Contributions of the Pore-Forming Toxin Listeriolysin O to Listeria Monocytogenes Pathogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Food Poisoning Toxins of Bacillus Cereus
toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease. -
From Phagosome Into the Cytoplasm on Cytolysin, Listeriolysin O, After Evasion Listeria Monocytogenes in Macrophages by Dependen
Dependency of Caspase-1 Activation Induced in Macrophages by Listeria monocytogenes on Cytolysin, Listeriolysin O, after Evasion from Phagosome into the Cytoplasm This information is current as of September 23, 2021. Hideki Hara, Kohsuke Tsuchiya, Takamasa Nomura, Ikuo Kawamura, Shereen Shoma and Masao Mitsuyama J Immunol 2008; 180:7859-7868; ; doi: 10.4049/jimmunol.180.12.7859 http://www.jimmunol.org/content/180/12/7859 Downloaded from References This article cites 50 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/180/12/7859.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Dependency of Caspase-1 Activation Induced in Macrophages by Listeria monocytogenes on Cytolysin, Listeriolysin O, after Evasion from Phagosome into the Cytoplasm1 Hideki Hara, Kohsuke Tsuchiya, Takamasa Nomura, Ikuo Kawamura, Shereen Shoma, and Masao Mitsuyama2 Listeriolysin O (LLO), an hly-encoded cytolysin from Listeria monocytogenes, plays an essential role in the entry of this pathogen into the macrophage cytoplasm and is also a key factor in inducing the production of IFN-␥ during the innate immune stage of infection. -
Introduction to Bacteriology and Bacterial Structure/Function
INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century. -
TETANUS in ANIMALS — SUMMARY of KNOWLEDGE Malinovská, Z
DOI: 10.2478/fv-2020-0027 FOLIA VETERINARIA, 64, 3: 54—60, 2020 TETANUS IN ANIMALS — SUMMARY OF KNOWLEDGE Malinovská, Z., Čonková, E., Váczi, P. Department of Pharmacology and Toxicology University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice Slovakia [email protected] ABSTRACT the effects of the neurotoxin. The treatment is difficult with an unclear prognosis. Tetanus is a neurologic non-transmissible disease (often fatal) of humans and other animals with a world- Key words: animal; Clostridium tetani; toxin; spasm; wide occurrence. Clostridium tetani is the spore produc- treatment ing bacillus which causes the bacterial disease. In deep penetrating wounds the spores germinate and produce a toxin called tetanospasmin. The main characteristic sign INTRODUCTION of tetanus is a spastic paralysis. A diagnosis is usually based on the clinical signs because the detection in the Of the clostridial neurotoxins, botulinum neurotoxin wound and the cultivation of C. tetani is very difficult. and tetanus neurotoxin are the most potent toxins [15]. Between animal species there is considerable variabili- Their extraordinary toxicity is caused by neurospecificity ty in the susceptibility to the bacillus. The most sensi- and metalloprotease activity, which results in the paralysis. tive animal species to the neurotoxin are horses. Sheep Tetanus is potentially a fatal disease and in some countries and cattle are less sensitive and tetanus in these animal it is still very active. Tetanus is a traumatic clostridiosis, species are less common. Tetanus in cats and dogs are an infection in humans and other animals with worldwide rare and dogs are less sensitive than cats. -
Nasopharyngeal Infection by Streptococcus Pyogenes Requires Superantigen-Responsive Vβ-Specific T Cells
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells Joseph J. Zeppaa, Katherine J. Kaspera, Ivor Mohorovica, Delfina M. Mazzucaa, S. M. Mansour Haeryfara,b,c,d, and John K. McCormicka,c,d,1 aDepartment of Microbiology and Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada; bDepartment of Medicine, Division of Clinical Immunology & Allergy, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5A5, Canada; cCentre for Human Immunology, Western University, London, ON N6A 5C1, Canada; and dLawson Health Research Institute, London, ON N6C 2R5, Canada Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved July 14, 2017 (received for review January 18, 2017) The globally prominent pathogen Streptococcus pyogenes secretes context of invasive streptococcal disease is extremely dangerous, potent immunomodulatory proteins known as superantigens with a mortality rate of over 30% (10). (SAgs), which engage lateral surfaces of major histocompatibility The role of SAgs in severe human infections has been well class II molecules and T-cell receptor (TCR) β-chain variable domains established (5, 11, 12), and specific MHC-II haplotypes are known (Vβs). These interactions result in the activation of numerous Vβ- risk factors for the development of invasive streptococcal disease specific T cells, which is the defining activity of a SAg. Although (13), an outcome that has been directly linked to SAgs (14, 15). streptococcal SAgs are known virulence factors in scarlet fever However, how these exotoxins contribute to superficial disease and and toxic shock syndrome, mechanisms by how SAgs contribute colonization is less clear. -
