Aus Dem Institut Für Pharmakologie Der Medizinischen Hochschule Hannover

Total Page:16

File Type:pdf, Size:1020Kb

Aus Dem Institut Für Pharmakologie Der Medizinischen Hochschule Hannover Aus dem Institut für Pharmakologie der Medizinischen Hochschule Hannover Aufbau einer Datenbank für die Archivierung, Visualisierung und Auswertung von mRNA-Expressionsprofilen entzündungsrelevanter Gene auf der Basis eines standardisierten Oligonukleotid-DNA-Mikroarray-Systems Dissertation zur Erlangung des Doktorgrades der Humanbiologie der Medizinischen Hochschule Hannover vorgelegt von Axel Hans Robert Weber aus Kusel Hannover 2006 Angenommen vom Senat der Medizinischen Hochschule Hannover am 12. Juli 2006 Gedruckt mit Genehmigung der Medizinischen Hochschule Hannover Präsident: Prof. Dr. Dieter Bitter-Suermann Referent: Prof. Dr. Helmut Holtmann Korreferenten: Prof. Dr. Herbert Matthies Prof. Dr. M. Lienhard Schmitz Tag der mündlichen Prüfung 19. Juli 2006 Danksagung Die Durchführung und Niederschrift dieser Arbeit wäre nicht möglich gewesen ohne die Unterstützung und Förderung zahlreicher Personen. Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Michael Kracht für die hervorragende fachliche Betreuung dieser Arbeit sowie für zahlreiche Anregungen und Diskussionen. Dank gebührt auch Prof. Dr. Klaus Resch für die vielfältige Unterstützung innerhalb des Institutes für Pharmakologie. Herrn Dr. Oliver Dittrich-Breiholz, danke ich für die fundierte Einführung in das Thema DNA-Mikroarrays, die vielen fruchtbaren Diskussionen und die gute Zusammenarbeit beim Aufbau der Datenbank. Heike Schneider danke ich für die stete Hilfsbereitschaft und die unermüdliche Dateneingabe. Auch möchte ich mich bei Prof. Edgar Wingender und Dr. Alexander Kel von BIOBASE bedanken für die Kooperation und Überlassung der Auswertungsergebnisse. Nicht zuletzt gilt mein Dank natürlich auch allen Kooperationspartnern des Z02- Projektes für die Bereitstellung der Daten, die die Grundlage dieser Arbeit bilden. Die Arbeit wurde im Rahmen des DFG-Sonderforschungsbereiches SFB 566 Zytokin- Rezeptoren und Zytokin-abhängige Signalwege als therapeutische Zielstrukturen, im Teilprojekt Z02, „Identifizierung von differenziell regulierten Genen mittels DNA Microarrays” erstellt. Dank gilt dem Präsidium der MHH, das die Stelle für dieses Projekt geschaffen hat. Inhaltsverzeichnis 1 Einleitung................................................................................................ 8 1.1 Mikroarray-Verfahren im Überblick...................................................................... 8 1.2 Vergleichbarkeit der Ergebnisse aus DNA-Mikroarray-Experimenten....................... 10 1.3 Informationsflüsse im Zusammenhang mit DNA-Mikroarray-Experimenten..............12 1.4 Prozessierung, Datenaufnahme und Ergebnisdarstellung von DNA-Mikroarray-Experimenten....................................................................... 12 1.5 Datenbanken für Mikroarray-Experimente und BASE............................................ 13 1.6 Möglichkeiten der Mikroarray-Technologie.......................................................... 15 1.7 Regulation der Genexpression während einer Entzündung als Paradigma für koordiniert ablaufende komplexe genregulatorische Vorgänge... 16 1.8 Algorithmen zur Vorhersage von Enhancer Elementen.......................................... 19 1.9 Fragestellung................................................................................................. 19 2 Material und Methoden ....................................................................... 20 2.1 CytoBASE und BASE....................................................................................... 20 2.2 Mikroarray-Experimente ................................................................................. 20 2.2.1 Mikroarray-Typen...................................................................................... 20 2.2.1.1 Allgemeiner Aufbau der Entzündungsarrays.............................................. 21 2.2.1.2 Entzündungsarrays............................................................................... 21 2.2.2 Die experimentelle Gruppe - parallele Prozessierung der Proben eines Experimentes................................... 23 2.2.2.1 Die experimentelle Gruppe und Arrayvergleiche........................................ 23 2.2.2.2 Rohdatensätze in CytoBASE sind Arrayvergleiche...................................... 24 2.2.2.3 Experimentelle Gruppen in CytoBASE...................................................... 25 2.2.3 Probenprozessierung.................................................................................. 25 2.2.3.1 cDNA-Synthese.................................................................................... 25 2.2.3.2 cRNA-Synthese und -Markierung............................................................ 