Mechanisms of T Cell Organotropism

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of T Cell Organotropism Cell. Mol. Life Sci. DOI 10.1007/s00018-016-2211-4 Cellular and Molecular Life Sciences REVIEW Mechanisms of T cell organotropism 1 1 1 Hongmei Fu • Eleanor Jayne Ward • Federica M. Marelli-Berg Received: 25 February 2016 / Revised: 21 March 2016 / Accepted: 22 March 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Protective immunity relies upon T cell differ- APCs Antigen presenting cells entiation and subsequent migration to target tissues. BATF Basic leucine zipper transcription factor Similarly, immune homeostasis requires the localization of CLA Cutaneous lymphocyte-associated antigen regulatory T cells (Tregs) to the sites where immunity takes CNS Central nervous system place. While naı¨ve T lymphocytes recirculate predomi- CTLA-4 Cytotoxic T lymphocytes antigen 4 nantly in secondary lymphoid tissue, primed T cells and DCs Dendritic cells activated Tregs must traffic to the antigen rich non-lym- DETCs Dendritic epidermal T cells phoid tissue to exert effector and regulatory responses, EAE Experimental autoimmune encephalomyelitis respectively. Following priming in draining lymph nodes, ECs Endothelial cells T cells acquire the ‘homing receptors’ to facilitate their FoxP3 Forkhead Box P3 access to specific tissues and organs. An additional level of GALT Gut-associated lymphoid tissue topographic specificity is provided by T cells receptor GPR G protein-coupled receptor recognition of antigen displayed by the endothelium. Fur- GVHD Graft-versus-host disease thermore, co-stimulatory signals (such as those induced by HGF Hepatocyte growth factor CD28) have been shown not only to regulate T cell acti- HIV Human immunodeficiency virus vation and differentiation, but also to orchestrate the HSV Herpes simplex virus anatomy of the ensuing T cell response. We here review IELs Intraepithelial lymphocytes the molecular mechanisms supporting trafficking of both IPEX Immune polyendocrine enteropathy X-linked effector and regulatory T cells to specific antigen-rich syndrome tissues. KLF2 Kru¨ppel-like factor 2 LFA Lymphocyte function-associated antigen Keywords Homing receptors Á T lymphocytes Á LNs Lymph nodes T cell migration Á Organotropism LP Lamina propria MAdCAM-1 Mucosal addressin cell adhesion molecule-1 Abbreviations MHC Major histocompatibility complex ACD Allergic contact dermatitis MLCs Memory lymphocyte clusters Ang II Angiotensin II MLNs Mesenteric lymph nodes MMP Matrix metalloproteinases mTOR Mammalian target of rapamycin & Federica M. Marelli-Berg NOD Non-obese diabetic [email protected] PLNs Peripheral lymph nodes PI3K Phosphatidylinositol-30-kinase 1 William Harvey Research Institute, Heart Centre, Barts and PNAd Peripheral lymph node addressin the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London PSGL-1 P-selectin glycoprotein ligand-1 EC1M 6BQ, UK PPs Peyer’s patches 123 H. Fu et al. RA Retinoic acid eventually transmigrate into the tissue. Lymphocyte RAR Retinoic acid receptor transendothelial migration can occur at the junction RALDH Retinaldehyde dehydrogenase between apposing ECs (paracellular route) without dis- S1PR1 Sphingosine-1-phosphate receptor 1 rupting the endothelial monolayer in a complex process S1P Sphingosine-1 phosphate known as trans-endothelial migration (TEM) or diapedesis SDF-1 Stromal-derived factor-1 involving the junctional adhesion molecules [8]. Alterna- SLOs Secondary lymphoid organs tively, leukocytes can migrate across the EC body into the TEM Trans-endothelial migration tissue known as the transcellular route [9]. Once across the TGF-b Transforming growth factor beta endothelial barrier, migrating lymphocytes continue to TCM Central memory T cells move through the subendothelial matrix [8] and the TEFF Effector T cells extravascular tissue to the site of inflammation in response TEM Effector memory T cells to chemotactic gradients [3]. Further details on the TRM Tissue resident memory T cells extravasation process can be found in a recent review by Th T helper cells Nourshargh and colleagues [10]. Tregs Regulatory T cells A wide range of adhesion molecules and chemokines iTregs Induced Tregs expressed on the ECs are required to bind to their counter nTregs Naturally occurring Tregs receptors on the migrating lymphocytes, directing lym- VA Vitamin A phocyte entry into the tissue [11]. The endothelium of VCAM-1 Vascular cell adhesion molecule-1 different organs is characterized by preferential expression VLA Very late antigen (VLA) of combinations of these molecules, thus being endowed with the ability to selectively recruit distinct lymphocyte subsets. During priming, the local microenvironment and cellular interactions induce T lymphocytes to express a Introduction: lymphocyte recirculation unique set of adhesion molecules and chemokine receptors and homing (the ‘homing’ receptors) so that antigen-experienced T cells acquire the ability to interact with organ-specific ECs Effective immune surveillance relies on the continuous and migrate to distinct target tissues [12–15]. Given that trafficking of lymphocytes through blood, lymphoid organs recurrent