Acute Leukemia with a Very High Leukocyte Count: Confronting a Medical Emergency

Total Page:16

File Type:pdf, Size:1020Kb

Acute Leukemia with a Very High Leukocyte Count: Confronting a Medical Emergency REVIEW NAVNEET S. MAJHAIL, MD ALAN E. LICHTIN, MD CME Department of Hematology, Oncology, and Department of Hematology and Medical CREDIT Transplantation, University of Minnesota, Oncology, The Cleveland Clinic Foundation Minneapolis Acute leukemia with a very high leukocyte count: Confronting a medical emergency ■ ABSTRACT OST PATIENTS WITH ACUTE leukemias first M present to a general internist because of From 5% to 30% of adult patients with acute leukemias nonspecific symptoms of fatigue, weight loss, present with hyperleukocytosis—very high white blood and fever. In such cases, if the peripheral blood cell counts (> 100,000 cells/mm3)—and symptoms of count and other indices suggest acute leukostasis. These conditions are a medical emergency leukemia, the patient is referred to an oncolo- that needs prompt recognition and initiation of therapy to gy center. prevent respiratory failure or intracranial hemorrhage. However, from 5% to 30% of adult patients Patients should be referred as soon as possible for with acute myeloid leukemia or acute lym- induction chemotherapy and leukapheresis. phoblastic leukemia present quite differently: they have hyperleukocytosis (white blood cell ■ KEY POINTS counts > 100,000/mm3),1–4 they are acutely ill, Risk factors associated with hyperleukocytosis include and they have metabolic abnormalities, coagu- 1,2 younger age, certain types of leukemia, and cytogenetic lopathy, and multiple organ failure. The clin- ical picture often mimics infectious and hemor- abnormalities. rhagic complications of acute leukemia. This presentation is characteristic of acute Symptoms of hyperleukocytosis are primarily due to hyperleukocytosis and leukostasis and should leukostasis, a clinicopathologic syndrome caused by the be considered a medical emergency. If it is not sludging of circulating leukemic blasts in tissue recognized and treated quickly, the mortality microvasculature. rate can be up to 40%.1,5 Management must be started before the patient can be referred for Patients can present with symptoms ranging from treatment of the underlying leukemia. exertional dyspnea to severe respiratory distress. This article reviews the clinical manifesta- Neurologic manifestations can range from mild confusion tions of acute hyperleukocytosis and leukosta- and somnolence to stupor and coma. sis and discusses options for its management. ■ ETIOLOGY AND RISK FACTORS Initial management includes aggressive hydration; use of allopurinol and hydroxyurea; correction of abnormalities Hyperleukocytosis of metabolism, coagulation, and electrolytes; and Hyperleukocytosis is more common in acute prevention of tumor lysis syndrome. leukemias than in chronic leukemias. Its inci- dence ranges from 5% to 13% in adult acute Definitive treatment consists of leukocytoreduction (via myeloid leukemia (AML) and 10% to 30% in cytotoxic chemotherapy), hydroxyurea, and, in some cases, adult acute lymphoblastic leukemia (ALL).1–4 leukapheresis. The clinical presentation depends largely on CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 71 • NUMBER 8 AUGUST 2004 633 Downloaded from www.ccjm.org on September 28, 2021. For personal use only. All other uses require permission. HYPERLEUKOCYTOSIS MAJHAIL AND LICHTIN the lineage and the number of circulating Pulmonary leukemic blasts. Despite a higher incidence Patients can present with symptoms ranging and degree of hyperleukocytosis in ALL vs from exertional dyspnea to severe respiratory AML, clinically manifest hyperleukocytosis is distress. However, chest radiography may be not commonly seen in ALL.1,2 normal or may reveal varying degrees of dif- Risk factors for hyperleukocytosis include fuse interstitial or alveolar infiltrates.13 younger age (it is most commonly seen in infants), Arterial blood gas samples should be certain types of leukemia (microgranular variants interpreted cautiously, as a spuriously low arte- of acute promyelocytic leukemia [AML-M3v], rial oxygen tension (pseudohypoxemia) can acute myelomonocytic leukemia [AML-M4], result from rapid consumption of plasma oxy- acute monocytic leukemia [AML-M5], and T-cell gen by the markedly increased number of ALL), and cytogenetic abnormalities (11q23 white blood cells.14 translocations or presence of the Philadelphia Pulse oximetry can more accurately assess chromosome).1,2 oxygenation status in this setting.15 Leukostasis Neurologic Symptoms of hyperleukocytosis are primarily Neurologic manifestations can range from due to leukostasis (FIGURE 1), a clinicopatho- mild confusion and somnolence to stupor and logic syndrome caused by the sludging of cir- coma. Focal central nervous system deficits culating leukemic blasts in tissue microvascu- may herald intracranial hemorrhage. lature.5,6 It is usually associated with a very high number of circulating blasts (ie, hyper- Vascular leukocytosis), but leukostasis has also been Retinal hemorrhage, retinal vein thrombosis, described with blast counts of less than myocardial infarction, acute limb ischemia, 50,000/mm3.5,7 and renal vein thrombosis have all been Its pathophysiology is not fully under- described with leukostasis and acute hyper- stood. Earlier hypotheses suggested a critical leukocytosis. Treatment must “leukocrit” (fractional leukocyte volume) and Disseminated intravascular coagulation begin before an increase in whole blood viscosity as puta- (DIC) occurs in 30% to 40% of patients with tive mechanisms of leukostasis.8 AML and in 15% to 25% of patients with the patient can Leukostasis without hyperleukocytosis indi- ALL.1 Though more common in AML-M3 be transferred cates that other factors may be involved in its (also known as acute promyelocytic development. There is increasing evidence to leukemia), DIC can occur in all subtypes of to a tertiary suggest that interactions between leukemic acute leukemia. care center blasts and the surface of endothelial cells might be responsible for the aggregation of blasts in the Laboratory microcirculation. Also, a difference in the Laboratory evaluation should include careful expression of adhesion molecules on lym- assessment for thrombocytopenia, coagulopa- phoblast and myeloblast cell surfaces may thy, and tumor lysis syndrome. Platelets may explain the higher incidence of leukostasis in have to be counted manually, since a spurious AML vs ALL.9–12 elevation of the automated platelet count can occur due to the presence of fragments of ■ PRESENTATION AND EVALUATION: white and red blood cells.1,16,17 EARLY DEATHS DUE TO PULMONARY Fever is common. Although fever can be AND INTRACRANIAL COMPLICATIONS traced to infection in very few (< 5%) of these patients,2 infection needs to be ruled out, Although leukostasis can affect any organ since acute hyperleukocytosis can mimic sev- system, symptoms usually arise from involve- eral viral, bacterial, and fungal syndromes. ment of the pulmonary and cerebral microvasculature, and most early deaths are Prognosis based on the presentation due to respiratory failure and intracranial In acute hyperleukocytosis due to AML, pre- hemorrhage. dictors of a poor prognosis are renal failure, 634 CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 71 • NUMBER 8 AUGUST 2004 Downloaded from www.ccjm.org on September 28, 2021. For personal use only. All other uses require permission. ■ Hyperleukocytosis, leukostasis, and sludging Symptoms of hyperleukocytosis are mainly due to leukostasis, a clinicopathologic syndrome caused by the sludging of circulating leukemic blasts in tissue microvasculature. Blasts Neurologic symptoms range from mild confusion and somnolence to stupor and coma. Pulmonary symptoms range from exertional dyspnea to severe