UNIVERSITY of CALIFORNIA RIVERSIDE Quantitative Proteomic

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA RIVERSIDE Quantitative Proteomic UNIVERSITY OF CALIFORNIA RIVERSIDE Quantitative Proteomic Analysis for Assessing the Mechanisms of Action of Anti-Cancer Drugs and Arsenite A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Fan Zhang December 2013 Dissertation Committee: Dr. Yinsheng Wang, Chairperson Dr. Cynthia Larive Dr. Pingyun Feng Copyright by Fan Zhang 2013 The Dissertation of Fan Zhang is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS This dissertation can never be completed without the help and support from many people. I owe my appreciation to all those who have made this dissertation possible and because of whom my graduate experience has been one that I will cherish forever. First and foremost, I would like to give my deepest gratitude to my research adviser, Professor Yinsheng Wang, for his valuable guidance and consistent encouragement on all my research projects during my PhD study at UCR. Professor Wang encouraged me not only to grow as a solid chemist and experimentalist, but also as an independent thinker. His diligent and serious research attitude has impressive impact on the maturity of my personality. His patience and support helped me to overcome the obstacles and desperate situations during these past five years. I would say that I could never finish the PhD study without Professor Wang‟s great mentorship. For everything you have done for me, Professor Wang, thank you. I would like to give my appreciation to my committees: Professor Cynthia Larive and Professor Pingyun Feng, for reading my dissertation and providing me their helpful comments; Professor Quan (Jason) Cheng, for teaching me the knowledge in his class; and Professor Jeff Bachant, for some wise advice he gave me on my research. I would give my sincere thanks to some staff members in Chemistry Department and Center of Plant Cell Biology and Core Instrumentation Facility at UCR. I want to thank Dr. David Carter, for his kind assistance and advice on confocal microscopy; and iv Ms. Holly Eckelhoefer for her training and help with flow cytometry. I also want to thank Dr. Dan Borchardt for the training on circular dichroism, Dr. Songqin Pan and Mr. Ronald New for their assistance on MALDI mass spectrometers. I would express my thanks to all my friends in the Wang group. Thanks go to Dr. Haibo Qiu, Dr. Lei Xiong, and Dr. Xiaoli Dong for their generous help and patience when I started work in this group. I would give my gratitude to Dr. Bifeng Yuan who is always helpful and nice; my experimental techniques improved a lot thanks to all the assistance he offered. Thanks also go to Dr. Xiaoxia Dai, Qian Cai, Lijuan Fu, Pengcheng Wang and Yongsheng Xiao for their help in completing my research projects; and Dr. John Prins for his discussion on my research. Special thanks go to Candace Guerrero for her precious friendship, and the other members in the Wang group for their support. I would always appreciate and memorize the time in this laboratory. Finally, and the most importantly, I would like to deeply thank my parents whose support, encouragement, patience and unwavering love are always the most valuable gifts at every stage of my personal and academic life. No matter what happened, they always stand behind me and offer their faith in me. In addition, I give special thanks to my boyfriend Dr. Qichi Yang whose understanding and accompany mean a lot to me. He is always the first person to encourage me in every possible way during the past four years. I would cherish the great time we had together and your continuous love and support. v COPYRIGHT ACKNOWLEDGEMENTS The text and figures in Chapter 2, in part or in full, is a reprint of the material as it appears in Mol. Cell. Proteomics 2012, 11, M111 016915. The co-author (Dr. Yinsheng Wang) in that publication directed and supervised the research which forms the basis for this chapter. The co-author (Xiaoxia Dai) listed in that publication performed siRNA knockdown and real-time PCR experiments. vi ABSTRACT OF THE DISSERTATION Quantitative Proteomic Analysis for Assessing the Mechanisms of Action of Anti-Cancer Drugs and Arsenite by Fan Zhang Doctor of Philosophy, Graduate Program in Chemistry University of California, Riverside, December 2013 Dr. Yinsheng Wang, Chairperson Mass spectrometry is a powerful tool used in proteomic analysis. By combining with different isotope labeling methods, protein quantification at the entire proteome scale can be achieved. In this dissertation, I employed an LC-MS/MS coupled with stable isotope labeling by amino acid in cell culture (SILAC) strategy, to explore the molecular mechanisms of action of anti-cancer drugs and an environmental toxicant, arsenic. In Chapters 2 and 3, I performed a quantitative assessment of global proteome changes upon treatment with two anti-cancer drugs, both are nucleoside analogues, i.e. 5- aza-2‟-deoxytidine (5-Aza-CdR) and 6-thioguanine (SG). We found, for the first time, that 5-Aza-CdR exerts its cytotoxic effects in leukemia and melanoma cells through epigenetic reactivation of DPP4 gene and the resultant inhibition of cholesterol biosynthesis. In addition, proteome-wide analysis suggested that SG may exert its cytotoxic effect by inducing mitochondrial dysfunction and reactive oxygen species formation in acute lymphoblastic leukemia cells. vii In Chapters 4 and 5, we utilized the same MS-based quantitative proteomic method, to study the mechanisms underlying trivalent arsenic-induced carcinogenic effect. Our results confirmed the previous findings and provided a