infections are likely to affect the same organ, the and non-lymphoid tissue in a process known as recircula- acquisition of tissue tropism by memory T cells contributes tion [1]. The physiological process by which lymphocytes to the effectiveness of recall responses. We here review the leave circulation, cross endothelium, find and localize to molecular interactions and mechanisms which underlie the particular tissues is known as extravasation [2]. In healthy ability of distinct memory T cell populations to migrate to tissue, the vascular endothelium forms a non-thrombotic, different non-lymphoid sites where antigen is located. non-adhesive barrier, and is impermeable to macro- molecules [3]. Upon inflammation, endothelial cells (ECs) undergo physiological and molecular changes such as the up-regulation of adhesion molecule expression. This in turn Naı¨ve T cell homing to secondary lymphoid organs allows the exit of lymphocytes across the endothelium into (SLOs) the tissue without disrupting endothelial integrity. The initial stage of lymphocyte trafficking is mostly Naı¨ve and memory T cells display different surface mediated by selectins, which are responsible for lympho- molecules which define their functional properties and cyte transient tethering and rolling on the endothelium [4]. migratory patterns [16–19]. Naı¨ve T cells have little or no This initial contact between the circulating lymphocytes ability to produce cytokines [20]. They recirculate from the and the endothelium monolayer facilitates lymphocyte blood, through secondary lymphoid organs (SLOs), into the exposure to chemokines displayed on the EC surface, lymphatic vessels and back to the blood [14, 21]. SLOs which induces intracellular signalling responses leading to include peripheral lymph nodes (PLNs), spleen, gut-asso- lymphocyte integrin activation. Activated integrins bind to ciated lymphoid tissue (GALT) including Peyer’s patches their ligands, such as the intercellular adhesion molecule-1 (PPs), and bronchus-associated lymphoid tissue [22]. (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), Homing of naı¨ve T cells to the PLNs requires the and mucosal addressin cell adhesion molecule-1 (MAd- expression of CD62L and the chemokine receptor CCR7. CAM-1), expressed on the endothelium, resulting in the CD62L binds to peripheral lymph node addressin (PNAd) firm arrest of lymphocytes on the endothelium [5–7]. Fol- expressed on the high endothelial venules (HEVs) of PLNs lowing firm adhesion on the EC monolayer, lymphocytes and mesenteric lymph nodes (MLNs) [23], while the 123 Mechanisms of T cell organotropism chemokine receptor CCR7 binds to the chemokines CCL19 In humans, the majority of T cells entering the PPs are and CCL21 expressed by HEVs of the PLNs [24, 25]. found to be naı¨ve T cells. This process requires the inter- CCL21 is also expressed in PPs [26]. Naı¨ve T cells have action of integrin a4b7 on T cells and MAdCAM-1 on the also been shown to utilize CXCR4, which is the receptor mucosal vasculature [26, 34]. Consistent with this obser- for the chemokine stromal cell-derived factor 1 (SDF-1, vation, human naı¨ve T cells constitutively express low levels CXCL12), to circulate through SLOs [27]. It has been of a4b7 [35, 36]. Other studies subsequently showed that shown that mineralocorticoid receptor signalling con- both CD62L and a4b7 are required in a sequential and syn- tributes to human naı¨ve T cells migration to lymph nodes ergistic manner to mediate naı¨ve T cell migration to the (LNs) by increasing CD62L, CCR7, and CXCR4 expres- MLNs [37]. CD62L binds to the PNAd expressed on the sion. Sleep-dependent release of endogenous aldosterone MLNs, which induces the initial rolling and tethering of T activates mineralocorticoid receptors on naı¨ve T cells. This cells during transendothelial migration; a4b7 integrins sub- leads to an increase in the expression of CCR7 and CD62L, sequently bind to MAdCAM-1 and mediate firm adhesion as well as of CXCR4. Central memory T cells with lymph and transmigration. T cell migration to the PPs is reduced by node-homing capacity were also affected. This could 55 % in mice that are deficient for CD62L; and mice lacking explain the beneficial effect of sleep on mounting an b7 integrin expression have been found to display a 90 % adaptive immune response [28]. Naive T cells enter the reduction in lymphocyte migration to
Recommended publications
  • Disease Lymphocytes in Small Intestinal Crohn's Chemokine
    Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn's Disease This information is current as of September 29, 2021. Masayuki Saruta, Qi T. Yu, Armine Avanesyan, Phillip R. Fleshner, Stephan R. Targan and Konstantinos A. Papadakis J Immunol 2007; 178:3293-3300; ; doi: 10.4049/jimmunol.178.5.3293 http://www.jimmunol.org/content/178/5/3293 Downloaded from References This article cites 26 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/178/5/3293.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Phenotype and Effector Function of CC Chemokine Receptor 9-Expressing Lymphocytes in Small Intestinal Crohn’s Disease1 Masayuki Saruta,2*QiT.Yu,2* Armine Avanesyan,* Phillip R. Fleshner,† Stephan R.
