Homework 6 —– from Lecture 26 to Lecture 30
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
Optimization of the Manufacturing Process for Sheet Metal Panels Considering Shape, Tessellation and Structural Stability Optimi
Institute of Construction Informatics, Faculty of Civil Engineering Optimization of the manufacturing process for sheet metal panels considering shape, tessellation and structural stability Optimierung des Herstellungsprozesses von dünnwandigen, profilierten Aussenwandpaneelen by Fasih Mohiuddin Syed from Mysore, India A Master thesis submitted to the Institute of Construction Informatics, Faculty of Civil Engineering, University of Technology Dresden in partial fulfilment of the requirements for the degree of Master of Science Responsible Professor : Prof. Dr.-Ing. habil. Karsten Menzel Second Examiner : Prof. Dr.-Ing. Raimar Scherer Advisor : Dipl.-Ing. Johannes Frank Schüler Dresden, 14th April, 2020 Task Sheet II Task Sheet Declaration III Declaration I confirm that this assignment is my own work and that I have not sought or used the inadmissible help of third parties to produce this work. I have fully referenced and used inverted commas for all text directly quoted from a source. Any indirect quotations have been duly marked as such. This work has not yet been submitted to another examination institution – neither in Germany nor outside Germany – neither in the same nor in a similar way and has not yet been published. Dresden, Place, Date (Signature) Acknowledgement IV Acknowledgement First, I would like to express my sincere gratitude to Prof. Dr.-Ing. habil. Karsten Menzel, Chair of the "Institute of Construction Informatics" for giving me this opportunity to work on my master thesis and believing in my work. I am very grateful to Dipl.-Ing. Johannes Frank Schüler for his encouragement, guidance and support during the course of work. I would like to thank all the staff from "Institute of Construction Informatics " for their valuable support. -
The Catenary
The Catenary Daniel Gent December 10, 2008 Daniel Gent The Catenary I The shape of the catenary was originally thought to be a parabola by Galileo, but this was proved false by the German mathmatitian Jungius in 1663. It was not until 1691 that the true shape of the catenary was discovered to be the hyperbolic cosine in a joint work by Leibnez, Huygens, and Bernoulli. History of the catenary. I The catenary is defined by the shape formed by a hanging chain under normal conditions. The name catenary comes from the latin word for chain catena. Daniel Gent The Catenary History of the catenary. I The catenary is defined by the shape formed by a hanging chain under normal conditions. The name catenary comes from the latin word for chain catena. I The shape of the catenary was originally thought to be a parabola by Galileo, but this was proved false by the German mathmatitian Jungius in 1663. It was not until 1691 that the true shape of the catenary was discovered to be the hyperbolic cosine in a joint work by Leibnez, Huygens, and Bernoulli. Daniel Gent The Catenary I The forces on the chain at the point (x,y) will be the tension in the chain (T) which is tangent to the chain, the weight of the chain (W), and the horizontal pull (H) at the origin. Now the magnitude of the weight is proportional to the distance (s) from the origin to the point (x,y). I Thus the sum of the forces W and H must be equal to −T , but since T is tangent to the chain the slope of H + W must equal f 0(x). -
Length of a Hanging Cable
Undergraduate Journal of Mathematical Modeling: One + Two Volume 4 | 2011 Fall Article 4 2011 Length of a Hanging Cable Eric Costello University of South Florida Advisors: Arcadii Grinshpan, Mathematics and Statistics Frank Smith, White Oak Technologies Problem Suggested By: Frank Smith Follow this and additional works at: https://scholarcommons.usf.edu/ujmm Part of the Mathematics Commons UJMM is an open access journal, free to authors and readers, and relies on your support: Donate Now Recommended Citation Costello, Eric (2011) "Length of a Hanging Cable," Undergraduate Journal of Mathematical Modeling: One + Two: Vol. 4: Iss. 1, Article 4. DOI: http://dx.doi.org/10.5038/2326-3652.4.1.4 Available at: https://scholarcommons.usf.edu/ujmm/vol4/iss1/4 Length of a Hanging Cable Abstract The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined yb a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor. Keywords Hanging Cable, Newton’s Method, Catenary Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License. -
