Enzyme-Pore Constructs

Total Page:16

File Type:pdf, Size:1020Kb

Enzyme-Pore Constructs (19) TZZ Z_T (11) EP 2 682 460 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.01.2014 Bulletin 2014/02 C12N 9/12 (2006.01) C12N 9/22 (2006.01) C12N 9/52 (2006.01) C12Q 1/68 (2006.01) (21) Application number: 13187149.3 (22) Date of filing: 06.07.2009 (84) Designated Contracting States: • Cheley, Stephen AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Oxford HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Oxfordshire OX4 4GA (GB) PT RO SE SI SK SM TR •McKeown,Brian Oxford (30) Priority: 07.07.2008 US 78695 P Oxfordshire OX4 4GA (GB) • White, James (62) Document number(s) of the earlier application(s) in Oxford accordance with Art. 76 EPC: Oxfordshire OX4 4GA (GB) 09784644.8 / 2 307 540 • Clarke, James Oxford (71) Applicant: Oxford Nanopore Technologies Oxfordshire OX4 4GA (GB) Limited Oxford Science Park (74) Representative: Chapman, Lee Phillip Oxford J A Kemp OX4 4GA (GB) 14 South Square Gray’s Inn (72) Inventors: London WC1R 5JJ (GB) • Jayasinghe, Lakmal Oxford Remarks: Oxfordshire OX4 4GA (GB) This application was filed on 02-10-2013 as a •Bayley,Hagan divisional application to the application mentioned Oxford under INID code 62. Oxfordshire OX4 4GA (GB) (54) Enzyme-pore constructs (57) The invention relates to constructs comprising a transmembrane protein pore subunit and a nucleic acid handling enzyme. The pore subunit is covalently at- tached to the enzyme such that both the subunit and enzyme retain their activity. The constructs can be used to generate transmembrane protein pores having a nu- cleic acid handling enzyme attached thereto. Such pores are particularly useful for sequencing nucleic acids. The enzyme handles the nucleic acid in such a way that the pore can detect its component nucleotides by stochastic sensing. EP 2 682 460 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 682 460 A1 Description Field of the invention 5 [0001] The invention relates to constructs comprising a transmembrane protein pore subunit and a nucleic acid handling enzyme. The pore subunit is covalently attached to the enzyme such that both the subunit and enzyme retain their activity. The constructs can be used to generate transmembrane protein pores having a nucleic acid handling enzyme attached thereto. Such pores are particularly useful for sequencing nucleic acids. The enzyme handles the nucleic acid in such a way that the pore can detect each of its component nucleotides by stochastic sensing. 10 Background of the invention [0002] Stochastic detection is an approach to sensing that relies on the observation of individual binding events between analyte molecules and a receptor. Stochastic sensors can be created by placing a single pore of nanometer 15 dimensions in an insulating membrane and measuring voltage-driven ionic transport through the pore in the presence of analyte molecules. The frequency of occurrence of fluctuations in the current reveals the concentration of an analyte that binds within the pore. The identity of an analyte is revealed through its distinctive current signature, notably the duration and extent of current block (Braha, O., Walker, B., Cheley, S., Kasianowicz, J. J., Song, L., Gouaux, J. E., and Bayley, H. (1997) Chem.Biol. 4, 497-505; and Bayley, H., and Cremer, P. S. (2001) Nature 413, 226-230). 20 [0003] Engineered versions of the bacterial pore forming toxinα -hemolysin (α-HL) have been used for stochastic sensing of many classes of molecules (Bayley, H., and Cremer, P. S. (2001) Nature 413, 226-230; Shin, S., H., Luchian, T., Cheley, S., Braha, O., and Bayley, H. (2002) Angew.Chem.Int.Ed. 41, 3707-3709; and Guan, X., Gu, L.-Q., Cheley, S., Braha, O., and Bayley, H. (2005) ChemBioChem 6, 1875-1881). In the course of these studies, it was found that attempts to engineer α-HL to bind small organic analytes directly can prove taxing, with rare examples of success (Guan, 25 X., Gu, L.-Q., Cheley, S., Braha, O., and Bayley, H. (2005) ChemBioChem 6, 1875-1881). Fortunately, a different strategy was discovered, which utilized non- covalently attached molecular adaptors, notably cyclodextrins (Gu, L.-Q., Braha, O., Conlan, S., Cheley, S., and Bayley, H. (1999) Nature 398, 686-690), but also cyclic peptides (Sanchez-Quesada, J., Ghadiri, M. R., Bayley, H., and Braha, O. (2000) J.Am.Chem.Soc. 122, 11758-11766) and cucurbiturils (Braha, O., Webb, J., Gu, L.-Q., Kim, K., and Bayley, H. (2005) ChemPhysChem 6, 889-892). Cyclodextrins become transiently 30 lodged in the α-HL pore and produce a substantial but incomplete channel block. Organic analytes, which bind within the hydrophobic interiors of cyclodextrins, augment this block allowing analyte detection (Gu, L.