    [Show full text]
  • A Subset of CCL25-Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer
    ORIGINAL RESEARCH published: 25 February 2019 doi: 10.3389/fimmu.2019.00271 A Subset of CCL25-Induced Gut-Homing T Cells Affects Intestinal Immunity to Infection and Cancer Hongmei Fu 1, Maryam Jangani 1, Aleesha Parmar 1, Guosu Wang 1, David Coe 1, Sarah Spear 2†, Inga Sandrock 3, Melania Capasso 2†, Mark Coles 4, Georgina Cornish 1, Helena Helmby 5 and Federica M. Marelli-Berg 1* 1 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 2 Bart’s Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, 3 Institute of Immunology, Hannover Medical School, Hannover, 4 5 Edited by: Germany, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom, Department for Immunology Mariagrazia Uguccioni, and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom Institute for Research in Biomedicine (IRB), Switzerland Protective immunity relies upon differentiation of T cells into the appropriate subtype Reviewed by: required to clear infections and efficient effector T cell localization to antigen-rich tissue. Maria Rescigno, Istituto Europeo di Oncologia s.r.l., Recent studies have highlighted the role played by subpopulations of tissue-resident Italy memory (TRM) T lymphocytes in the protection from invading pathogens. The intestinal Fabio Grassi, Institute for Research in Biomedicine mucosa and associated lymphoid tissue are densely populated by a variety of resident (IRB), Switzerland lymphocyte populations, including αβ and γδ CD8+ intraepithelial T lymphocytes (IELs) *Correspondence: and CD4+ T cells. While the development of intestinal γδ CD8+ IELs has been extensively Federica M.
    [Show full text]
  • CC Chemokine Ligand 25 Enhances Resistance to Apoptosis in CD4 T
    [CANCER RESEARCH 64, 7579–7587, October 15, 2004] CC Chemokine Ligand 25 Enhances Resistance to Apoptosis in CD4؉ T Cells from Patients with T-Cell Lineage Acute and Chronic Lymphocytic Leukemia by Means of Livin Activation Zhang Qiuping,1 Xiong Jei,1,2 Jin Youxin,2 Ju Wei,1 Liu Chun,1 Wang Jin,1 Wu Qun,1 Liu Yan,1 Hu Chunsong,3 Yang Mingzhen,4 Gao Qingping,5 Zhang Kejian,5 Sun Zhimin,6 Li Qun,3 Liu Junyan,1 and Tan Jinquan1,3 1Department of Immunology, and Laboratory of Allergy and Clinical Immunology, Institute of Allergy and Immune-related Diseases and Center for Medical Research, Wuhan University School of Medicine, Wuhan; 2The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai; 3Department of Immunology, College of Basic Medical Sciences, Anhui Medical University, Hefei; 4Department of Hematology, The Affiliated University Hospital, Anhui Medical University, Hefei; 5Department of Hematology, The First and Second Affiliated University Hospital, Wuhan University, Wuhan; and 6Department of Hematology, The Provincial Hospital of Anhui, Hefei, Peoples Republic of China ABSTRACT intestine (8), providing the evidence for distinctive mechanisms of -؉ lymphocyte recruitment. The importance of CCL25/TECK is to li We investigated CD4 and CD8 double-positive thymocytes, CD4 T cense effector/memory cells to access anatomic sites (9, 10). Thus, cells from typical patients with T-cell lineage acute lymphocytic leukemia CCL25/TECK is important for the homing, development, and home- (T-ALL) and T cell lineage chronic lymphocytic leukemia (T-CLL), and MOLT4 T cells in terms of CC chemokine ligand 25 (CCL25) functions of ostasis of T cells, particularly, mucosal T cells.