Immune Effector Mechanisms and Designer Vaccines Stewart Sell Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
EXPERT REVIEW OF VACCINES https://doi.org/10.1080/14760584.2019.1674144 REVIEW How vaccines work: immune effector mechanisms and designer vaccines Stewart Sell Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA ABSTRACT ARTICLE HISTORY Introduction: Three major advances have led to increase in length and quality of human life: Received 6 June 2019 increased food production, improved sanitation and induction of specific adaptive immune Accepted 25 September 2019 responses to infectious agents (vaccination). Which has had the most impact is subject to debate. KEYWORDS The number and variety of infections agents and the mechanisms that they have evolved to allow Vaccines; immune effector them to colonize humans remained mysterious and confusing until the last 50 years. Since then mechanisms; toxin science has developed complex and largely successful ways to immunize against many of these neutralization; receptor infections. blockade; anaphylactic Areas covered: Six specific immune defense mechanisms have been identified. neutralization, cytolytic, reactions; antibody- immune complex, anaphylactic, T-cytotoxicity, and delayed hypersensitivity. The role of each of these mediated cytolysis; immune immune effector mechanisms in immune responses induced by vaccination against specific infectious complex reactions; T-cell- mediated cytotoxicity; agents is the subject of this review. delayed hypersensitivity Expertopinion: In the past development of specific vaccines for infections agents was largely by trial and error. With an understanding of the natural history of an infection and the effective immune response to it, one can select the method of vaccination that will elicit the appropriate immune effector mechanisms (designer vaccines). These may act to prevent infection (prevention) or eliminate an established on ongoing infection (therapeutic). -
Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins
Review Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins Wei Yuen Yap 1 and Jung Shan Hwang 2,* 1 Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; [email protected] 2 Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia * Correspondence: [email protected]; Tel.: +603-7491-8622 (ext. 7414) Academic Editor: Jean-Marc Sabatier Received: 23 August 2018; Accepted: 28 September 2018; Published: 4 October 2018 Abstract: A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. -
Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves. -
Impact of Bacterial Toxins in the Lungs
toxins Review Impact of Bacterial Toxins in the Lungs 1,2,3, , 4,5, 3 2 Rudolf Lucas * y, Yalda Hadizamani y, Joyce Gonzales , Boris Gorshkov , Thomas Bodmer 6, Yves Berthiaume 7, Ueli Moehrlen 8, Hartmut Lode 9, Hanno Huwer 10, Martina Hudel 11, Mobarak Abu Mraheil 11, Haroldo Alfredo Flores Toque 1,2, 11 4,5,12,13, , Trinad Chakraborty and Jürg Hamacher * y 1 Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; hfl[email protected] 2 Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 3 Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; [email protected] 4 Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland; [email protected] 5 Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland 6 Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland; [email protected] 7 Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] 8 Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland; [email protected] 9 Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany; [email protected] 10 Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 -
Acute Specific Surgical Infection. Gas Gangrene. Anthrax. Diphtheria of Wounds