The Trigonometry of Hyperbolic Tessellations
Canad. Math. Bull. Vol. 40 (2), 1997 pp. 158±168 THE TRIGONOMETRY OF HYPERBOLIC TESSELLATIONS H. S. M. COXETER ABSTRACT. For positive integers p and q with (p 2)(q 2) Ù 4thereis,inthe hyperbolic plane, a group [p, q] generated by re¯ections in the three sides of a triangle ABC with angles ôÛp, ôÛq, ôÛ2. Hyperbolic trigonometry shows that the side AC has length †,wherecosh†≥cÛs,c≥cos ôÛq, s ≥ sin ôÛp. For a conformal drawing inside the unit circle with centre A, we may take the sides AB and AC to run straight along radii while BC appears as an arc of a circle orthogonal to the unit circle.p The circle containing this arc is found to have radius 1Û sinh †≥sÛz,wherez≥ c2 s2, while its centre is at distance 1Û tanh †≥cÛzfrom A. In the hyperbolic triangle ABC,the altitude from AB to the right-angled vertex C is ê, where sinh ê≥z. 1. Non-Euclidean planes. The real projective plane becomes non-Euclidean when we introduce the concept of orthogonality by specializing one polarity so as to be able to declare two lines to be orthogonal when they are conjugate in this `absolute' polarity. The geometry is elliptic or hyperbolic according to the nature of the polarity. The points and lines of the elliptic plane ([11], x6.9) are conveniently represented, on a sphere of unit radius, by the pairs of antipodal points (or the diameters that join them) and the great circles (or the planes that contain them). The general right-angled triangle ABC, like such a triangle on the sphere, has ®ve `parts': its sides a, b, c and its acute angles A and B. -
Perspectives on Projective Geometry • Jürgen Richter-Gebert
Perspectives on Projective Geometry • Jürgen Richter-Gebert Perspectives on Projective Geometry A Guided Tour Through Real and Complex Geometry 123 Jürgen Richter-Gebert TU München Zentrum Mathematik (M10) LS Geometrie Boltzmannstr. 3 85748 Garching Germany [email protected] ISBN 978-3-642-17285-4 e-ISBN 978-3-642-17286-1 DOI 10.1007/978-3-642-17286-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011921702 Mathematics Subject Classification (2010): 51A05, 51A25, 51M05, 51M10 c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation,reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: deblik, Berlin Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) About This Book Let no one ignorant of geometry enter here! Entrance to Plato’s academy Once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, “and what is the use of a book,” thought Alice, “without pictures or conversations?” Lewis Carroll, Alice’s Adventures in Wonderland Geometry is the mathematical discipline that deals with the interrelations of objects in the plane, in space, or even in higher dimensions. -
Chapter 9 the Geometrical Calculus
Chapter 9 The Geometrical Calculus 1. At the beginning of the piece Erdmann entitled On the Universal Science or Philosophical Calculus, Leibniz, in the course of summing up his views on the importance of a good characteristic, indicates that algebra is not the true characteristic for geometry, and alludes to a “more profound analysis” that belongs to geometry alone, samples of which he claims to possess.1 What is this properly geometrical analysis, completely different from algebra? How can we represent geometrical facts directly, without the mediation of numbers? What, finally, are the samples of this new method that Leibniz has left us? The present chapter will attempt to answer these questions.2 An essay concerning this geometrical analysis is found attached to a letter to Huygens of 8 September 1679, which it accompanied. In this letter, Leibniz enumerates his various investigations of quadratures, the inverse method of tangents, the irrational roots of equations, and Diophantine arithmetical problems.3 He boasts of having perfected algebra with his discoveries—the principal of which was the infinitesimal calculus.4 He then adds: “But after all the progress I have made in these matters, I am no longer content with algebra, insofar as it gives neither the shortest nor the most elegant constructions in geometry. That is why... I think we still need another, properly geometrical linear analysis that will directly express for us situation, just as algebra expresses magnitude. I believe I have a method of doing this, and that we can represent figures and even 1 “Progress in the art of rational discovery depends for the most part on the completeness of the characteristic art. -