-Q., Braha, O., Conlan, S., Cheley, S., and Bayley, H. (1999) Nature 398, 686-690). [0004] There is currently a need for rapid and cheap DNA or RNA sequencing technologies across a wide range of applications. Existing technologies are slow and expensive mainly because they rely on amplification techniques to 35 produce large volumes of nucleic acid and require a high quantity of specialist fluorescent chemicals for signal detection. Stochastic sensing has the potential to provide rapid and cheap DNA sequencing by reducing the quantity of nucleotide and reagents required. Summary of the invention 40 [0005] The inventorshave surprisingly demonstratedthat covalent attachment of atransmembrane protein poresubunit to a nucleic acid handling enzyme results in a construct that is capable of both forming a pore and handling nucleic acids. The inventors have also surprisingly demonstrated that the construct can be used to generate a transmembrane protein pore that is capable of both handling a nucleic acid and sequencing the nucleic acid via stochastic sensing. The 45 fixed nature and close proximity of the enzyme to the pore means that a proportion of the nucleotides in a target nucleic acid will interact with the pore and affect the current flowing through the pore in a distinctive manner. As a result, transmembrane protein pores comprising such constructs are useful tools for stochastic sensing and especially for sequencing nucleic acids. [0006] Accordingly, the invention provides a construct comprising a transmembrane protein pore subunit and a nucleic 50 acid handling enzyme, wherein the subunit is covalently attached to the enzyme, wherein the subunit retains its ability to form a pore and wherein the enzyme retains its ability to handle nucleic acids. The invention also provides: - a polynucleotide sequence which encodes a construct of the invention; - a modified pore for use in sequencing nucleic acids, comprising at least one construct of the invention; 55 - a kit for producing a modified pore for use in sequencing nucleic acids, comprising: (a) at least one construct of the invention; and (b) any remaing subunits needed to form a pore; 2 EP 2 682 460 A1 - a kit for producing a modified pore for use in sequencing nucleic acids, comprising: (b) at least one polynucleotide of the invention; and (c) poynucleotide sequences encoding any remaining subunits needed to form a pore; 5 - a method of producing a construct of the invention, comprising: (a) covalently attaching a nucleic acid handling enzyme to a transmembrane protein pore subunit; and (b) determining whether or not the resulting construct is capable of forming a pore and handling nucleic acids; 10 - a method of producing a modified pore of the invention, comprising: (a) covalently attaching a nucleic acid handling enzyme to a transmembrane protein pore; and (b) determining whether or not the resulting pore is capable of handling nucleic acids and detecting nucleotides; 15 - method of producing a modified pore of the invention, comprising: (a) allowing at least one construct of the invention to form a pore with other suitable subunits; and (b) determining whether or not the resulting pore is capable of handling nucleic acids and detecting nucleotides. 20 - a method of purifying a transmembrane pore comprising at least one construct of the invention, comprising: (a) providing the at least one construct and the other subunits required to form the pore; (b) oligomerising the at least one construct and other subunits on synthetic lipid vesicles; and 25 (c) contacting the vesicles with a non-ionic surfactant; and (d) recovering the oligomerised pore; - a method of sequencing a target nucleic acid sequence, comprising: 30 (a) contacting the target sequence with a pore of the invention, which comprises an exonuclease, such that the exonuclease digests an individual nucleotide from one end of the target sequence; (b) contacting the nucleotide with the pore so that the nucleotide interacts with the adaptor; (c) measuring the current passing through the pore during the interaction and thereby determining the identity of the nucleotide; and 35 (d) repeating steps (a) to (c) at the same end of the target sequence and thereby determining the sequence of the target sequence; and - a method of sequencing a target nucleic acid sequence, comprising: 40 (a) contacting the target sequence with a pore of the invention so that the enzyme pushes or pulls the target sequence through the pore and a proportion of the nucleotides in the target sequence interacts with the pore; and (b)measuring the current passing through thepore during eachinteraction and thereby determining the sequence of the target sequence. 45 Description of the Figure [0007] Figure 1 shows how exonuclease enzymes catalyse the hydrolysis of phosphodietser bonds. Within the active site 50 of the exonulease, a water molecule is enabled to react with the phosphate of the 3’ end of the polynucleotide (DNA). Cleavage of the bond between the phosphate and the sugar towards the 5’ end releases a monophosphate (deoxy) nucleoside. Figure 2 shows the crystal structures of exonucleases used in the Example, N and C- terminus and active sites are shown for each.