Vascular symptoms include respiratory distress. disseminated intravascular Chest radiographs may coagulation, retinal be normal or may reveal hemorrhage, myocardial varying degrees of infarction, acute limb diffuse interstitial or ischemia, and renal vein alveolar infiltrates. thrombosis. CCF ©2004 FIGURE 1 CLEVELAND CLINIC JOURNAL OF MEDICINE VOLUME 71 • NUMBER 8 AUGUST 2004 635 Downloaded from www.ccjm.org on September 28, 2021. For personal use only. All other uses require permission. HYPERLEUKOCYTOSIS MAJHAIL AND LICHTIN respiratory distress, neurologic symptoms, or a significant reduction in the white blood cell coagulopathy; in ALL, adverse indicators are count. white blood cell counts more than Leukocytoreduction can be achieved by 250,000/mm3 or neurologic compromise.1,2,18 induction chemotherapy, hydroxyurea, and leukapheresis. Prompt initiation of induction ■ TREATMENT chemotherapy remains the mainstay of treat- ment of acute hyperleukocytosis and leukosta- The management of acute hyperleukocytosis sis. In patients with acute promyelocytic and leukostasis involves supportive measures leukemia, treatment with all-trans-retinoic and reducing the number of circulating acid should be initiated as soon as possible; all- leukemic blast cells. trans-retinoic acid stimulates the maturation of the myeloblasts of acute promyelocytic Supportive measures leukemia with a rapid reduction in the white Supportive measures should include: blood cell count. Hydroxyurea given at • Vigorous hydration with intravenous dosages of 50 to 100 mg/kg/day in three or four fluids. Intravenous fluids should be used judi- divided doses has been shown to reduce the ciously, however, with careful monitoring of leukocyte count by 50% to 60% within 24 to the fluid balance in patients with coexisting 48 hours and should be started at the time of cardiopulmonary comorbidities who might be initial diagnosis
Recommended publications
  • Pathologic Rupture of the Spleen in a Patient with Acute Myelogenous Leukemia and Leukostasis
    rev bras hematol hemoter. 2014;36(4):290–292 Revista Brasileira de Hematologia e Hemoterapia Brazilian Journal of Hematology and Hemotherapy www.rbhh.org Case report Pathologic rupture of the spleen in a patient with acute myelogenous leukemia and leukostasis Gil Cunha De Santis ∗, Luciana Correa Oliveira, Aline Fernanda Ramos, Nataly Dantas Fortes da Silva, Roberto Passetto Falcão Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil article info abstract Article history: Rupture of the spleen can be classified as spontaneous, traumatic, or pathologic. Patho- Received 14 October 2013 logic rupture has been reported in infectious diseases such as infectious mononucleosis, Accepted 14 January 2014 and hematologic malignancies such as acute and chronic leukemias. Splenomegaly is con- Available online 28 May 2014 sidered the most relevant factor that predisposes to splenic rupture. A 66-year-old man with acute myeloid leukemia evolved from an unclassified myeloproliferative neoplasm, Keywords: complaining of fatigue and mild upper left abdominal pain. He was pale and presented Splenomegaly fever and tachypnea. Laboratory analyses showed hemoglobin 8.3 g/dL, white blood cell 9 9 Leukemia count 278 × 10 /L, platelet count 367 × 10 /L, activated partial thromboplastin time (aPTT) Myeloid ratio 2.10, and international normalized ratio (INR) 1.60. A blood smear showed 62% of Acute myeloblasts. The immunophenotype of the blasts was positive for CD117, HLA-DR, CD13, Leukostasis CD56, CD64, CD11c and CD14. Lactate dehydrogenase was 2384 U/L and creatinine 2.4 mg/dL (normal range: 0.7–1.6 mg/dL). Two sessions of leukapheresis were performed. At the end of the second session, the patient presented hemodynamic instability that culminated in cir- culatory shock and death.
    [Show full text]
  • Cells, Tissues and Organs of the Immune System
    Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1.