Fibonacci) Rabbit Hole Goes
European Scientific Journal May 2016 edition vol.12, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Why the Glove of Mathematics Fits the Hand of the Natural Sciences So Well : How Far Down the (Fibonacci) Rabbit Hole Goes David F. Haight Department of History and Philosophy, Plymouth State University Plymouth, New Hampshire, U.S.A. doi: 10.19044/esj.2016.v12n15p1 URL:http://dx.doi.org/10.19044/esj.2016.v12n15p1 Abstract Why does the glove of mathematics fit the hand of the natural sciences so well? Is there a good reason for the good fit? Does it have anything to do with the mystery number of physics or the Fibonacci sequence and the golden proportion? Is there a connection between this mystery (golden) number and Leibniz’s general question, why is there something (one) rather than nothing (zero)? The acclaimed mathematician G.H. Hardy (1877-1947) once observed: “In great mathematics there is a very high degree of unexpectedness, combined with inevitability and economy.” Is this also true of great physics? If so, is there a simple “pre- established harmony” or linchpin between their respective ultimate foundations? The philosopher-mathematician, Gottfried Leibniz, who coined this phrase, believed that he had found that common foundation in calculus, a methodology he independently discovered along with Isaac Newton. But what is the source of the harmonic series of the natural log that is the basis of calculus and also Bernhard Riemann’s harmonic zeta function for prime numbers? On the occasion of the three-hundredth anniversary of Leibniz’s death and the one hundredth-fiftieth anniversary of the death of Bernhard Riemann, this essay is a tribute to Leibniz’s quest and questions in view of subsequent discoveries in mathematics and physics. -
Ecaade 2021 Towards a New, Configurable Architecture, Volume 1
eCAADe 2021 Towards a New, Configurable Architecture Volume 1 Editors Vesna Stojaković, Bojan Tepavčević, University of Novi Sad, Faculty of Technical Sciences 1st Edition, September 2021 Towards a New, Configurable Architecture - Proceedings of the 39th International Hybrid Conference on Education and Research in Computer Aided Architectural Design in Europe, Novi Sad, Serbia, 8-10th September 2021, Volume 1. Edited by Vesna Stojaković and Bojan Tepavčević. Brussels: Education and Research in Computer Aided Architectural Design in Europe, Belgium / Novi Sad: Digital Design Center, University of Novi Sad. Legal Depot D/2021/14982/01 ISBN 978-94-91207-22-8 (volume 1), Publisher eCAADe (Education and Research in Computer Aided Architectural Design in Europe) ISBN 978-86-6022-358-8 (volume 1), Publisher FTN (Faculty of Technical Sciences, University of Novi Sad, Serbia) ISSN 2684-1843 Cover Design Vesna Stojaković Printed by: GRID, Faculty of Technical Sciences All rights reserved. Nothing from this publication may be produced, stored in computerised system or published in any form or in any manner, including electronic, mechanical, reprographic or photographic, without prior written permission from the publisher. Authors are responsible for all pictures, contents and copyright-related issues in their own paper(s). ii | eCAADe 39 - Volume 1 eCAADe 2021 Towards a New, Configurable Architecture Volume 1 Proceedings The 39th Conference on Education and Research in Computer Aided Architectural Design in Europe Hybrid Conference 8th-10th September -
PROJECTIVE GEOMETRY Contents 1. Basic Definitions 1 2. Axioms Of
