Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

Total Page:16

File Type:pdf, Size:1020Kb

Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase Sandeep Chakraborty, Renu Minda, Lipika Salaye, Swapan K. Bhattacharjee, Basuthkar J. Rao* Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India, Abstract Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - b-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. Citation: Chakraborty S, Minda R, Salaye L, Bhattacharjee SK, Rao BJ (2011) Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase. PLoS ONE 6(12): e28470. doi:10.1371/journal.pone.0028470 Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America Received July 27, 2011; Accepted November 8, 2011; Published December 8, 2011 Copyright: ß 2011 Chakraborty et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by the Tata Institute of Fundamental Research (Department of Atomic Energy). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction considerably from their intrinsic values [16,17]. These large pKa deviations from standard values have been used for predicting The PDB database has more than 60,000 protein structures to active site residues [18–20]. The pKa perturbations of the ionizable date [1]. Classification of proteins is the logical outcome of the residues on the surface of proteins are minimal, while those buried motivation to add a sense of order in this rapidly growing database in the interior of the protein show considerable shifts [21,22]. [2–7]. Identifying the catalytic sites in a protein is an important Significant shifts in pKa values usually stem from interactions with first step towards characterizing its function. Active site determi- other ionizable residues, hydrogen bonding with non-ionizable nation by site directed mutagenesis methods is often time residues and its exposure to the bulk solvent. The buried nature of consuming and labour intensive to apply on the large number of residues in active sites often results in their high electrostatic new proteins being discovered on a continual basis. potential which has been used as a differentiator between catalytic Currently several methods are available for identifying active and other residues [23,24]. site residues in a protein, amongst which methods based on There are essentially two flavors in the existing models of active electrostatic potentials are increasingly gaining ground. Electro- site prediction. The first one requires a motif of a known static interactions determine various properties of biomolecules enzymatic function to search for the same within a protein of such as catalytic activity, ligand binding, structure and stability [8]. interest. Several web-servers give access to 3D motif based search Finite difference Poisson-Boltzmann (FDPB) electrostatics is used methods in proteins with known structures. SPASM [25] and to compute potential differences (PD) and pKa values from charge RASMOT [26] search for a specified motif in the queried protein. interactions in proteins [9–11]. This continuum model of charges MultiBind recognizes 3D-binding patterns common to several led to the development of tools for studying electrostatic protein structures against precomputed ligands [27]. PAR-3D uses interactions [12–14]. These tools implement fast numerical 3D motifs to identify several different functions but is restricted to approximation of solutions to the linearized Poisson-Boltzmann a few protein activities [28]. Superimpose allows searching for a equation [15]. Active site residues have pKa values that differ specific 3D motif in protein structure databases [29]. A method PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28470 Active Site Prediction Using 3D and Electrostatics that detects recurring three-dimensional side-chain patterns of amino acids in proteins has concluded that alkaline phosphatases and aminopeptidases have evolved convergently [30]. A recent method, ProBis, detects structurally similar sites on protein surfaces by a local structural alignment technique [31], and compares its results with other analogous methods [32–34]. Though most of these methods do a spatial match of motifs, they do not factor in properties related to electrostatic potentials for eliminating false positive matches. Our current method addresses this shortcoming. The other approaches typically describe learning from known active sites across a variety of catalytic functions and use these learnt properties to predict active sites. Finally these results must be tested either in silico, in vitro or in vivo in order to validate the assigned putative activity. The search for active sites in these in silico methods are generally guided by time tested thumb rules [35]. Conservation of residues in a family of proteins, their presence in a cleft, solvent accessibility and hydrophilicity are a few such properties. RESBOOST integrates the characteristics of catalytic residues and presents them as a logical expression of simple rules [36]. DISCERN combines phylogenetic scores, information from structure, properties computed for structural neighbours and a statistical regularization to control for overfitting [37]. Another method also combines multiple predictors into a Figure 1. CLASP flow. The flow for using a motif from a protein with single classifier [38]. ConCavity uses evolutionary sequence known function and 3D structure in identifying active sites in an