations and Theses in Biological Sciences. 65. https://digitalcommons.unl.edu/bioscidiss/65 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. COSTS OF FEMALE MATING BEHAVIOR IN THE VARIABLE FIELD CRICKET, GRYLLUS LINEATICEPS by Cassandra M. Martin A DISSERTATION Presented to the Faculty of The Graduate College of the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences (Ecology, Evolution, & Behavior) Under the Supervision of Professor William E. Wagner, Jr. Lincoln, Nebraska April, 2014 COSTS OF FEMALE MATING BEHAVIOR IN THE VARIABLE FIELD CRICKET, GRYLLUS LINEATICEPS Cassandra M. Martin, Ph.D. University of Nebraska, 2014 Advisor: William E. Wagner, Jr. Female animals may risk predation by associating with males that have conspicuous mate attraction traits. The mate attraction song of male field crickets also attracts lethal parasitoid flies. Female crickets, which do not sing, may risk parasitism when associating with singing males.
    [Show full text]
  • Gryllidae Orthoptera)
    Rec. zool. Surv. India, 13: 229-238, 1977 STUDIES ON SOME INDIAN CRICKETS WITH NEW DISTRIBUTIONAL RECORDS OF THE SUB-FAMILY GRYLLINAE (GRYLLIDAE ORTHOPTERA) By H. K. BHOWMlK Zoological Survey of India, Calcutta. (With 1 Text-figure) INTRODUCTION (a) General The paper deals with new taxonomic characters and new distri ... butional records of 14 species spread over 7 genera of the subfamily Gryllinae of Indian fauna. The material studied in this paper includes the unnamed materials collected by the Zoological Survey of India tour parties from different parts of the country including the South Andaman Island. All material examined hereinunder are deposited in the National Collection of the Zoological Survey of India, Calcutta. All measure­ ments used in the paper are in mm. The number of specimens measured in each case is indicated, wherever measurements are given. (b) Acknowledgements The writer owes his indebtedness to Dr. D. N. Raychawdhuri, Reader, Dept. of Zoology, Calcutta University, for guidance during h.i~ study and to late Prof. L. Chopard, Paris, for substantial help in many ways. SYSTEMA TIC ACCOUNT Genus (1) Gryllus Linnaeus, 1758 1 . GryUus bimaculatus De Geer 1773. Gryl/us bimaculatus De Geer, Mem. Ins., 3 : 521. 1961. Gryllus bimaculatus Chopard, Eos, 37 : 269; Randell, 1964, Can ad. Ent., 96 : 1592. 229 230 Records of the Zoological Survey of India Material.-l ~, Sanglichu, (5500m.) Kameng, Arunachal Pradesh; 2 a a, 3 ~~, North Sikkim; 1 a, 7 ~~ , Dehra Dun, 3 a 8 5, ~~, Raipur, Dehra Dun, 1 ~, Mall, Mussorie, Uttar Pradesh; 1 a, 1 ~; Mettur Dam Survey, Yercand Shevroy Hills; 2 a ~, 1 ~, Machalla, Dist.
    [Show full text]