25 2.2.3.3 Qualitätskontrolle der RNA und cDNA...................................................... 25 2.2.3.4 Hybridisierung..................................................................................... 26 2.2.4 Rohdatenerzeugung................................................................................... 26 2.2.4.1 Abtasten der Fluoreszenzintensitäten in Scan-Stufen................................. 26 2.2.4.2 Datenextraktion und -Quantifizierung mit Imagene................................... 26 2.2.5 Aufbereitung der Rohdaten......................................................................... 28 2.2.5.1 Integration von Daten mit MAVI Pro........................................................ 28 2.2.5.2 Normalisierung der Daten mit MAVI Pro................................................... 28 2.2.5.3 Qualitäts-Filterung und Zusammenfassung der Daten................................ 29 2.2.6 Rohdaten in CytoBASE............................................................................... 29 2.2.7 Integration aller Messwerte einer experimentellen Gruppe............................... 30 2.3 Server.......................................................................................................... 30 2.3.1 Hardware und Software.............................................................................. 30 2.3.2 Datenbankinstanzen.................................................................................. 31 2.4 Softwareentwicklung....................................................................................... 31 2.4.1 Programmiersprachen und Entwicklungsumgebung........................................ 31 2.4.2 Dokumentation......................................................................................... 31 3 Ergebnisse ........................................................................................... 32 3.1 Erweiterungen der Datenbank.......................................................................... 32 3.1.1 Erweiterungen von Tabellen aus BASE.......................................................... 32 3.1.1.1 Rohdaten und Gensonden...................................................................... 32 3.1.1.2 Dokumentation experimenteller Gruppen................................................. 33 3.1.1.3 Neue Benennung von „Analyzed data sets”...............................................34 3.1.2 Neue Tabellen in CytoBASE......................................................................... 34 3.1.2.1 Probenannotation und Suchfunktionen.....................................................34 3.2 Konzeptionelle Vorarbeiten für den Datenzugriff in CytoBASE.................................................................................................... 37 3.2.1 Nutzerkonzept und Gruppenzugehörigkeit..................................................... 37 3.2.2 Nomenklatur............................................................................................. 39 3.2.2.1 Die Probe – „Sample” und „Sample Description”....................................... 39 3.2.2.2 Der Rohdatensatz „Raw Data Set”........................................................... 41 3.2.2.3 Die Analysegruppe „Analysis Group”........................................................42 3.3 Datenimport nach CytoBASE............................................................................ 44 3.3.1 Rohdaten................................................................................................. 44 3.3.1.1 Das Werkzeug CytoBASE_Rohdatentool (mergerawfiles)............................ 44 3.3.1.2 Hochladen und Zusammenfassen der Rohdatensätze................................. 47 3.3.2 Annotation der RNA-Proben........................................................................ 48 3.4 CytoBASE – Erweiterungen gegenüber BASE.......................................................50 3.4.1 Benutzeroberfläche.................................................................................... 50 3.4.1.1 Startseite............................................................................................ 50 3.4.1.2 Benutzerhandbücher............................................................................. 51 3.4.1.3 Navigation und Datenanzeige................................................................. 52 3.4.1.4 Verweise für Gensonden zu GeneCards.................................................... 54 3.4.1.5 Neue Nomenklatur für CytoBASE-Elemente.............................................. 56 3.4.2 Eingabe und Verwaltung der Daten.............................................................. 56 3.4.2.1 Ausschluss doppelter Eintragungen......................................................... 56 3.4.2.2 Annotation der RNA-Proben................................................................... 57 3.4.2.3 Dokumentation der experimentellen Gruppe............................................