conservation estimates with structure-based surface pocket pre- unknown protein. Electrostatic potentials are precomputed for proteins diction [39]. Other methods that analyze evolutionary conserva- already in the PDB Database or computed on the fly for new proteins. tion essentially rely on clusters of conserved sites [40], or create These properties are then used to prune out false positives. doi:10.1371/journal.pone.0028470.g001 databases of sequence segments that encode structural attributes of the binding pockets [41]. However none of the above mentioned methods use electrostatic features in the search process, while a substrate accessibility, cleft geometry, etc that are critically few do not provide much flexibility in modulating the specificity involved in defining an active site. and sensitivity. We present here a computational methodology, CataLytic Active Some methods developed recently use electrostatic properties to Site Prediction (CLASP), for active site detection. A motif from a discriminate active sites. Active sites are known to occur in protein of known function and 3D structure provides the initial electrostatically unfavourable environments [18,42]. Often active template for searching spatially congruent matches. These sites involve ionizable groups where anomalous pKa values have matches are then pruned by the observation that the PD in pairs been tagged with catalytic activity [19]. Q-SiteFinder does ligand of residues in active sites is highly correlated. Our method can binding site prediction by computing energetically favourable interrogate any given hypothetical protein with known structure binding sites on the surface of a protein [43]. THEMATICS for motifs derived
Recommended publications
  • Tepzz¥5Z5 8 a T
    (19) TZZ¥Z___T (11) EP 3 505 181 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.07.2019 Bulletin 2019/27 A61K 38/46 (2006.01) C12N 9/16 (2006.01) (21) Application number: 18248241.4 (22) Date of filing: 28.12.2018 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • DICKSON, Patricia GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Torrance, CA California 90502 (US) PL PT RO RS SE SI SK SM TR • CHOU, Tsui-Fen Designated Extension States: Torrance, CA California 90502 (US) BA ME • EKINS, Sean Designated Validation States: Brooklyn, NY New York 11215 (US) KH MA MD TN • KAN, Shih-Hsin Torrance, CA California 90502 (US) (30) Priority: 28.12.2017 US 201762611472 P • LE, Steven 05.04.2018 US 201815946505 Torrance, CA California 90502 (US) • MOEN, Derek R. (71) Applicants: Torrance, CA California 90502 (US) • Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center (74) Representative: J A Kemp Torrance, CA 90502 (US) 14 South Square • Phoenix Nest Inc. Gray’s Inn Brooklyn NY 11215 (US) London WC1R 5JJ (GB) (54) PREPARATION OF ENZYME REPLACEMENT THERAPY FOR MUCOPOLYSACCHARIDOSIS IIID (57) The present disclosure relates to compositions for use in a method of treating Sanfilippo syndrome (also known as Sanfilippo disease type D, Sanfilippo D, mu- copolysaccharidosis type IIID, MPS IIID). The method can entail injecting to the spinal fluid of a MPS IIID patient an effective amount of a composition comprising a re- combinant human acetylglucosamine-6-sulfatase (GNS) protein comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 90% sequence identity to SEQ ID NO: 1 and having the en- zymatic activity of the human GNS protein.
    [Show full text]
  • Comparative Study of Idursulfase Beta and Idursulfase in Vitro and in Vivo
    Journal of Human Genetics (2017) 62, 167–174 OPEN Official journal of the Japan Society of Human Genetics www.nature.com/jhg ORIGINAL ARTICLE Comparative study of idursulfase beta and idursulfase in vitro and in vivo Chihwa Kim1, Jinwook Seo2, Yokyung Chung2, Hyi-Jeong Ji3, Jaehyeon Lee2, Jongmun Sohn2, Byoungju Lee2 and Eui-cheol Jo1 Hunter syndrome is an X-linked lysosomal storage disease caused by a deficiency in the enzyme iduronate-2-sulfatase (IDS), leading to the accumulation of glycosaminoglycans (GAGs). Two recombinant enzymes, idursulfase and idursulfase beta are currently available for enzyme replacement therapy for Hunter syndrome. These two enzymes exhibited some differences in various clinical parameters in a recent clinical trial. Regarding the similarities and differences of these enzymes, previous research has characterized their biochemical and physicochemical properties. We compared the in vitro and in vivo efficacy of the two enzymes on patient fibroblasts and mouse model. Two enzymes were taken up into the cell and degraded GAGs accumulated in fibroblasts. In vivo studies of two enzymes revealed similar organ distribution and decreased urinary GAGs excretion. Especially, idursulfase beta exhibited enhanced in vitro efficacy for the lower concentration of treatment, in vivo efficacy in the degradation of tissue GAGs and improvement of bones, and revealed lower anti-drug antibody formation. A biochemical analysis showed that both enzymes show largely a similar glycosylation pattern, but the several peaks were different and quantity of aggregates of idursulfase beta was lower. Journal of Human Genetics (2017) 62, 167–174; doi:10.1038/jhg.2016.133; published online 10 November 2016 INTRODUCTION secreted protein and contains eight N-linked glycosylation sites at Mucopolysaccharidosis II (MPS II, Hunter syndrome; OMIM 309900) positions 31, 115, 144, 246, 280, 325, 513 and 537.