more complete picture about the biological pathways that are altered upon arsenite treatment in human skin fibroblast cells. To further understand how arsenic affects RING-finger proteins that are known to be important in DNA damage repair, we performed in vitro and in vivo arsenite binding experiments. Our studies revealed, for the first time, that arsenite may exert its carcinogenic effect by targeting cysteine residues in the RING finger domains of the RNF20-RNF40 histone E3 ubiquitin ligase, thereby altering histone epigenetic mark and compromising DNA DSB repair. viii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................... iv ABSTRACT OF THE DISSERTATION ......................................................................... vii TABLE OF CONTENTS ................................................................................................... ix LIST OF FIGURES ......................................................................................................... xvi LIST OF TABLES ........................................................................................................ xxvii CHAPTER 1. General Overview ..................................................................................... 1 1.1 Introduction ................................................................................................................... 1 1.2 MS-based quantitative proteomics ................................................................................ 3 1.2.1 Chemical labeling strategies ................................................................................... 6 1.2.1.1 Isotope-coded affinity tag (ICAT) ................................................................... 6 1.2.1.2 Isobaric tag for relative and absolute quantitation (iTRAQTM) ....................... 8 1.2.1.3 Other chemical labeling strategies ................................................................. 10 1.2.2 Metabolic labeling strategies ................................................................................ 10 1.2.2.1 Stable isotope labeling by amino acids in cell culture (SILAC) ................... 12 1.2.2.2 15N labeling .................................................................................................... 14 1.3 Label-free quantification ............................................................................................. 15 1.4 Nucleoside analogue-based anti-cancer drugs ............................................................ 16 1.4.1 Thiopurines........................................................................................................... 17 1.4.2 5-aza-2‟-deoxytidine and 5-azacytidine ............................................................... 19 ix 1.5 Arsenite ....................................................................................................................... 22 1.6 Scope of the dissertation ............................................................................................. 24 1.7 References ................................................................................................................... 27 x CHAPTER 2. 5-Aza-2’-deoxycytidine Induced Growth Inhibition of Leukemia Cells through Modulating Endogenous Cholesterol Biosynthesis ....................................... 34 Introduction ....................................................................................................................... 34 Materials and methods ...................................................................................................... 36 Cell Culture ................................................................................................................... 36 5-Aza-CdR treatment and sample preparation .............................................................. 37 SDS-PAGE separation and in-gel digestion.................................................................
Recommended publications
  • DDAH I (C-19): Sc-26068
    SANTA CRUZ BIOTECHNOLOGY, INC. DDAH I (C-19): sc-26068 The Power to Question BACKGROUND APPLICATIONS DDAH, a dimethylarginine dimethylaminohydrolase, hydrolyzes dimethyl DDAH I (C-19) is recommended for detection of DDAH I of mouse, rat and arginine (ADMA) and monomethyl arginine (MMA), both inhibitors of nitric human origin by Western Blotting (starting dilution 1:200, dilution range oxide synthases, and may be involved in in vivo modulation of nitric oxide 1:100-1:1000) and immunofluorescence (starting dilution 1:50, dilution production. Impairment of DDAH causes ADMA accumulation and a reduc- range 1:50-1:500). tion in cGMP generation. DDAH II, the predominant DDAH isoform in endothelial cells, facilitates the induction of nitric oxide synthesis by all- RECOMMENDED SECONDARY REAGENTS trans-Retinoic acid (atRA). DDAH proteins are highly expressed in colon, kid- To ensure optimal results, the following support (secondary) reagents are ney, stomach and liver tissues. recommended: 1) Western Blotting: use donkey anti-goat IgG-HRP: sc-2020 (dilution range: 1:2000-1:100,000) or Cruz Marker™ compatible donkey anti- REFERENCES goat IgG-HRP: sc-2033 (dilution range: 1:2000-1:5000), Cruz Marker™ 1. Nakagomi, S., et al. 1999. Dimethylarginine dimethylaminohydrolase Molecular Weight Standards: sc-2035, TBS Blotto A Blocking Reagent: (DDAH) as a nerve-injury-associated molecule: mRNA localization in the sc-2333 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluores- rat brain and its coincident up-regulation with neuronal NO synthase cence: use donkey anti-goat IgG-FITC: sc-2024 (dilution range: 1:100-1:400) (nNOS) in axotomized motoneurons. Eur. J.