Recommended publications
  • Purification, Crystallization and Preliminary X-Ray Diffraction Analysis of Exodeoxyribonuclease III from Crenarchaeon Sulfolobus Tokodaii Strain 7
    Crystal Structure Theory and Applications, 2013, 2, 155-158 Published Online December 2013 (http://www.scirp.org/journal/csta) http://dx.doi.org/10.4236/csta.2013.24021 Purification, Crystallization and Preliminary X-Ray Diffraction Analysis of Exodeoxyribonuclease III from Crenarchaeon Sulfolobus tokodaii Strain 7 Shuichi Miyamoto1*, Chieko Naoe2, Masaru Tsunoda3, Kazuo T. Nakamura2 1Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan 2School of Pharmacy, Showa University, Tokyo, Japan 3Faculty of Pharmacy, Iwaki Meisei University, Iwaki, Japan Email: *miyamoto@ph.sojo-u.ac.jp Received October 13, 2013; revised November 12, 2013; accepted December 6, 2013 Copyright © 2013 Shuichi Miyamoto et al. This is an open access article distributed under the Creative Commons Attribution Li- cense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Exodeoxyribonuclease III (EXOIII) acts as a 3’→5’ exonuclease and is homologous to purinic/apyrimidinic (AP) en- donuclease (APE), which plays an important role in the base excision repair pathway. To structurally investigate the reaction and substrate recognition mechanisms of EXOIII, a crystallographic study of EXOIII from Sulfolobus tokodaii strain 7 was carried out. The purified enzyme was crystallized by using the hanging-drop vapor-diffusion method. The crystals belonged to space group C2, with unit-cell parameters a = 154.2, b = 47.7, c = 92.4 Å, β = 125.8˚ and diffracted to 1.5 Å resolution. Keywords: Crenarchaeon; Crystallization; Exodeoxyribonuclease; Sulfolobus tokodaii; X-Ray Diffraction 1. Introduction formational change upon protein binding that permits complex formation and activation of attacking water, A variety of mechanisms exist to repair damaged DNA leading to incision, in the presence of Mg2+ [10,11].
    [Show full text]
  • The Rnase H-Like Superfamily: New Members, Comparative Structural Analysis and Evolutionary Classification Karolina A
    4160–4179 Nucleic Acids Research, 2014, Vol. 42, No. 7 Published online 23 January 2014 doi:10.1093/nar/gkt1414 The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification Karolina A. Majorek1,2,3,y, Stanislaw Dunin-Horkawicz1,y, Kamil Steczkiewicz4, Anna Muszewska4,5, Marcin Nowotny6, Krzysztof Ginalski4 and Janusz M. Bujnicki1,3,* 1Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland, 2Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA USA-22908, USA, 3Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, PL-61-614 Poznan, Poland, 4Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, PL-02-089 Warsaw, Poland, 5Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, PL-02-106 Warsaw, Poland and 6Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland Received September 23, 2013; Revised December 12, 2013; Accepted December 26, 2013 ABSTRACT revealed a correlation between the orientation of Ribonuclease H-like (RNHL) superfamily, also called the C-terminal helix with the exonuclease/endo- the retroviral integrase superfamily, groups together nuclease function and the architecture of the numerous enzymes involved in nucleic acid metab- active site. Our analysis provides a comprehensive olism and implicated in many biological processes, picture of sequence-structure-function relation- including replication, homologous recombination, ships in the RNHL superfamily that may guide func- DNA repair, transposition and RNA interference.