Recommended publications
  • SCIENCE CHINA Transcriptome Profiling of The
    SCIENCE CHINA Life Sciences • COVER ARTICLE • January 2013 Vol.56 No.1: 1–12 doi: 10.1007/s11427-012-4411-y Transcriptome profiling of the developing postnatal mouse testis using next-generation sequencing GONG Wei1,2, PAN LinLin1, LIN Qiang1, ZHOU YuanYuan1, 2, XIN ChengQi1, YU XiaoMin1, CUI Peng1, HU SongNian1 & YU Jun1* 1CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, China; 2Graduate University of Chinese Academy of Sciences, Beijing 100049, China Received October 18, 2012; accepted November 9, 2012; published online December 20, 2012 Mammalian testis development is a complex and highly sophisticated process. To study the dynamic change of normal testis development at the transcriptional level, we investigated mouse testes at three postnatal ages: 6 days postnatal, 4 weeks old, and 10 weeks old, representing infant (PN1), juvenile (PN2), and adult (PN3) stages, respectively. Using ultra high-throughput RNA sequencing (RNA-seq) technology, we obtained 211 million reads with a length of 35 bp. We identified 18837 genes that were expressed in mouse testes, and found that genes expressed at the highest level were involved in spermatogenesis. The gene expression pattern in PN1 was distinct from that in PN2 and PN3, which indicates that spermatogenesis has commenced in PN2. We analyzed a large number of genes related to spermatogenesis and somatic development of the testis, which play important roles at different developmental stages. We also found that the MAPK, Hedgehog, and Wnt signaling pathways were significantly involved at different developmental stages. These findings further our understanding of the molecular mecha- nisms that regulate testis development.
    [Show full text]
  • Rabbit Anti-SMCP Antibody-SL20082R
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-SMCP antibody SL20082R Product Name: SMCP Chinese Name: 精子Mitochondrion相关富含半胱氨酸蛋白抗体 HSMCSGEN1; MCS; MCSP; MCSP_HUMAN; Mitochondrial capsule selenoprotein; Alias: SMCP; Sperm mitochondria associated cysteine rich protein; Sperm mitochondrial- associated cysteine-rich protein. Organism Species: Rabbit Clonality: Polyclonal React Species: Human, ELISA=1:500-1000IHC-P=1:400-800IHC-F=1:400-800ICC=1:100-500IF=1:100- 500(Paraffin sections need antigen repair) Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 13kDa Cellular localization: cytoplasmicThe cell membrane Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human SMCP:31-116/116 Lsotype: IgGwww.sunlongbiotech.com Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. PubMed: PubMed SMCP is a 116 amino acid cytoplasmic protein that is found in the outer capsule that is associated with sperm mitochondria. Expressed specifically in spermatids of Product Detail: seminiferous tubules, SMCP is thought to be involved in the organization and stabilization of the helical sheath structure and may play a role in overall sperm motility.
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • Pathogenic Variants in CDC45 on the Remaining Allele in Patients with a Chromosome 22Q11.2 Deletion Result in a Novel Autosomal Recessive Condition
    ARTICLE © American College of Medical Genetics and Genomics Pathogenic variants in CDC45 on the remaining allele in patients with a chromosome 22q11.2 deletion result in a novel autosomal recessive condition Marta Unolt, MD 1,2, Molka Kammoun, PhD 3, Beata Nowakowska, PhD 4, Gail E. Graham, MD 5, T. Blaine Crowley 1, Matthew S. Hestand, PhD3, Wolfram Demaerel, PhD 3, Maciej Geremek, MD, PhD 4, Beverly S. Emanuel, PhD1,6, Elaine H. Zackai, MD 1,6, Joris R. Vermeesch, PhD3 and Donna McDonald-McGinn, MS, LCGC 1,6 Purpose: The 22q11.2 deletion syndrome (22q11.2DS) is the most or other atypical findings. common microdeletion in humans, with highly variable phenotypic Conclusion: This study supports CDC45 as a causative gene in expression. Whereas congenital heart defects, palatal anomalies, craniosynostosis, as well as a number of other anomalies. We immunodeficiency, hypoparathyroidism, and neuropsychiatric suggest that this association results in a condition independent of conditions are observed in over 50% of patients with 22q11DS, a – “ ” Meier Gorlin syndrome, perhaps representing a novel condition subset of patients present with additional atypical findings such as and/or a cause of features associated with Baller–Gerold syndrome. craniosynostosis and anorectal malformations. Recently, pathogenic In addition, this work confirms that the phenotypic variability variants in the CDC45 (Cell Division Cycle protein 45) gene, – observed in a subset of patients with 22q11.2DS is due to located within the LCR22A LCR22B region of chromosome pathogenic variants on the nondeleted chromosome. 22q11.2, were noted to be involved in the pathogenesis of craniosynostosis. Genetics in Medicine (2020) 22:326–335; https://doi.org/10.1038/s41436- Methods: We performed next-generation sequencing on DNA 019-0645-4 from 15 patients with 22q11.2DS and atypical phenotypic features such as craniosynostosis, short stature, skeletal differences, and Keywords: 22q11.2 deletion syndrome; CDC45 gene; anorectal malformations.