    [Show full text]
  • Hyperleukocytosis (Re)Visited- Is It Case Series Always Leukaemia: a Report of Two Pathology Section Cases and Review of Literature Short Communication
    Review Article Clinician’s corner Original Article Images in Medicine Experimental Research Miscellaneous Letter to Editor DOI: 10.7860/JCDR/2020/40556.13409 Case Report Postgraduate Education Hyperleukocytosis (Re)Visited- Is it Case Series always Leukaemia: A Report of Two Pathology Section Cases and Review of Literature Short Communication ASHUTOSH RATH1, RICHA GUPTA2 ABSTRACT Hyperleukocytosis is defined as total leukocyte count of more than 100×109/L. Commonly seen in leukaemic conditions, non- leukaemic causes are usually not encountered and thought of. We report two such non-malignant cases of hyperleukocytosis. A six-year old girl presented with fever, cough and respiratory distress with a leukocyte count of 125.97×109/L. Another case is of a two-month old female infant, who presented with fever and respiratory distress and a leukocyte count of 112.27×109/L. The present case thrives to highlight various possible causes of hyperleukocytosis with an emphasis on non-malignant causes. Also, important complications and management of hyperleukocytosis are discussed. Keywords: Benign, Leukocytosis, Leukostasis CASE REPORT 1 for methicillin-resistant Staphylococcus aureus and was started A six-year-old girl was admitted with complaints of fever, non- on intravenous Vancomycin along with supportive care. Serial productive cough for one week and severe respiratory distress for monitoring of TLC revealed a gradual reduction and it returned to the the past one day. There was no other significant history. On physical baseline of 15×109/L after eight days. The patient was discharged examination, the patient had mild pallor. Respiratory examination after 10 days of hospital stay.
    [Show full text]
  • Novel Emergency Medicine Curriculum Utilizing Self- Directed Learning and the Flipped Classroom Method: Hematologic/Oncologic Emergencies Small Group
    CURRICULUM Novel Emergency Medicine Curriculum Utilizing Self- Directed Learning and the Flipped Classroom Method: Hematologic/Oncologic Emergencies Small Group Module Michael G Barrie, MD*, Chad L Mayer, MD*, Colin Kaide, MD*, Emily Kauffman, DO*, Jennifer Mitzman, MD*, Matthew Malone, MD*, Daniel Bachmann, MD*, Ashish Panchal, MD*, Howard Werman, MD*, Benjamin Ostro, MD* and Andrew King, MD* *The Ohio State University Wexner Medical Center, Department of Emergency Medicine, Columbus, OH Correspondence should be addressed to Andrew King, MD, FACEP at [email protected], Twitter: @akingermd Submitted: August 6, 2018; Accepted: November 21, 2018; Electronically Published: January 15, 2019; https://doi.org/10.21980/J8VW56 Copyright: © 2019 Barrie, et al. This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) License. See: http://creativecommons.org/licenses/by/4.0/ ABSTRACT: Audience: This curriculum, created and implemented at The Ohio State University Wexner Medical Center, was designed to educate our emergency medicine (EM) residents, intern to senior resident level, as well as medical students and attending physicians. Introduction: Disorders of the hematologic system represent a wide spectrum of disease, including bleeding disorders, coagulopathies, blood cell disorders, and oncology related disorders. Hematologic related problems often complicate other disease processes, including malignancy. The number of patients diagnosed with malignancy is increasing due to many factors, including, but not limited to, an aging population and the increased ability for early detection.1 Patients with oncologic conditions can present in a variety of ways with a variety of complications,2 and understanding the steps in diagnosis and management are important components of any emergency physician’s training.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • At an Increased Risk: Tumor Lysis Syndrome
    ONC O L O GY NURSING 101 DEBRA L. WINKELJ O HN , RN, MSN, AOCN®, CNS—ASS O CIATE ED IT O R At an Increased Risk: Tumor Lysis Syndrome Beth McGraw, RN, BSN, OCN® Patients at highest risk for tumor lysis hyperphosphatemia, hypocalcemia, and Gastrointestinal syndrome (TLS) often are diagnosed with hyperkalemia. Hyperuricemia occurs Hyperkalemia causes nausea, vomit- bulky, rapidly proliferating hematologic when the liver converts nucleic acids ing, and diarrhea (Cope, 2004). Anorexia, tumors, such as acute leukemia and non- into uric acid; hypocalcemia develops as abdominal cramping, and pain also may Hodgkin lymphoma (Kaplow & Hardin, serum calcium binds to elevated amounts occur because of the elevated potassium 2007). Patients with solid tumors, such of phosphorus within the bloodstream (McCance & Heuther, 2006). Decreased as mediastinal masses which are highly (Kaplow & Hardin). levels of serum calcium may cause in- sensitive to chemotherapy, also may de- testinal cramping and increased bowel velop TLS, although it is more common activity (McCance & Heuther). in patients undergoing treatment for leu- Clinical Findings kemia and lymphoma. TLS occurs from Laboratory findings will demonstrate the effect of chemotherapy or radiation electrolyte imbalances such as hyper- Cardiac on rapidly dividing cells. Patients with uricemia (more than 6.0 mg/dl), hyper- Serum potassium levels more than elevated lactic dehydrogenase (LDH), phosphatemia (more than 4.5 mg/dl), 5.3 mEq/l may cause irregular heart dehydration, and renal insufficiency are hypocalcemia (less than 8.5 mg/dl), and arrythmias and hypotension (Murphy- at greatest risk for developing TLS (Brant, hyperkalemia (more than 5.5 mEq/l) Ende & Chernecky, 2002).