    [Show full text]
  • Sanfilippo Disease Type D: Deficiency of N-Acetylglucosamine-6- Sulfate Sulfatase Required for Heparan Sulfate Degradation
    Proc. Nat!. Acad. Sci. USA Vol. 77, No. 11, pp. 6822-6826, November 1980 Medical Sciences Sanfilippo disease type D: Deficiency of N-acetylglucosamine-6- sulfate sulfatase required for heparan sulfate degradation (mucopolysaccharidosis/keratan sulfate/lysosomes) HANS KRESSE, EDUARD PASCHKE, KURT VON FIGURA, WALTER GILBERG, AND WALBURGA FUCHS Institute of Physiological Chemistry, Waldeyerstrasse 15, D-4400 Mfinster, Federal Republic of Germany Communicated by Elizabeth F. Neufeld, July 10, 1980 ABSTRACT Skin fibroblasts from two patients who had lippo syndromes and excreted excessive amounts of heparan symptoms of the Sanfilippo syndrome (mucopolysaccharidosis sulfate and keratan sulfate in the urine. His fibroblasts were III) accumulated excessive amounts of hean sulfate and were unable to desulfate N-acetylglucosamine-6-sulfate and the unable to release sulfate from N-acety lucosamine)--sulfate linkages in heparan sulfate-derived oligosaccharides. Keratan corresponding sugar alcohol (17, 18). It was therefore suggested sulfate-derived oligosaccharides bearing the same residue at that N-acetylglucosamine-6-sulfate sulfatase is involved in the the nonreducing end and p-nitrophenyl6sulfo-2-acetamido- catabolism of both types of macromolecules. 2-deoxy-D-ucopyranoside were degraded normally. Kinetic In this paper, we describe a new disease, tentatively desig- differences between the sulfatase activities of normal fibro- nated Sanfilippo disease type D, that is characterized by the blasts were found. These observations suggest that N-acetyl- excessive excretion glucosamine4-6sulfate sulfatase activities degrading heparan clinical features of the Sanfilippo syndrome, sulfate and keratan sulfate, respectively, can be distinguished. of heparan sulfate, and the inability to release inorganic sulfate It is the activity directed toward heparan sulfate that is deficient from N-acetylglucosamine-6-sulfate residues of heparan sul- in these patients; we propose that this deficiency causes Sanfi- fate-derived oligosaccharides.
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Recombinant Human Arylsulfatase B/ARSB
    Recombinant Human Arylsulfatase B/ARSB Catalog Number: 4415-SU DESCRIPTION Source Chinese Hamster Ovary cell line, CHO­derived Ser37­Met533, with a C­terminal 10­His tag Accession # P15848 N­terminal Sequence Ser37 Analysis Predicted Molecular 57 kDa Mass SPECIFICATIONS SDS­PAGE 80 kDa, reducing conditions Activity Measured by its ability to hydrolyze the substrate 4­Nitrocatechol Sulfate (PNCS). The specific activity is >3,000 pmol/min/µg, as measured under the described conditions. Endotoxin Level <1.0 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS­PAGE under reducing conditions and visualized by silver stain. Formulation Supplied as a 0.2 μm filtered solution in Tris and NaCl. See Certificate of Analysis for details. Activity Assay Protocol Materials l Assay Buffer: 50 mM MES, pH 6.5 l Recombinant Human Arylsulfatase B/ARSB (rhARSB) (Catalog # 4415­SU) l Substrate: 4­Nitrocatechol Sulfate (4­PNCS) (Sigma, Catalog # N­7251) l NaOH (Sigma, Catalog # S­0899) l 96­well Clear Plate (Costar, Catalog # 92592) l Plate Reader (Model: SpectraMax Plus by Molecular Devices) or equivalent Assay 1. Dilute rhARSB to 1 µg/mL in Assay Buffer. 2. Dilute Substrate to 2 mM in Assay Buffer. 3. Combine 75 µL of 1 µg/mL rhARSB and 75 µL of 2 mM Substrate. Include a Substrate Blank containing 75 µL Assay Buffer and 75 µL Substrate. 4. Incubate at 37 °C for 1 hour. 5. Stop reaction by adding 150 µL of 0.2 M NaOH. 6. Load 200 µL of reaction into a plate. 7. Read at 510 nm (absorbance) in endpoint mode.