    [Show full text]
  • A Type of Familial Cleft of the Soft Palate Maps to 2P24.2&Ndash
    Journal of Human Genetics (2010) 55, 124–126 & 2010 The Japan Society of Human Genetics All rights reserved 1434-5161/10 $32.00 www.nature.com/jhg SHORT COMMUNICATION A type of familial cleft of the soft palate maps to 2p24.2–p24.1 or 2p21–p12 Masayoshi Tsuda1,2,9, Takahiro Yamada3,9, Tadashi Mikoya4, Izumi Sogabe5, Mitsuko Nakashima1,2,6, Hisanori Minakami3, Tatsuya Kishino7, Akira Kinoshita1, Norio Niikawa8, Akiyoshi Hirano2 and Koh-ichiro Yoshiura1 Cleft of the soft palate (CSP) and the hard palate are subtypes of cleft palate. Patients with either condition often have difficulty with speech and swallowing. Nonsyndromic, cleft palate isolated has been reported to be associated with several genes, but to our knowledge, there have been no detailed genetic investigations of CSP. We performed a genome-wide linkage analysis using a single-nucleotide polymorphism-based microarray platform and successively using microsatellite markers in a family in which six members, across three successive generations, had CSP. A maximum LOD score of 2.408 was obtained at 2p24.2–24.1 and 2p21–p12, assuming autosomal dominant inheritance. Our results suggest that either of these regions is responsible for this type of CSP. Journal of Human Genetics (2010) 55, 124–126; doi:10.1038/jhg.2009.131; published online 15 January 2010 Keywords: cleft of the soft palate; genome-wide linkage analysis; submucous cleft palate INTRODUCTION suggested that CHP and CSP might be etiologically distinct. Although Orofacial cleft, one of the most common congenital malformations, is patients with CSP have serious problems in speech and deglutition, as a heterogeneous group of complex traits.
    [Show full text]
  • The Conserved Transcriptome in Human and Rodent Male Gametogenesis
    The conserved transcriptome in human and rodent male gametogenesis Fre´ de´ ric Chalmel*, Antoine D. Rolland†, Christa Niederhauser-Wiederkehr*, Sanny S. W. Chung‡, Philippe Demougin*, Alexandre Gattiker*, James Moore*, Jean-Jacques Patard§, Debra J. Wolgemuth‡, Bernard Je´ gou†, and Michael Primig*¶ʈ *Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland; †Institut National de la Sante´et de la Recherche Me´dicale U625, Group d’Etude de la Reproduction chez l’Homme et les Mammife`res, Institut Fe´de´ ratif de Recherche 140; Universite´de Rennes I, Campus de Beaulieu , F-35042 Rennes, France; ‡Columbia University Medical Center, Black Building 1613, 630 West 168th Street, New York, NY 10032; and §Centre Hospitalier Universitaire Re´gional Pontchaillou, Service d’Urologie, F-35000 Rennes, France Communicated by Ronald W. Davis, Stanford University School of Medicine, Palo Alto, CA, March 15, 2007 (received for review October 12, 2006) We report a cross-species expression profiling analysis of the Gene Ontology Consortium (20), shows that genes known or human, mouse, and rat male meiotic transcriptional program, using predicted to be important for meiosis and reproduction are enriched germ cell populations, whole gonads, and high-density significantly enriched among loci expressed in testicular cell oligonucleotide microarrays (GeneChips). Among 35% of the types (13). Thus, profiling experiments likely help identify protein-coding genes present in rodent and human genomes that factors important for the meiotic developmental pathway in both were found to be differentially expressed between germ cells and yeast (3, 4) and mammals (14). somatic controls, a key group of 357 conserved core loci was In this study, enriched mitotic, meiotic, and postmeiotic germ identified that displays highly similar meiotic and postmeiotic cells were compared with somatic Sertoli cells to select differ- patterns of transcriptional induction across all three species.