    [Show full text]
  • Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals
    Journal of the American Heart Association ORIGINAL RESEARCH Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals Joonatan Palmu , MD; Aaro Salosensaari , MSc; Aki S. Havulinna , DSc (Tech); Susan Cheng , MD, MPH; Michael Inouye, PhD; Mohit Jain, MD, PhD; Rodolfo A. Salido , BSc; Karenina Sanders , BSc; Caitriona Brennan, BSc; Gregory C. Humphrey, BSc; Jon G. Sanders , PhD; Erkki Vartiainen , MD, PhD; Tiina Laatikainen , MD, PhD; Pekka Jousilahti, MD, PhD; Veikko Salomaa , MD, PhD; Rob Knight , PhD; Leo Lahti , DSc (Tech); Teemu J. Niiranen , MD, PhD BACKGROUND: Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted as- sociation between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abun- dance and between Lactobacillus abundance and BP. METHODS AND RESULTS: We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and β (between-sample) diversities of taxonomic composition were strongly re- lated to BP indexes (P<0.001 for most). In multivariable-adjusted models, β diversity was only associated with diastolic BP (P=0.032).
    [Show full text]
  • Links Among Neuronal Nitric Oxide Synthase, Oxidative Stress, and Asymmetric Dimethylarginine (Adma)
    NITRIC OXIDE DEFICIENCY IN CHRONIC KIDNEY DISEASE: LINKS AMONG NEURONAL NITRIC OXIDE SYNTHASE, OXIDATIVE STRESS, AND ASYMMETRIC DIMETHYLARGININE (ADMA) By YOU-LIN TAIN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2007 1 © 2007 You-Lin Tain 2 This dissertation is dedication to my family for their constant love 3 ACKNOWLEDGMENTS This dissertation would not have been possible without the support of many people. Many thanks go to my adviser: Dr. Chris Baylis gave me the chance to work on many projects and also gave me numerous valuable comments for my manuscripts. I would like to thank my committee members for their guidance and valuable comments: Dr. Richard Johnson, Dr. Mohan Raizada, and Dr. Mark Segal. I thanks also go to the Chang Gung Memorial Hospital for awarding me a fellowship, providing me with the financial means to complete this dissertation. I am grateful to many persons who shared their technical assistance and experience, especially Dr. Verlander and Dr. Chang (University of Florida), Dr. Muller and Dr. Szabo (Semmelweis University, Hungary), Dr. Griendling and Dr. Dikalova (Emory University), and Dr. Merchant and Dr. Klein (University of Louisville). Next, I would like to thank all of the members of Dr. Baylis lab, both past and present, with whom I have been fortunate enough to work: Dr. Aaron Erdely, Gerry Freshour, Kevin Engels, Lennie Samsell, Dr. Sarah Knight, Dr. Cheryl Smith, Dr. Jenny Sasser, Harold Snellen, Bruce Cunningham, Gin-Fu Chen, and Natasha Moningka.
    [Show full text]
  • Circuits Regulating Superoxide and Nitric Oxide
    antioxidants Article Circuits Regulating Superoxide and Nitric Oxide Production and Neutralization in Different Cell Types: Expression of Participating Genes and Changes Induced by Ionizing Radiation 1,2, 1,2, 1 1,2, Patryk Bil y, Sylwia Ciesielska y, Roman Jaksik and Joanna Rzeszowska-Wolny * 1 Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; [email protected] (P.B.); [email protected] (S.C.); [email protected] (R.J.) 2 Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland * Correspondence: [email protected] These authors contributed equally. y Received: 30 June 2020; Accepted: 29 July 2020; Published: 3 August 2020 Abstract: Superoxide radicals, together with nitric oxide (NO), determine the oxidative status of cells, which use different pathways to control their levels in response to stressing conditions. Using gene expression data available in the Cancer Cell Line Encyclopedia and microarray results, we compared the expression of genes engaged in pathways controlling reactive oxygen species and NO production, neutralization, and changes in response to the exposure of cells to ionizing radiation (IR) in human cancer cell lines originating from different tissues. The expression of NADPH oxidases and NO synthases that participate in superoxide radical and NO production was low in all cell types. Superoxide dismutase, glutathione peroxidase, thioredoxin, and peroxiredoxins participating in radical neutralization showed high expression in nearly all cell types. Some enzymes that may indirectly influence superoxide radical and NO levels showed tissue-specific expression and differences in response to IR.