Acute specific surgical infection. Tetanus. Gas gangrene. Anthrax. Diphtheria of wounds. Lecture for general surgery 2021 Chornaya I.A. Tetanus • Tetanus is an infectious disease • caused by contamination of wounds from the bacteria Clostridium tetani (an obligate anaerobic gram-positive bacillus,), or the spores they produce that live in the soil, and animal feces. • Picture of Clostridium tetani, with spore formation (oval forms at end of rods) Clostridium tetani Tetanus bacteria • Tetanus is caused by a bacterium belonging to the Clostridium genus, which thrives in the absence of oxygen. • It is found almost everywhere in the environment, most often in soil, dust, manure, and in the digestive tract of humans and animals. • The bacteria form spores, which are hard to kill and highly resistant to heat and many antiseptics. • Puncture wounds are the best entrance for the bacteria into your body Other tetanus-prone injuries include the following • frostbite, • surgery, • crush wound, • abscesses, • childbirth, • IV drug users (site of needle injection). • Wounds with devitalized (dead) tissue (for example, burns or crush injuries) or foreign bodies (debris in them) are most at risk of developing tetanus. • Tetanus may develop in people who are not immunized against it or in people who have failed to maintain adequate immunity with active booster doses of vaccine. Pathophysiology of Tetanus: • When a person gets injured, the wound or the cut becomes an environment that lacks oxygen. If the spores manage to find their way into the wound or the cut, they are able to germinate. After the spores of the bacterium germinate, they release a exotoxin, which is what causes all the ill- effects of the disease. -
Potential Roles and Functions of Listerial Virulence Factors During Brain Entry
toxins Review Potential Roles and Functions of Listerial Virulence Factors during Brain Entry Franjo Banovi´c,Horst Schroten and Christian Schwerk * Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; [email protected] (F.B.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +49-621-383-346 Received: 17 March 2020; Accepted: 30 April 2020; Published: 5 May 2020 Abstract: Although it rarely induces disease in humans, Listeria monocytogenes (Lm) is important due to the frequency of serious pathological conditions—such as sepsis and meningitis—it causes in those few people that do get infected. Virulence factors (VF) of Lm—especially those involved in the passage through multiple cellular barriers of the body, including internalin (Inl) family members and listeriolysin O (LLO)—have been investigated both in vitro and in vivo, but the majority of work was focused on the mechanisms utilized during penetration of the gut and fetoplacental barriers. The role of listerial VF during entry into other organs remain as only partially solved puzzles. Here, we review the current knowledge on the entry of Lm into one of its more significant destinations, the brain, with a specific focus on the role of various VF in cellular adhesion and invasion. Keywords: Listeria monocytogenes; virulence factors; internalin; autolysin; listeriolysin; brain invasion Key Contribution: In this review we assemble the current knowledge of the entry of Listeria monocytogenes into the brain, which presents a significant destination for the bacteria. A specific focus is given to the role of various virulence factors in cellular adhesion and invasion. -
Role of Hemolysin for the Intracellular Growth of Listeria Monocytogenes
ROLE OF HEMOLYSIN FOR THE INTRACELLULAR GROWTH OF LISTERIA MONOCYTOGENES BY DANIEL A. PORTNOY,* P. SUZANNE JACKS,* AND DAVID J. HINRICHS* From *The Department of Microbiology and Immunology, School ofMedicine, Washington University, St. Louis, Missouri 63110; and the *Immunology Research Unit, Chiles Research Institute, Providence Medical Center and Veteran's Administration Medical Center, Portland, Oregon 97207 Listeria monocytogenes is a Gram-positive bacterial pathogen that occurs free- living in nature as well as in association with a variety of warm-blooded animals (1-4) . The oral route is likely the natural mode of transmission and two recent outbreaks were traced to contaminated milk products (5-7) . In most human cases, severe disease occurs in pregnant women or in individuals whose immune system has been compromised. L. monocytogenes is a facultative intracellular pathogen that has been exten- sively used in a murine model for the study of cell-mediated immunity (8-12). The host cells most generally considered to support the growth of L. monocyto- genes during infection are of the mononuclear phagocyte lineage (8, 9). Resident macrophages present in the liver and spleen may provide a conducive environ- ment for listerial intracellular growth while activated or elicited macrophages which migrate from the blood are listericidal (10, 12). However, there is evi- dence that L. monocytogenes is also capable of proliferation in nonprofessional phagocytes. For example, histological studies of infected tissues reveal that L. monocytogenes is present within liver parenchymal cells (10, 11) . Also, after oral challenge, L. monocytogenes has been observed within epithelial cells lining the small intestine (13). Finally, L.