    [Show full text]
  • Small Regulatory Rnas Controlling Complex Phenotypes in Vibrio Cholerae
    Small regulatory RNAs controlling complex phenotypes in Vibrio cholerae Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Roman Herzog aus Augsburg München, Juli 2020 Diese Dissertation wurde angefertigt unter der Leitung von Prof. Dr. Kai Papenfort im Bereich von Department Biologie I an der Ludwig-Maximilians-Universität München Gutachter: 1. Prof. Dr. Kai Papenfort 2. Prof. Dr. Heinrich Jung Datum der Abgabe: 21.07.2020 Tag der mündlichen Prüfung: 15.12.2020 II Eidesstattliche Erklärung Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbstständig und ohne unerlaubte Hilfe angefertigt wurde. Des Weiteren erkläre ich, dass ich nicht anderweitig ohne Erfolg versucht habe, eine Dissertation einzureichen oder mich der Doktorprüfung zu unterziehen. Die folgende Dissertation liegt weder ganz, noch in wesentlichen Teilen einer anderen Prüfungskommission vor. Roman Herzog, München, den 20. Juli 2020 Statutory Declaration I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources. As well I declare, that I have not submitted a dissertation without success and not passed the oral exam. The present dissertation (neither the entire dissertation nor parts) has not been presented to another examination board. Roman Herzog, Munich, 20 July 2020 III Contents Eidesstattliche Erklärung ........................................................................................................III
    [Show full text]
  • 1Ako Lichtarge Lab 2006
    Pages 1–6 1ako Evolutionary trace report by report maker November 5, 2010 4.3.3 DSSP 5 4.3.4 HSSP 5 4.3.5 LaTex 5 4.3.6 Muscle 5 4.3.7 Pymol 5 4.4 Note about ET Viewer 6 4.5 Citing this work 6 4.6 About report maker 6 4.7 Attachments 6 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1ako): Title: Exonuclease iii from escherichia coli Compound: Mol id: 1; molecule: exonuclease iii; chain: a; ec: 3.1.11.2; engineered: yes Organism, scientific name: Escherichia Coli; 1ako contains a single unique chain 1akoA (268 residues long). 2 CHAIN 1AKOA 2.1 P09030 overview CONTENTS From SwissProt, id P09030, 100% identical to 1akoA: Description: Exodeoxyribonuclease III (EC 3.1.11.2) (Exonuclease 1 Introduction 1 III) (EXO III) (AP endonuclease VI). 2 Chain 1akoA 1 Organism, scientific name: Escherichia coli. 2.1 P09030 overview 1 Taxonomy: Bacteria; Proteobacteria; Gammaproteobacteria; 2.2 Multiple sequence alignment for 1akoA 1 Enterobacteriales; Enterobacteriaceae; Escherichia. 2.3 Residue ranking in 1akoA 1 Function: Major apurinic-apyrimidinic endonuclease of E.coli. It 2.4 Top ranking residues in 1akoA and their position on removes the damaged DNA at cytosines and guanines by cleaving the structure 2 on the 3’ side of the AP site by a beta-elimination reaction. It exhi- 2.4.1 Clustering of residues at 25% coverage. 2 bits 3’-5’-exonuclease, 3’-phosphomonoesterase, 3’-repair diesterase 2.4.2 Possible novel functional surfaces at 25% and ribonuclease H activities.