    [Show full text]
  • Supplemental Materials Supplemental Table 1
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Supplemental Materials Supplemental Table 1. The differentially expressed proteins from rat pancreas identified by proteomics (SAP vs. SO) No. Protein name Gene name ratio P value 1 Metallothionein Mt1m 3.35 6.34E-07 2 Neutrophil antibiotic peptide NP-2 Defa 3.3 8.39E-07 3 Ilf2 protein Ilf2 3.18 1.75E-06 4 Numb isoform o/o rCG 3.12 2.73E-06 5 Lysozyme Lyz2 3.01 5.63E-06 6 Glucagon Gcg 2.89 1.17E-05 7 Serine protease HTRA1 Htra1 2.75 2.97E-05 8 Alpha 2 macroglobulin cardiac isoform (Fragment) 2.75 2.97E-05 9 Myosin IF (Predicted) Myo1f 2.65 5.53E-05 10 Neuroendocrine secretory protein 55 Gnas 2.61 7.60E-05 11 Matrix metallopeptidase 8 Mmp8 2.57 9.47E-05 12 Protein Tnks1bp1 Tnks1bp1 2.53 1.22E-04 13 Alpha-parvin Parva 2.47 1.78E-04 14 C4b-binding protein alpha chain C4bpa 2.42 2.53E-04 15 Protein KTI12 homolog Kti12 2.41 2.74E-04 16 Protein Rab11fip5 Rab11fip5 2.41 2.84E-04 17 Protein Mcpt1l3 Mcpt1l3 2.33 4.43E-04 18 Phospholipase B-like 1 Plbd1 2.33 4.76E-04 Aldehyde dehydrogenase (NAD), cytosolic 19 2.32 4.93E-04 (Fragments) 20 Protein Dpy19l2 Dpy19l2 2.3 5.68E-04 21 Regenerating islet-derived 3 alpha, isoform CRA_a Reg3a 2.27 6.74E-04 22 60S acidic ribosomal protein P1 Rplp1 2.26 7.22E-04 23 Serum albumin Alb 2.25 7.98E-04 24 Ribonuclease 4 Rnase4 2.24 8.25E-04 25 Cct-5 protein (Fragment) Cct5 2.24 8.52E-04 26 Protein S100-A9 S100a9 2.22 9.71E-04 27 Creatine kinase M-type Ckm 2.21 1.00E-03 28 Protein Larp4b Larp4b 2.18 1.25E-03
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Copyright by Yun Wang 2010
    Copyright by Yun Wang 2010 The Dissertation Committee for Yun Wang Certifies that this is the approved version of the following dissertation: Controlling Nitric Oxide (NO) Overproduction: Nω, Nω- Dimethylarginine Dimethylaminohydrolase (DDAH) as a Novel Drug Target Committee: Walter L. Fast, Supervisor Christian P. Whitman Jon D. Robertus George Georgiou Sean M. Kerwin Controlling Nitric Oxide (NO) Overproduction: Nω, Nω- Dimethylarginine Dimethylaminohydrolase (DDAH) as a Novel Drug Target by Yun Wang, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2010 Dedication To all people who have given me generous help when I am in Austin, including professors, colleagues and friends. To my beloved parents in P.R.China, who always motivate me to pursue my dream. Acknowledgements First and foremost, I would like to thank my supervisor, Dr. Walt Fast, for his generous support and for giving me an opportunity to work in his lab four years ago at the University of Texas at Austin. Walt gives me lots of freedom to explore scientific problems and provides a wonderful working environment along with my lovely colleagues. He always gives me useful directions when I meet difficulties. I appreciate every scientific conversation with him. They were especially important to me during the beginning of my Ph.D. study. I wouldn’t have accomplished as much as today without his help. In addition, I’d like to thank colleagues in Fast lab for their generous help during these years.