    [Show full text]
  • Mouse CCL25/TECK Antibody
    Mouse CCL25/TECK Antibody Monoclonal Rat IgG2A Clone # 89827 Catalog Number: MAB4811 DESCRIPTION Species Reactivity Mouse Specificity Detects mouse CCL25/TECK in ELISAs and Western blots. In Western blots, no cross­reactivity with recombinant human CCL1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, recombinant mouse CCL1, 2, 3, 4, 6, 7, 9, 11, 12, 19, 20, 21, 22, 24, and recombinant rat CCL20 is observed. Source Monoclonal Rat IgG2A Clone # 89827 Purification Protein A or G purified from hybridoma culture supernatant Immunogen E. coli­derived recombinant mouse CCL25/TECK Gln24­Asn144 Accession # O35903.1 Endotoxin Level <0.10 EU per 1 μg of the antibody by the LAL method. Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL Recombinant Mouse CCL25/TECK (Catalog # 481­TK) Immunohistochemistry 8­25 µg/mL Perfusion fixed frozen sections of mouse intestine and perfusion fixed frozen sections of rat intestine Mouse CCL25/TECK Sandwich Immunoassay Reagent ELISA Capture 2­8 µg/mL Mouse CCL25/TECK Antibody (Catalog # MAB4811) ELISA Detection 0.1­0.4 µg/mL Mouse CCL25/TECK Biotinylated Antibody (Catalog # BAF481) Standard Recombinant Mouse CCL25/TECK (Catalog # 481­TK) PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS.
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Role of Chemokines in Hepatocellular Carcinoma (Review)
    ONCOLOGY REPORTS 45: 809-823, 2021 Role of chemokines in hepatocellular carcinoma (Review) DONGDONG XUE1*, YA ZHENG2*, JUNYE WEN1, JINGZHAO HAN1, HONGFANG TUO1, YIFAN LIU1 and YANHUI PENG1 1Department of Hepatobiliary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051; 2Medical Center Laboratory, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, P.R. China Received September 5, 2020; Accepted December 4, 2020 DOI: 10.3892/or.2020.7906 Abstract. Hepatocellular carcinoma (HCC) is a prevalent 1. Introduction malignant tumor worldwide, with an unsatisfactory prognosis, although treatments are improving. One of the main challenges Hepatocellular carcinoma (HCC) is the sixth most common for the treatment of HCC is the prevention or management type of cancer worldwide and the third leading cause of of recurrence and metastasis of HCC. It has been found that cancer-associated death (1). Most patients cannot undergo chemokines and their receptors serve a pivotal role in HCC radical surgery due to the presence of intrahepatic or distant progression. In the present review, the literature on the multi- organ metastases, and at present, the primary treatment methods factorial roles of exosomes in HCC from PubMed, Cochrane for HCC include surgery, local ablation therapy and radiation library and Embase were obtained, with a specific focus on intervention (2). These methods allow for effective treatment the functions and mechanisms of chemokines in HCC. To and management of patients with HCC during the early stages, date, >50 chemokines have been found, which can be divided with 5-year survival rates as high as 70% (3). Despite the into four families: CXC, CX3C, CC and XC, according to the continuous development of traditional treatment methods, the different positions of the conserved N-terminal cysteine resi- issue of recurrence and metastasis of HCC, causing adverse dues.