    [Show full text]
  • Ribonuclease and Deoxyribonuclease Activities in Experimental and Human Tumors by the Histochemical Substrate Film Method*
    Ribonuclease and Deoxyribonuclease Activities in Experimental and Human Tumors by the Histochemical Substrate Film Method* R. DAOUSTJANDHARUKOAMANOÕ (Laboratoires de Recherche, Institut du Cancer de Montréal,Hôpital Notre-Dame et Universitéde Montréal,Montréal,Canada) SUMMARY The ribonuclease and deoxyribonuclease activities of 65 experimental and human tu mors (32 different types) have been examined by histochemical substrate film methods. A same general pattern was obtained for the distribution of both nucleases in the various types of experimental and human tumors. The connective tissue stroma and the necrotic regions of the tumor masses showed various levels of nuclease activity, whereas the neoplastic cells showed no demonstrable activity. It appears that deficien cies in ribonuclease and deoxyribonuclease activities represent general properties of cancer cells. The possible significance of the losses of nuclease activities in carcinogenesis is dis cussed. Studies on nucleases by histochemical methods MATERIALS AND METHODS have shown that losses of ribonuclease (RNase) The experimental tumors used in the present and deoxyribonuclease (DNase) activities take study were mostly rat, mouse, and hamster trans- place in rat liver during azo-dye carcinogenesis (1, plantable tumors (see Table 1). The tumor-bearing 6). The loss of RNase activity is progressive and animals were obtained from commercial or private occurs before parenchymal cells become cancerous, sources, and the tumors were used as supplied or whereas the loss of DNase activity is abrupt and closely associated with the neoplastic transforma TABLE1 tion of parenchymal cells. EXPERIMENTALTUMORS If a loss of RNase or DNase activity plays an important role in tumor formation, the lack of SpeciesRat"""MouseHamsterTumorPrimary demonstrable nuclease activity observed in rat hepatomaNovikoff primary hepatomas should also be observed in a hepatomaWalker variety of tumors.
    [Show full text]
  • Rnase I Manual
    Manual RNase I For Research Use Only. Not for use in diagnostic procedures. RNase I is part of the Epicentre™ product line, known for its unique genomics kits, enzymes, and reagents which offer high quality and reliable performance. Manual RNase I Contents 1. Introduction .......................................................................................................................................3 2. Product designations and kit components ....................................................................................3 3. Product specifications ......................................................................................................................3 4. Protocol for removing RNA from DNA preparations .....................................................................4 5. References .........................................................................................................................................4 6. Further support .................................................................................................................................4 Manual RNase I 1. Introduction RNase I preferentially degrades single-stranded RNA to individual nucleoside 3′ monophosphates by cleaving every phosphodiester bond.1 By comparison, other ribonucleases cleave only after specific residues (e.g., RNase A cleaves 3′ to pyrimidine residues). Thus, RNase I is useful for removing RNA from DNA preparations,2 detecting mismatches in RNA:RNA and RNA:DNA hybrids2,3 and analysing and quantifying RNA in ribonuclease
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E.
    [Show full text]
  • HOXB6 Homeo Box B6 HOXB5 Homeo Box B5 WNT5A Wingless-Type
    5 6 6 5 . 4 2 1 1 1 2 4 6 4 3 2 9 9 7 0 5 7 5 8 6 4 0 8 2 3 1 8 3 7 1 0 0 4 0 2 5 0 8 7 5 4 1 1 0 3 6 0 4 8 3 7 4 7 6 9 6 7 1 5 0 8 1 4 1 1 7 1 0 0 4 2 0 8 1 1 1 2 5 3 5 0 7 2 6 9 1 2 1 8 3 5 2 9 8 0 6 0 9 5 1 9 9 2 1 1 6 0 2 3 0 3 6 9 1 6 5 5 7 1 1 2 1 1 7 5 4 6 6 4 1 1 2 8 4 7 1 6 2 7 7 5 4 3 2 4 3 6 9 4 1 7 1 3 4 1 2 1 3 1 1 4 7 3 1 1 1 1 5 3 2 6 1 5 1 3 5 4 5 2 3 1 1 6 1 7 3 2 5 4 3 1 6 1 5 3 1 7 6 5 1 1 1 4 6 1 6 2 7 2 1 2 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S HOXB6 homeo box B6 HOXB5 homeo box B5 WNT5A wingless-type MMTV integration site family, member 5A WNT5A wingless-type MMTV integration site family, member 5A FKBP11 FK506 binding protein 11, 19 kDa EPOR erythropoietin receptor SLC5A6 solute carrier family 5 sodium-dependent vitamin transporter, member 6 SLC5A6 solute carrier family 5 sodium-dependent vitamin transporter, member 6 RAD52 RAD52 homolog S.