    [Show full text]
  • Clinical Characteristics of Tumor Lysis Syndrome in Childhood Acute Lymphoblastic Leukemia
    www.nature.com/scientificreports OPEN Clinical characteristics of tumor lysis syndrome in childhood acute lymphoblastic leukemia Yao Xue1,2,22, Jing Chen3,22, Siyuan Gao1,2, Xiaowen Zhai5, Ningling Wang6, Ju Gao7, Yu Lv8, Mengmeng Yin9, Yong Zhuang10, Hui Zhang11, Xiaofan Zhu12, Xuedong Wu13, Chi Kong Li14, Shaoyan Hu15, Changda Liang16, Runming Jin17, Hui Jiang18, Minghua Yang19, Lirong Sun20, Kaili Pan21, Jiaoyang Cai3, Jingyan Tang3, Xianmin Guan4* & Yongjun Fang1,2* Tumor lysis syndrome (TLS) is a common and fatal complication of childhood hematologic malignancies, especially acute lymphoblastic leukemia (ALL). The clinical features, therapeutic regimens, and outcomes of TLS have not been comprehensively analyzed in Chinese children with ALL. A total of 5537 children with ALL were recruited from the Chinese Children’s Cancer Group, including 79 diagnosed with TLS. The clinical characteristics, treatment regimens, and survival of TLS patients were analyzed. Age distribution of children with TLS was remarkably diferent from those without TLS. White blood cells (WBC) count ≥ 50 × ­109/L was associated with a higher risk of TLS [odds ratio (OR) = 2.6, 95% CI = 1.6–4.5]. The incidence of T-ALL in TLS children was signifcantly higher than that in non-TLS controls (OR = 4.7, 95% CI = 2.6–8.8). Hyperphosphatemia and hypocalcemia were more common in TLS children with hyperleukocytosis (OR = 2.6, 95% CI = 1.0–6.9 and OR = 5.4, 95% CI = 2.0–14.2, respectively). Signifcant diferences in levels of potassium (P = 0.004), calcium (P < 0.001), phosphorus (P < 0.001) and uric acid (P < 0.001) were observed between groups of TLS patients with and without increased creatinine.
    [Show full text]
  • Management of Pediatric Tumor Lysis Syndrome
    Arab Journal of Nephrology and Transplantation. 2011 Sep;4(3):147-54 Review Article AJNT Management of Pediatric Tumor Lysis Syndrome Illias tazi*¹, Hatim Nafil¹, Jamila Elhoudzi², Lahoucine Mahmal¹, Mhamed Harif² 1. Hematology department, Chu Mohamed VI, Cadi Ayyad University, Marrakech, Morocco 2. Hematology and Pediatric Oncology department, Chu Mohamed VI, Cadi Ayyad University, Marrakech, Morocco Abstract Keyswords: Acute Renal Failure; Burkitt’s Lymphoma; Hematologic Malignancies; Hydration; Tumor Lysis Introduction: Tumor lysis syndrome (TLS) is a serious Syndrome complication of malignancies and can result in renal failure or death. The authors declared no conflict of interest Review: In tumors with a high proliferative rate with a relatively large mass and a high sensitivity to cytotoxic Introduction agents, the initiation of therapy often results in the rapid release of intracellular anions, cations and the Infection remains the leading cause of organ failure in metabolic products of proteins and nucleic acids into critically ill cancer patients, but several reports point the bloodstream. The increased concentrations of uric out the increasing proportion of patients admitted into acid, phosphates, potassium and urea can overwhelm intensive care units with organ failure related to the the body’s homeostatic mechanisms to process and malignancy itself [1]. Some of these complications excrete these materials and result in the clinical spectrum may be directly related to the extent of the malignancy. associated with TLS. Typical clinical sequelae include This may include acute renal failure, acute respiratory gastrointestinal disturbances, neuromuscular effects, failure and coma. Most of these specific organ failures cardiovascular complications, acute renal failure and will require initiation of cancer therapy along with the death.