    [Show full text]
  • Pericentric Inversion in Chromosome 1 and Male Infertility
    Open Medicine 2020; 15: 343–348 Research Article Ranwei Li*, Haitao Fan, Qiushuang Zhang, Xiao Yang, Peng Zhan, and Shuqiang Feng Pericentric inversion in chromosome 1 and male infertility https://doi.org/10.1515/med-2020-0404 chromatin segment between these breaks, which result received November 20, 2019; accepted March 01, 2020 from two breaks on both sides of the centromere [4]. - Abstract: Pericentric inversion in chromosome 1 was Most individuals with inversion have a normal pheno thought to cause male infertility through spermatogenic type and a normal fertility potential. About 12% of the [ ] impairment, regardless of the breakpoint position. pericentric inversions cause infertility in men 5 . However, carriers of pericentric inversion in chromo- Reproductive risks would be expected in some cases some 1 have been reported with normal fertility and because of the production of chromosomally unbalanced [ ] ff familial transmission. Here, we report two cases of gametes following abnormal meiotic events 6 .Di erent ff pericentric inversion in chromosome 1. One case was inversion chromosomes or di erent breakpoints may ff detected in utero via amniocentesis, and the other case lead to di erent clinical outcomes. Hence, genetic was detected after the wife of the carrier experienced counseling of male carriers of pericentric inversion in two spontaneous abortions within 5 years of marriage. chromosome 1 remains a challenge. Here, the effect of the breakpoint position of the inversion Studies have shown that pericentric inversion in [ – ] in chromosome 1 on male infertility is examined and chromosome 1 is associated with azoospermia 4,7 9 .It compared with the published cases.
    [Show full text]
  • New Genes and Functional Innovation in Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/090860; this version posted December 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. New genes and functional innovation in mammals José Luis Villanueva-Cañas1,#, Jorge Ruiz-Orera1, Isabel Agea1, Maria Gallo2, David Andreu2, M.Mar Albà1,2,3,* 1Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; 2Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; 3Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. Key words: lineage-specific gene, species-specific gene, orphan gene, de novo gene, evolutionary innovation, adaptive evolution, mammals #Current address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain * Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/090860; this version posted December 1, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT The birth of genes that encode new proteins is a major source of evolutionary innovation. However, we still understand relatively little about how these genes come into being and which functions they are selected for. Here we address this question by generating a comprehensive list of mammalian- specific gene families originated at different times during mammalian evolution.
    [Show full text]
  • 1 Supplementary Material Figure S1. Volcano Plot of Differentially
    Supplementary material Figure S1. Volcano Plot of differentially expressed genes between preterm infants fed own mother’s milk (OMM) or pasteurized donated human milk (DHM). Table S1. The 10 most representative biological processes filtered for enrichment p- value in preterm infants. Biological Processes p-value Quantity of DEG* Transcription, DNA-templated 3.62x10-24 189 Regulation of transcription, DNA-templated 5.34x10-22 188 Transport 3.75x10-17 140 Cell cycle 1.03x10-13 65 Gene expression 3.38x10-10 60 Multicellular organismal development 6.97x10-10 86 1 Protein transport 1.73x10-09 56 Cell division 2.75x10-09 39 Blood coagulation 3.38x10-09 46 DNA repair 8.34x10-09 39 Table S2. Differential genes in transcriptomic analysis of exfoliated epithelial intestinal cells between preterm infants fed own mother’s milk (OMM) and pasteurized donated human milk (DHM). Gene name Gene Symbol p-value Fold-Change (OMM vs. DHM) (OMM vs. DHM) Lactalbumin, alpha LALBA 0.0024 2.92 Casein kappa CSN3 0.0024 2.59 Casein beta CSN2 0.0093 2.13 Cytochrome c oxidase subunit I COX1 0.0263 2.07 Casein alpha s1 CSN1S1 0.0084 1.71 Espin ESPN 0.0008 1.58 MTND2 ND2 0.0138 1.57 Small ubiquitin-like modifier 3 SUMO3 0.0037 1.54 Eukaryotic translation elongation EEF1A1 0.0365 1.53 factor 1 alpha 1 Ribosomal protein L10 RPL10 0.0195 1.52 Keratin associated protein 2-4 KRTAP2-4 0.0019 1.46 Serine peptidase inhibitor, Kunitz SPINT1 0.0007 1.44 type 1 Zinc finger family member 788 ZNF788 0.0000 1.43 Mitochondrial ribosomal protein MRPL38 0.0020 1.41 L38 Diacylglycerol
    [Show full text]
  • New Genes and Functional Innovation in Mammals
    bioRxiv preprint doi: https://doi.org/10.1101/090860; this version posted June 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 5 New genes and functional innovation in mammals José Luis Villanueva-Cañas1,#, Jorge Ruiz-Orera1, M.Isabel Agea1, Maria Gallo2, David Andreu2, 1,2,3,* M.Mar Albà 10 1Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; 2Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; 3Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. 15 Key words: de novo gene, species-specific gene, lineage-specific gene, evolutionary innovation, adaptive evolution, mammals Running title: New genes in mammals #Current address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain * Corresponding author: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/090860; this version posted June 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT The birth of genes that encode new protein sequences is a major source of evolutionary innovation. However, we still understand relatively little about how these genes come into being and which functions 5 they are selected for. To address these questions we have obtained a large collection of mammalian-specific gene families that lack homologues in other eukaryotic groups.