    [Show full text]
  • Cloud-Clone 16-17
    Cloud-Clone - 2016-17 Catalog Description Pack Size Supplier Rupee(RS) ACB028Hu CLIA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 74750 AEA044Hu ELISA Kit for Anti-Growth Hormone Antibody (Anti-GHAb) 96T Cloud-Clone 74750 AEA255Hu ELISA Kit for Anti-Apolipoprotein Antibodies (AAHA) 96T Cloud-Clone 74750 AEA417Hu ELISA Kit for Anti-Proteolipid Protein 1, Myelin Antibody (Anti-PLP1) 96T Cloud-Clone 74750 AEA421Hu ELISA Kit for Anti-Myelin Oligodendrocyte Glycoprotein Antibody (Anti- 96T Cloud-Clone 74750 MOG) AEA465Hu ELISA Kit for Anti-Sperm Antibody (AsAb) 96T Cloud-Clone 74750 AEA539Hu ELISA Kit for Anti-Myelin Basic Protein Antibody (Anti-MBP) 96T Cloud-Clone 71250 AEA546Hu ELISA Kit for Anti-IgA Antibody 96T Cloud-Clone 71250 AEA601Hu ELISA Kit for Anti-Myeloperoxidase Antibody (Anti-MPO) 96T Cloud-Clone 71250 AEA747Hu ELISA Kit for Anti-Complement 1q Antibody (Anti-C1q) 96T Cloud-Clone 74750 AEA821Hu ELISA Kit for Anti-C Reactive Protein Antibody (Anti-CRP) 96T Cloud-Clone 74750 AEA895Hu ELISA Kit for Anti-Insulin Receptor Antibody (AIRA) 96T Cloud-Clone 74750 AEB028Hu ELISA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 71250 AEB264Hu ELISA Kit for Insulin Autoantibody (IAA) 96T Cloud-Clone 74750 AEB480Hu ELISA Kit for Anti-Mannose Binding Lectin Antibody (Anti-MBL) 96T Cloud-Clone 88575 AED245Hu ELISA Kit for Anti-Glutamic Acid Decarboxylase Antibodies (Anti-GAD) 96T Cloud-Clone 71250 AEK505Hu ELISA Kit for Anti-Heparin/Platelet Factor 4 Antibodies (Anti-HPF4) 96T Cloud-Clone 71250 CCA005Hu CLIA Kit for Angiotensin II
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Datasheet for T7 Exonuclease (M0263; Lot 0031212)
    Source: Purified from an E. coli strain containing a Unit Assay Conditions: 50 mM potassium Physical Purity: Purified to > 95% homogeneity TYB12 intein fusion acetate, 20 mM Tris-acetate, 10 mM magnesium as determined by SDS-PAGE analysis using T7 Exonuclease acetate, 1mM dithiothreitol (pH 7.9) and 0.15 mM Coomassie Blue detection. Supplied in: 10 mM Tris-HCl (pH 8.0), sonicated duplex [3H] DNA. 0.1 mM EDTA, 5 mM DTT and 50% glycerol. RNase Activity (Extended Digestion): A 10 µl Quality Control Assays 1-800-632-7799 reaction in NEBuffer 4 containing 40 ng of info@neb.com Reagents Supplied with Enzyme: Single Stranded Deoxyribonuclease Activity flourescein labeled RNA transcript and 10 units www.neb.com 10X NEBuffer 4. (FAM Labeled Oligo): A 50 µl reaction in of T7 Exonuclease incubated at 37°C. After M0263S 003121214121 NEBuffer 4 containing a 20 nM solution of a incubation for 4 hours, > 90% of the substrate Reaction Conditions: fluorescent internal labeled oligonucleotide and a RNA remains intact as determined by gel minimum of 50 units of T7 Exonuclease incubated 1X NEBuffer 4. electrophoresis using fluorescence detection. M0263S Incubate at 25°C. for 16 hours at 37°C yields < 5% degradation as determined by capillary electrophoresis. 1,000 units 10,000 U/ml Lot: 0031212 Heat Inactivation: No 1X NEBuffer 4: RECOMBINANT Store at –20°C Exp: 12/14 50 mM potassium acetate Endonuclease Activity: Incubation of a 50 µl References: reaction containing 100 units of T7 Exonuclease Description: T7 Exonuclease acts in the 5´ to 20 mM Tris-acetate 1.
    [Show full text]