    [Show full text]
  • Genes for Degradation and Utilization of Uronic Acid-Containing Polysaccharides of a Marine Bacterium Catenovulum Sp
    Genes for degradation and utilization of uronic acid-containing polysaccharides of a marine bacterium Catenovulum sp. CCB-QB4 Go Furusawa, Nor Azura Azami and Aik-Hong Teh Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia ABSTRACT Background. Oligosaccharides from polysaccharides containing uronic acids are known to have many useful bioactivities. Thus, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) involved in producing the oligosaccharides have attracted interest in both medical and industrial settings. The numerous polysaccharide lyases and glycoside hydrolases involved in producing the oligosaccharides were isolated from soil and marine microorganisms. Our previous report demonstrated that an agar-degrading bacterium, Catenovulum sp. CCB-QB4, isolated from a coastal area of Penang, Malaysia, possessed 183 glycoside hydrolases and 43 polysaccharide lyases in the genome. We expected that the strain might degrade and use uronic acid-containing polysaccharides as a carbon source, indicating that the strain has a potential for a source of novel genes for degrading the polysaccharides. Methods. To confirm the expectation, the QB4 cells were cultured in artificial seawater media with uronic acid-containing polysaccharides, namely alginate, pectin (and saturated galacturonate), ulvan, and gellan gum, and the growth was observed. The genes involved in degradation and utilization of uronic acid-containing polysaccharides were explored in the QB4 genome using CAZy analysis and BlastP analysis. Results. The QB4 cells were capable of using these polysaccharides as a carbon source, and especially, the cells exhibited a robust growth in the presence of alginate. 28 PLs and 22 GHs related to the degradation of these polysaccharides were found in Submitted 5 August 2020 the QB4 genome based on the CAZy database.
    [Show full text]
  • Phosphatidylinositide 3-Kinase Localizes to Cytoplasmic Lipid Bodies in Human Polymorphonuclear Leukocytes and Other Myeloid-Derived Cells
    PHAGOCYTES Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells Wengui Yu, Jessica Cassara, and Peter F. Weller Phosphatidylinositide 3-kinase (PI3K) is a U937 monocyte cells, PI3K p85 regulatory bodies induced to form in human polymor- key enzyme implicated in intracellular and p110␤ catalytic subunits were local- phonuclear leukocytes. These findings, signaling of diverse cellular responses ized to lipid bodies by immunocytochem- therefore, indicate a novel site for PI3K including receptor-mediated responses istry and/or immunoblotting and enzyme compartmentalization and suggest that and neutrophil activation. Several PI3K assays of subcellular fractions. In RAW PI3K-mediated signaling is active within subunits have been cloned and shown to murine macrophages, p55, p85␣, and cytoplasmic lipid bodies in leukocytes. be localized to plasma membrane recep- p85␤ PI3K subunits were present at (Blood. 2000;95:1078-1085) tors, the cytosol, or intracellular vesicles isolated lipid bodies. PI3K p85 was also or caveolae. We report the localization of shown to colocalize and, by co-immuno- PI3K to a distinct intracellular site, cyto- precipitation, to be physically associated plasmic lipid bodies, in leukocytes. In with phosphorylated Lyn kinase in lipid ௠ 2000 by The American Society of Hematology Introduction Lipid bodies are distinct lipid-rich cytoplasmic inclusions that may position of the inositol ring to produce PI(3)P, PI(3,4)P2,or 1,2 25,26 be present in
    [Show full text]
  • Table S3: List of EGFR Pathway-Regulated Genes. Gene Name Fold Fold