    [Show full text]
  • Rare Copy Number Variants Implicated in Posterior Urethral Valves
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Am J Med Manuscript Author Genet A. Author Manuscript Author manuscript; available in PMC 2018 October 29. Published in final edited form as: Am J Med Genet A. 2016 March ; 170(3): 622–633. doi:10.1002/ajmg.a.37493. Rare Copy Number Variants Implicated in Posterior Urethral Valves Nansi S. Boghossian1,2,*, Robert J. Sicko3, Denise M. Kay3, Shannon L. Rigler2, Michele Caggana3, Michael Y. Tsai4, Edwina H. Yeung2, Nathan Pankratz4, Benjamin R. Cole4, Charlotte M. Druschel5,6, Paul A. Romitti7, Marilyn L. Browne5,6, Ruzong Fan2, Aiyi Liu2, Lawrence C. Brody8, and James L. Mills2 1Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 2Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 3Department of Health, Division of Genetics, Wadsworth Center, Albany, New York 4Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 5Department of Health, Congenital Malformations Registry, Albany, New York 6University at Albany School of Public Health, Rensselaer, New York 7Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, Iowa 8Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland Abstract The cause of posterior urethral valves (PUV) is unknown, but genetic factors are suspected given their familial occurrence. We examined cases of isolated PUV to identify novel copy number variants (CNVs). We identified 56 cases of isolated PUV from all live-births in New York State (1998–2005).
    [Show full text]
  • Selective Sweep for an Enhancer Involucrin Allele Identifies Skin
    ARTICLE https://doi.org/10.1038/s41467-021-22821-w OPEN Selective sweep for an enhancer involucrin allele identifies skin barrier adaptation out of Africa Mary Elizabeth Mathyer 1,2,3,6, Erin A. Brettmann 1,2,3,6, Alina D. Schmidt1,2,3, Zane A. Goodwin1,2,3, Inez Y. Oh1,2,3, Ashley M. Quiggle1,2,3, Eric Tycksen4, Natasha Ramakrishnan1,2,3, Scot J. Matkovich2, ✉ Emma Guttman-Yassky 5, John R. Edwards2 & Cristina de Guzman Strong 1,2,3 The genetic modules that contribute to human evolution are poorly understood. Here we 1234567890():,; investigate positive selection in the Epidermal Differentiation Complex locus for skin barrier adaptation in diverse HapMap human populations (CEU, JPT/CHB, and YRI). Using Com- posite of Multiple Signals and iSAFE, we identify selective sweeps for LCE1A-SMCP and involucrin (IVL) haplotypes associated with human migration out-of-Africa, reaching near fixation in European populations. CEU-IVL is associated with increased IVL expression and a known epidermis-specific enhancer. CRISPR/Cas9 deletion of the orthologous mouse enhancer in vivo reveals a functional requirement for the enhancer to regulate Ivl expression in cis. Reporter assays confirm increased regulatory and additive enhancer effects of CEU- specific polymorphisms identified at predicted IRF1 and NFIC binding sites in the IVL enhancer (rs4845327) and its promoter (rs1854779). Together, our results identify a selective sweep for a cis regulatory module for CEU-IVL, highlighting human skin barrier evolution for increased IVL expression out-of-Africa. 1 Division of Dermatology, Department of Medicine, Washington University in St. Louis School of Medicine, St.
    [Show full text]