    [Show full text]
  • Tumor Lysis Syndrome
    Tumor Lysis Syndrome Thomas B. Russell, MD,* David E. Kram, MD, MCR* *Section of Pediatric Hematology/Oncology, Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC Practice Gaps Along with knowledge of how to evaluate a pediatric patient with a suspected malignancy, general pediatricians must maintain a high level of suspicion of tumor lysis syndrome for initial management and timely patient referral. This syndrome is largely preventable, and certainly manageable, with prompt diagnosis and appropriate intervention. Objectives After completing this article, readers should be able to: 1. Define and diagnose tumor lysis syndrome (TLS). 2. Recognize the risk factors for TLS. 3. Stratify pediatric patients with cancer according to risk of developing TLS. 4. Identify interventions to prevent TLS. 5. Discuss management strategies for patients with TLS. INTRODUCTION Tumor lysis syndrome (TLS) is a life-threatening oncologic emergency that occurs when cancer cells break down, either spontaneously or after initiation of cytotoxic chemo- therapy, and release their intracellular contents into the bloodstream. This massive release of uric acid, potassium, and phosphorous, which under normal physiologic conditions are excreted in the urine, can lead to hyperuricemia, hyperkalemia, hyper- phosphatemia, and hypocalcemia. These metabolic derangements increase the risk of severe complications, including acute kidney injury (AKI), cardiac arrhythmias, sei- zures, and even death. TLS is the most common oncologic emergency, and it occurs AUTHOR DISCLOSURE Drs Russell and Kram fi most frequently in children with acute leukemia and non-Hodgkin lymphoma. TLS is have disclosed no nancial relationships relevant to this article. This commentary does often preventable; clinicians must maintain a high index of suspicion and rely on not contain a discussion of an unapproved/ effective prevention and treatment strategies.
    [Show full text]
  • Chapter 4: Tumor Lysis Syndrome
    Chapter 4: Tumor Lysis Syndrome † Amaka Edeani, MD,* and Anushree Shirali, MD *Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and †Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut INTRODUCTION class specifies patients with normal laboratory and clinical parameters as having no LTLS or CTLS. Tumor lysis syndrome (TLS) is a constellation of Cairo and Bishop also proposed a grading system metabolic abnormalities resulting from either spon- combiningthedefinitionsofnoTLS,LTLS,andCTLS, taneous or chemotherapy-induced tumor cell death. with the maximal clinical manifestations in each Tumor cytotoxicity releases intracellular contents, affectedorgandefiningthegrade ofTLS(1).Although including nucleic acids, proteins, and electrolytes this grading system attempts to provide uniform def- into the systemic circulation and may lead to devel- initions to TLS severity, it is not widely used in clinical opment of hyperuricemia, hyperphosphatemia, hy- practice. pocalcemia,andhyperkalemia.Clinically,thisresults The Cairo-Bishop classification is not immune to in multiorgan effects such as AKI, cardiac arrhyth- critique despite its common use. Specifically, patients mias, and seizures (1,2). TLS is the most common with TLS may not always have two or more abnor- oncologic emergency (3), and without prompt rec- malities present at once, but one metabolic derange- ognition and early therapeutic intervention, mor- ment may precede another (2). Furthermore, a 25% bidity and mortality is high. change from baseline may not always be significant if it does not result in a value outside the normal range (2). From a renal standpoint, Wilson and Berns (5) DEFINITION have noted that defining AKI on the basis of a creat- inine value .1.5 times the upper limit of normal Hande and Garrow (4) first initiated a definition of does not clearly distinguish CKD from AKI.