    Table S3: List of EGFR pathway-regulated genes. Gene Name Fold Fold EGF4h/Control EGF12h/Control Up-regulated by EGFR activation Increased at 4 hours but declined at 12 hours A kinase (PRKA) anchor protein (gravin) 12 7.67 1.58 Ab2-427 3.05 0.99 acyl-CoA synthetase long-chain family member 1 3.88 0.94 acyl-CoA synthetase long-chain family member 4 6.25 3.58 adipose differentiation-related protein 5.46 3.51 Aldehyde dehydrogenase family 1, subfamily A3 38.45 1.78 amphiregulin 77.79 27.77 arginase 1 4.10 2.06 arginosuccinate synthetase 3.00 1.19 aryl hydrocarbon receptor 5.03 1.55 ATPase, Ca++ transporting, plasma membrane 1 4.08 2.31 basic helix-loop-helix domain containing, class B2 7.86 4.12 Basophilic leukemia expressed sequence 06 (Bles06) 2.89 1.17 BH3 interacting domain death agonist 3.09 1.17 brain-specific angiogenesis inhibitor 1-associated protein 2 7.73 2.80 breast cancer anti-estrogen resistance 3 (predicted) 3.71 1.85 bridging integrator 1 6.07 2.08 cellular retinoic acid binding protein 2 2.47 1.11 charged amino acid rich leucine zipper 1 (predicted) 2.22 1.25 chemokine (C-C motif) ligand 2 3.29 1.34 chemokine (C-C motif) ligand 20 5.91 0.98 Chemotactic protein-3 3.82 -2.1 cryptochrome 1 (photolyase-like) 2.99 0.51 cyclin H 2.26 1.34 cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 3.25 1.25 cysteine knot superfamily 1, BMP antagonist 1 20.20 3.28 cytokine receptor-like factor 1 (predicted) 5.43 1.23 death-associated kinase 2 (predicted) 5.03 3.07 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 (predicted) 2.46 1.38 decay
    [Show full text]
  • Reversible and Mechanism-Based Irreversible Inhibitor Studies on Human Steroid Sulfatase and Protein Tyrosine Phosphatase 1B
    Reversible and Mechanism-Based Irreversible Inhibitor Studies on Human Steroid Sulfatase and Protein Tyrosine Phosphatase 1B by F. Vanessa Ahmed A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Chemistry Waterloo, Ontario, Canada, 2009 © F. Vanessa Ahmed 2009 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The development of reversible and irreversible inhibitors of steroid sulfatase (STS) and protein tyrosine phosphatase 1B (PTP1B) is reported herein. STS belongs to to the aryl sulfatase family of enzymes that have roles in diverse processes such as hormone regulation, cellular degradation, bone and cartilage development, intracellular communication, and signalling pathways. STS catalyzes the desulfation of sulfated steroids which are the storage forms of many steroids such as the female hormone estrone. Its crucial role in the regulation of estrogen levels has made it a therapeutic target for the treatment of estrogen-dependent cancers. Estrone sulfate derivatives bearing 2- and 4- mono- and difluoromethyl substitutions were examined as quinone methide-generating suicide inhibitors of STS with the goal of developing these small molecules as activity- based probes for proteomic profiling of sulfatases. Kinetic studies suggest that inhibition by the monofluoro derivatives is a result of a quinone methide intermediate that reacts with active-site nucleophiles. However, the main inhibition pathway of the 4- difluoromethyl derivative involved an unexpected process in which initially formed quinone methide diffuses from the active site and decomposes to an aldehyde in solution which then acts as a potent, almost irreversible STS inhibitor.
    [Show full text]
  • Organic Chemistry Option II: Chemical Biology
    Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford Organic Chemistry Option II: Chemical Biology Dr Stuart Conway Department of Chemistry, Chemistry Research Laboratory, University of Oxford email: [email protected] Teaching webpage (to download hand-outs): http://conway.chem.ox.ac.uk/Teaching.html Recommended books: Biochemistry 4th Edition by Voet and Voet, published by Wiley, ISBN: 978-0-470-57095-1. Foundations of Chemical Biology by Dobson, Gerrard and Pratt, published by OUP (primer) ISBN: 0-19-924899-0 1 Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford Naturally occurring amino acids slide 66 Protein structure –α-helices slide 67 • Only one helical polypeptide conformation has simultaneously allowed conformational angles and a favourable hydrogen-binding pattern. • This striking element of secondary structure is known as the α-helix. 2 Dr Stuart Conway Organic Option II: Chemical Biology University of Oxford Protein structure – anti-parallel β-sheets slide 68 O H Phe O H Phe O H N N N N N Lys O H Val O H Gln Trp H O Thr H O Gln N N N N N H O Ala H O Ile H • Anti-parallel β-sheets are an important type of protein secondary structure. • This arrangement results in a strong hydrogen bond with a near optimal N-O distance. Protein structure – parallel β-sheets slide 69 O H Phe O H Asp N N N N N H Leu O H Ile O H O H Asp O H Trp O H Ala N N N N N N Leu O H Ile O H Ile O H • β-sheets can also have a parallel arrangement.