    [Show full text]
  • A Novel Role for Constitutively Expressed Epithelial-Derived Chemokines As Antibacterial Peptides in the Intestinal Mucosa
    ARTICLES nature publishing group A novel role for constitutively expressed epithelial-derived chemokines as antibacterial peptides in the intestinal mucosa K K o t a r s k y 1 , K M S i t n i k 1 , H S t e n s t a d 1 , H K o t a r s k y 2 , A S c h m i d t c h e n 3 , M K o s l o w s k i 4 , J We h k a m p 4 a n d W W A g a c e 1 Intestinal-derived chemokines have a central role in orchestrating immune cell influx into the normal and inflamed intestine. Here, we identify the chemokine CCL6 as one of the most abundant chemokines constitutively expressed by both murine small intestinal and colonic epithelial cells. CCL6 protein localized to crypt epithelial cells, was detected in the gut lumen and reached high concentrations at the mucosal surface. Its expression was further enhanced in the small intestine following in vivo administration of LPS or after stimulation of the small intestinal epithelial cell line, mICc12 , with IFN , IL-4 or TNF . Recombinant- and intestinal-derived CCL6 bound to a subset of the intestinal microflora and displayed antibacterial activity. Finally, the human homologs to CCL6, CCL14 and CCL15 were also constitutively expressed at high levels in human intestinal epithelium, were further enhanced in inflammatory bowel disease and displayed similar antibacterial activity. These findings identify a novel role for constitutively expressed, epithelial-derived chemokines as antimicrobial peptides in the intestinal mucosa.
    [Show full text]
  • Differ in Their Sensitivities to Ligand -15 That Β Chemokine CCL25
    CCR9A and CCR9B: Two Receptors for the Chemokine CCL25/TECK/Ck␤-15 That Differ in Their Sensitivities to Ligand Cheng-Rong Yu,* Keith W. C. Peden,† Marina B. Zaitseva,† Hana Golding,† and Joshua M. Farber1* We isolated cDNAs for a chemokine receptor-related protein having the database designation GPR-9-6. Two classes of cDNAs were identified from mRNAs that arose by alternative splicing and that encode receptors that we refer to as CCR9A and CCR9B. CCR9A is predicted to contain 12 additional amino acids at its N terminus as compared with CCR9B. Cells transfected with cDNAs for CCR9A and CCR9B responded to the chemokine CC chemokine ligand 25 (CCL25)/thymus-expressed chemokine (TECK)/chemokine ␤-15 (CK␤-15) in assays for both calcium flux and chemotaxis. No other chemokines tested produced re- sponses specific for the cDNA-transfected cells. mRNA for CCR9A/B is expressed predominantly in the thymus, coincident with the expression of CCL25, and highest expression for CCR9A/B among thymocyte subsets was found in CD4؉CD8؉ cells. mRNAs encoding the A and B forms of the receptor were expressed at a ratio of ϳ10:1 in immortalized T cell lines, in PBMC, and in diverse populations of thymocytes. The EC50 of CCL25 for CCR9A was lower than that for CCR9B, and CCR9A was desensitized by doses of CCL25 that failed to silence CCR9B. CCR9 is the first example of a chemokine receptor in which alternative mRNA splicing leads to proteins of differing activities, providing a mechanism for extending the range of concentrations over which a cell can respond to increments in the concentration of ligand.
    [Show full text]
  • Three Chemokine Receptors Cooperatively Regulate Homing of Hematopoietic Progenitors to the Embryonic Mouse Thymus
    Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus Lesly Calderón and Thomas Boehm1 Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany Edited* by Max D. Cooper, Emory University, Atlanta, GA, and approved March 25, 2011 (received for review November 2, 2010) The thymus lacks self-renewing hematopoietic cells, and thymopoi- These results were interpreted as indicating that Ccr9/Ccl25 and esis fails rapidly when the migration of progenitor cells to the Ccr7/Ccl21 are essential only for the prevascular stage of thymus thymus ceases. Hence, the process of thymus homing is an essen- colonization. Interestingly, two recent reports demonstrate that tial step for T-cell development and cellular immunity. Despite de- adult mice lacking both Ccr7 and Ccr9 display severe reductions cades of research, the molecular details of thymus homing have not in the number of early thymic progenitors and suggest that been elucidated fully. Here, we show that chemotaxis is the key compensatory expansion of intrathymic populations could ex- mechanism regulating thymus homing in the mouse embryo. We plain, at least in part, normal thymic cellularity (13, 14). Although determined the number of early thymic progenitors in the thymic these studies ascribe important roles to Ccr9 and Ccr7 in thymus rudimentsofmicedeficient for one, two, or three of the chemokine colonization, these receptors do not appear to be essential, sug- receptor genes, chemokine (C-C motif) receptor 9 (Ccr9), chemokine gesting that other molecules might be involved, for instance (C-C motif) receptor 7 (Ccr7), and chemokine (C-X-C motif) receptor 4 Cxcl12 and its receptor Cxcr4.