    [Show full text]
  • A Systematic Review of Rhabdomyolysis for Clinical Practice Luis O
    Chavez et al. Critical Care (2016) 20:135 DOI 10.1186/s13054-016-1314-5 REVIEW Open Access Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice Luis O. Chavez1, Monica Leon2, Sharon Einav3,4 and Joseph Varon5* Abstract Background: Rhabdomyolysis is a clinical syndrome that comprises destruction of skeletal muscle with outflow of intracellular muscle content into the bloodstream. There is a great heterogeneity in the literature regarding definition, epidemiology, and treatment. The aim of this systematic literature review was to summarize the current state of knowledge regarding the epidemiologic data, definition, and management of rhabdomyolysis. Methods: A systematic search was conducted using the keywords “rhabdomyolysis” and “crush syndrome” covering all articles from January 2006 to December 2015 in three databases (MEDLINE, SCOPUS, and ScienceDirect). The search was divided into two steps: first, all articles that included data regarding definition, pathophysiology, and diagnosis were identified, excluding only case reports; then articles of original research with humans that reported epidemiological data (e.g., risk factors, common etiologies, and mortality) or treatment of rhabdomyolysis were identified. Information was summarized and organized based on these topics. Results: The search generated 5632 articles. After screening titles and abstracts, 164 articles were retrieved and read: 56 articles met the final inclusion criteria; 23 were reviews (narrative or systematic); 16 were original articles containing epidemiological data; and six contained treatment specifications for patients with rhabdomyolysis. Conclusion: Most studies defined rhabdomyolysis based on creatine kinase values five times above the upper limit of normal. Etiologies differ among the adult and pediatric populations and no randomized controlled trials have been done to compare intravenous fluid therapy alone versus intravenous fluid therapy with bicarbonate and/or mannitol.
    [Show full text]
  • Original Article Anemia, Leukocytosis and Eosinophilia in a Resource-Poor
    Original Article Anemia, leukocytosis and eosinophilia in a resource-poor population with helmintho-ectoparasitic coinfection Daniel Pilger1, Jörg Heukelbach2, Alexander Diederichs1, Beate Schlosser1, Cinthya Pereira Leite Costa Araújo3, Anne Keysersa1, Oliver Liesenfeld1, Hermann Feldmeier1 1Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Institute of Microbiology and Hygiene, D-12203 Berlin, Germany 2Department of Community Health, School of Medicine, Federal University of Ceará, Fortaleza, CE 60430-140, Brazil 3Department of Hematology, Estate University of Health Science of Alagoas, Alagoas, CEP 57010-300, Brazil Abstract Introduction: Eosinophilia and anemia are very common hematological alterations in the tropics but population-based studies scrutinizing their value for diagnosing parasitic infections are rare. Methodology: A cross-sectional study was conducted in a rural district in northeast Brazil where parasitic infections are common. Stool and blood samples were collected and individuals were clinically examined for the presence of ectoparasites. Results: In total, 874 individuals were examined. Infection with intestinal helminths occurred in 70% (95% CI 67 – 75), infestation with ectoparasites in 45% (95% CI 42 - 49) and co-infection with both helminths and ectoparasites was found in 33% (95% CI 29% - 36%) of all inhabitants. Eosinophil counts ranged from 40/µl to 13.800/µl (median: 900/µl). Haemoglobin levels ranged from 4.8 g/dl to 16.8 g/dl (median: 12.5 g/dl), and anemia was present in 24% of the participants. Leukocytosis was found in 13%, eosinophilia in 74%, and hypereosinophilia in 44% of the participants. Eosinophilia was more pronounced in individuals co-infected with intestinal helminths and ectoparasites (p < 0.001) and correctly predicted parasitic infection in 87% (95% CI 84%-90.7%) of all cases.
    [Show full text]