    [Show full text]
  • Subject Index Proc
    Subject Index Proc. Natl. Acad. Sci. USA 87 (1990) 10129 Guanine adduct Purification of a factor capable of stimulating the guanine nucleotide Acetylaminofluorene bound to different guanines of the sequence exchange reaction of ras proteins and its effect on ras-related small -GGCGCC- is excised with different efficiencies by the UvrABC molecular mass G proteins, 8008 excision nuclease in a pattern not correlated to the potency of mutation Posttranslationally processed structure of the human platelet protein smg induction, 191 p21B: Evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine, 8960 Guanine nucleotide binding Increased conversion of phosphatidylinositol to phosphatidylinositol a-Tubulin influences nucleotide binding to ,-tubulin: An assay using phosphate in Dictyostelium cells expressing a mutated ras gene, 9197 picomoles of unpurified protein, 5041 Molecular cloning of the gene for the human placental GTP-binding Guanine nucleotide-binding protein, l00-kDa protein Gp (G25K): Identification of this GTP-binding protein as the Microsomal and cytosolic fractions of guinea pig hepatocytes contain human homolog of the yeast cell-division-cycle protein CDC42, 9853 100-kilodalton GTP-binding proteins reactive with antisera against a Guanine nucleotide-exchange factor subunits of stimulatory and inhibitory heterotrimeric GTP-binding Central.prolactin infusions stimulate maternal behavior in steroid-treated, proteins, 6321 nulliparous female rats, 8003 Guanine nucleotide-binding protein, heterotrimeric Guanine
    [Show full text]
  • Supplementary File 1 (PDF, 225 Kib)
    ("autophagy"[MeSH Terms] OR "autophagy"[All Fields] OR "lysosomes"[MeSH Terms] OR "lysosomes"[All Fields] OR (lysosomal[All Fields] AND ("enzymes"[MeSH Terms] OR "enzymes"[All Fields] OR "enzyme"[All Fields])) OR "mitochondrial degradation"[MeSH Terms] OR ("mitochondrial"[All Fields] AND "degradation"[All Fields]) OR "mitochondrial degradation"[All Fields] OR "mitophagy"[All Fields] OR (AGA[All Fields] OR ("aspartylglucosylaminase"[MeSH Terms] OR "aspartylglucosylaminase"[All Fields] OR "aspartylglucosaminidase"[All Fields])) OR (ARSA[All Fields] OR ("arylsulphatase a"[All Fields] OR "cerebroside-sulfatase"[MeSH Terms] OR "cerebroside-sulfatase"[All Fields] OR "arylsulfatase a"[All Fields])) OR (ARSB[All Fields] OR ("arylsulphatase b"[All Fields] OR "n- acetylgalactosamine-4-sulfatase"[MeSH Terms] OR "n-acetylgalactosamine-4-sulfatase"[All Fields] OR "arylsulfatase b"[All Fields])) OR (ASAH1[All Fields] OR ("ceramidases"[MeSH Terms] OR "ceramidases"[All Fields] OR "n acylsphingosine amidohydrolase"[All Fields])) OR ATP13A2[All Fields] OR CLN3[All Fields] OR CLN5[All Fields] OR CLN6[All Fields] OR CLN8[All Fields] OR (CTNS[All Fields] OR cystinosin[All Fields]) OR (CTSA[All Fields] OR "cathepsin a"[MeSH Terms] OR "cathepsin a"[All Fields]) OR (CTSD[All Fields] OR "cathepsin d"[MeSH Terms] OR "cathepsin d"[All Fields]) OR (CTSF[All Fields] OR "cathepsin f"[MeSH Terms] OR "cathepsin f"[All Fields]) OR (CTSF[All Fields] OR "cathepsin f"[MeSH Terms] OR "cathepsin f"[All Fields]) OR DNAJC5[All Fields] OR (FUCA1[All Fields] OR (("alpha-l-fucosidase"[MeSH
    [Show full text]