    [Show full text]
  • CXCR6 Regulates Localization of Tissue-Resident Memory CD8 T Cells to the Airways
    Published Online: 26 September, 2019 | Supp Info: http://doi.org/10.1084/jem.20181308 Downloaded from jem.rupress.org on September 26, 2019 ARTICLE CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways Alexander N. Wein1*, Sean R. McMaster1*, Shiki Takamura2*, Paul R. Dunbar1, Emily K. Cartwright1, Sarah L. Hayward1, Daniel T. McManus1, Takeshi Shimaoka3, Satoshi Ueha3, Tatsuya Tsukui4, Tomoko Masumoto2, Makoto Kurachi5, Kouji Matsushima3, and Jacob E. Kohlmeier1,6 Resident memory T cells (TRM cells) are an important first-line defense against respiratory pathogens, but the unique contributions of lung TRM cell populations to protective immunity and the factors that govern their localization to different compartments of the lung are not well understood. Here, we show that airway and interstitial TRM cells have distinct effector functions and that CXCR6 controls the partitioning of TRM cells within the lung by recruiting CD8 TRM cells to the −/− airways. The absence of CXCR6 significantly decreases airway CD8 TRM cells due to altered trafficking of CXCR6 cells within the lung, and not decreased survival in the airways. CXCL16, the ligand for CXCR6, is localized primarily at the respiratory epithelium, and mice lacking CXCL16 also had decreased CD8 TRM cells in the airways. Finally, blocking CXCL16 inhibited the steady-state maintenance of airway TRM cells. Thus, the CXCR6/CXCL16 signaling axis controls the localization of TRM cells to different compartments of the lung and maintains airway TRM cells. Introduction Over the past decade, resident memory T cells (TRM cells) have (Campbell et al., 1999; Schaerli et al., 2004; Sigmundsdottir been recognized as a distinct population from either central or et al., 2007).
    [Show full text]
  • Evidence for Involvement of CCR8 by Pathogenic CD4 T Cells in Type 1
    Recruitment and Activation of Macrophages by Pathogenic CD4 T Cells in Type 1 Diabetes: Evidence for Involvement of CCR8 and CCL1 This information is current as of September 25, 2021. Joseph Cantor and Kathryn Haskins J Immunol 2007; 179:5760-5767; ; doi: 10.4049/jimmunol.179.9.5760 http://www.jimmunol.org/content/179/9/5760 Downloaded from References This article cites 36 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/179/9/5760.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Recruitment and Activation of Macrophages by Pathogenic CD4 T Cells in Type 1 Diabetes: Evidence for Involvement of CCR8 and CCL11 Joseph Cantor and Kathryn Haskins2 Adoptive transfer of diabetogenic CD4 Th1 T cell clones into young NOD or NOD.scid recipients rapidly induces onset of diabetes and also provides a system for analysis of the pancreatic infiltrate.
    [Show full text]
  • Aire-Dependent Production of XCL1 Mediates Medullary Accumulation of Thymic Dendritic Cells and Contributes to Regulatory T Cell Development
    Article Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development Yu Lei,1,3 Adiratna Mat Ripen,1 Naozumi Ishimaru,2 Izumi Ohigashi,1 Takashi Nagasawa,4 Lukas T. Jeker,5 Michael R. Bösl,6 Georg A. Holländer,5 Yoshio Hayashi,2 Rene de Waal Malefyt,7 Takeshi Nitta,1 and Yousuke Takahama1 1Division of Experimental Immunology, Institute for Genome Research, 2Department of Oral Molecular Pathology, Institute of Health Biosciences, University of Tokushima, Tokushima 770-8503, Japan 3Key Laboratory of Molecular Biology for Infectious Disease of the People’s Republic of China Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China 4Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan 5Laboratory of Pediatric Immunology, Center for Biomedicine, University of Basel and The University Children’s Hospital of Basel, 4058 Basel, Switzerland 6 Transgenic Core Facility, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany 7Merck Research Laboratories, Palo Alto, CA 94304 Dendritic cells (DCs) in the thymus (tDCs) are predominantly accumulated in the medulla and contribute to the establishment of self-tolerance. However, how the medullary accu- mulation of tDCs is regulated and involved in self-tolerance is unclear. We show that the chemokine receptor XCR1 is expressed by tDCs, whereas medullary thymic epithelial cells (mTECs) express the ligand XCL1. XCL1-deficient mice are defective in the medullary accumulation of tDCs and the thymic generation of naturally occurring regulatory T cells (nT reg cells). Thymocytes from XCL1-deficient mice elicit dacryoadenitis in nude mice.
    [Show full text]