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Wado, May Saleh (2020) Characterisation of the Cold Acclimation Process in Spring and Winter Cereals
    Wado, May Saleh (2020) Characterisation of the cold acclimation process in spring and winter cereals. PhD thesis. http://theses.gla.ac.uk/81623/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Characterisation of the Cold Acclimation Process in Spring and Winter Cereals May Saleh Wado Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Institute of Molecular, Cell and Systems Biology School of Life Sciences College of Medical, Veterinary and Life Sciences University of Glasgow August, 2020 ABSTRACT Vast tracts of viable agricultural land are located in the northern latitudes of Eurasia and North America. They experience very high seasonal productivity due to long warm days and plentiful rainfall remain, but are largely uncultivated due to late spring or early autumn frosts. Wild grasses survive these frost events and this has prompted intensive investigation into how to improve the cold tolerance of domesticated small grained cereals. This thesis presents work to investigate the relative importance of two environmental factors (i.e.
    [Show full text]
  • Open-Angle Glaucoma: from Epidemiology to Molecular Aspects and Anatomical Features
    Open-angle glaucoma: from epidemiology to molecular aspects and anatomical features Hendrika Springelkamp Acknowledgements: The research described in this thesis was supported by the NWO Graduate Programme 2010 BOO (022.002.023). The Rotterdam Study and ERF were supported by the Netherlands Organisation of Scientific Research (NWO; 91111025); Erasmus Medical Center and Erasmus University, Rotterdam, The Netherlands; Netherlands Organization for Health Research and Development (ZonMw); UitZicht; the Research Institute for Diseases in the Elderly; the Ministry of Education, Culture and Science; the Ministry for Health, Welfare and Sports; the European Commission (DG XII); the municipality of Rotterdam; the Netherlands Genomics Initiative/NWO; Center for Medical Systems Biology of NGI; Stichting Lijf en Leven; Stichting Oogfonds Nederland; Landelijke Stichting voor Blinden en Slechtzienden; Prof. Dr. Henkes Stichting; Algemene Nederlandse Vereniging ter Voorkoming van Blind- heid; MD Fonds; Glaucoomfonds; Medical Workshop; Heidelberg Engineering; Topcon Europe BV. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. The publication of this thesis was financially supported by: Glaucoomfonds, Prof.Dr. Henkes Stichting, Landelijke Stichting voor Blinden en Slecht- zienden, Erasmus MC (Department of Epidemiology), Allergan BV, Bayer B.V., Théa Pharma Cover & lay-out: Jessy Wijgerde Printing: Ridderprint BV ISBN: 9789491462252 © 2016 H. Springelkamp All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without permission of the author, or, when appro- priate, of the publisher of the publications.
    [Show full text]
  • Modeling and Analysis of Acute Leukemia Using Human Hematopoietic Stem and Progenitor Cells
    Modeling and analysis of acute leukemia using human hematopoietic stem and progenitor cells A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Molecular &Developmental Biology Graduate Program of the College of Medicine by Shan Lin BS, Tsinghua University, 2009 Dissertation Committee: James C. Mulloy, PhD (Chair) Geraldine Guasch, PhD Ashish R. Kumar, MD, PhD Daniel T. Starczynowski, PhD Yi Zheng, PhD Abstract For decades, elegant mouse models have yielded important insights into the complex biology of acute leukemia development. However, species differences between human and mouse could have significant influences on biological and translational applications. Therefore, human primary hematopoietic cells and xenograft mouse models have become important research tools in the field. In this report, we briefly review the methodologies that use human primary hematopoietic cells to model acute leukemia and examine the effects of leukemic oncogenes. The advantages and limitations of the human model system compared to syngeneic mouse models are discussed. The species-related complexity in human disease modeling is highlighted in the study establishing a faithful model of proB-ALL caused by MLL-AF4, the fusion product of the t(4;11). MLL-AF4 proB-ALL has poor prognosis, the lack of an accurate model hampers the study of disease pathobiology and therapeutic testing. We find human AF4 cDNA inhibits retroviral production and efficient transduction, this limitation can be overcome by fusing MLL with murine Af4, highly conserved with human AF4. Whereas MLL-Af4-transduced murine cells induce only AML, transduced human CD34+ cells produce proB-ALL faithful to t(4;11) disease, fully recapitulating the immunophenotypic and molecular aspects of the disease.
    [Show full text]