PROJECTIVE GEOMETRY KRISTIN DEAN Abstract. This paper investigates the nature of finite geometries. It will focus on the finite geometries known as projective planes and conclude with the example of the Fano plane. Contents 1. Basic Definitions 1 2. Axioms of Projective Geometry 2 3. Linear Algebra with Geometries 3 4. Quotient Geometries 4 5. Finite Projective Spaces 5 6. The Fano Plane 7 References 8 1. Basic Definitions First, we must begin with a few basic definitions relating to geometries. A geometry can be thought of as a set of objects and a relation on those elements. Definition 1.1. A geometry is denoted G = (Ω,I), where Ω is a set and I a relation which is both symmetric and reflexive. The relation on a geometry is called an incidence relation. For example, consider the tradional Euclidean geometry. In this geometry, the objects of the set Ω are points and lines. A point is incident to a line if it lies on that line, and two lines are incident if they have all points in common - only when they are the same line. There is often this same natural division of the elements of Ω into different kinds such as the points and lines. Definition 1.2. Suppose G = (Ω,I) is a geometry. Then a flag of G is a set of elements of Ω which are mutually incident. If there is no element outside of the flag, F, which can be added and also be a flag, then F is called maximal. Definition 1.3. A geometry G = (Ω,I) has rank r if it can be partitioned into sets Ω1,..., Ωr such that every maximal flag contains exactly one element of each set. -
Euclidean Versus Projective Geometry
Projective Geometry Projective Geometry Euclidean versus Projective Geometry n Euclidean geometry describes shapes “as they are” – Properties of objects that are unchanged by rigid motions » Lengths » Angles » Parallelism n Projective geometry describes objects “as they appear” – Lengths, angles, parallelism become “distorted” when we look at objects – Mathematical model for how images of the 3D world are formed. Projective Geometry Overview n Tools of algebraic geometry n Informal description of projective geometry in a plane n Descriptions of lines and points n Points at infinity and line at infinity n Projective transformations, projectivity matrix n Example of application n Special projectivities: affine transforms, similarities, Euclidean transforms n Cross-ratio invariance for points, lines, planes Projective Geometry Tools of Algebraic Geometry 1 n Plane passing through origin and perpendicular to vector n = (a,b,c) is locus of points x = ( x 1 , x 2 , x 3 ) such that n · x = 0 => a x1 + b x2 + c x3 = 0 n Plane through origin is completely defined by (a,b,c) x3 x = (x1, x2 , x3 ) x2 O x1 n = (a,b,c) Projective Geometry Tools of Algebraic Geometry 2 n A vector parallel to intersection of 2 planes ( a , b , c ) and (a',b',c') is obtained by cross-product (a'',b'',c'') = (a,b,c)´(a',b',c') (a'',b'',c'') O (a,b,c) (a',b',c') Projective Geometry Tools of Algebraic Geometry 3 n Plane passing through two points x and x’ is defined by (a,b,c) = x´ x' x = (x1, x2 , x3 ) x'= (x1 ', x2 ', x3 ') O (a,b,c) Projective Geometry Projective Geometry -
Research Article Traditional Houses and Projective Geometry: Building Numbers and Projective Coordinates
Hindawi Journal of Applied Mathematics Volume 2021, Article ID 9928900, 25 pages https://doi.org/10.1155/2021/9928900 Research Article Traditional Houses and Projective Geometry: Building Numbers and Projective Coordinates Wen-Haw Chen 1 and Ja’faruddin 1,2 1Department of Applied Mathematics, Tunghai University, Taichung 407224, Taiwan 2Department of Mathematics, Universitas Negeri Makassar, Makassar 90221, Indonesia Correspondence should be addressed to Ja’faruddin; [email protected] Received 6 March 2021; Accepted 27 July 2021; Published 1 September 2021 Academic Editor: Md Sazzad Hossien Chowdhury Copyright © 2021 Wen-Haw Chen and Ja’faruddin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The natural mathematical abilities of humans have advanced civilizations. These abilities have been demonstrated in cultural heritage, especially traditional houses, which display evidence of an intuitive mathematics ability. Tribes around the world have built traditional houses with unique styles. The present study involved the collection of data from documentation, observation, and interview. The observations of several traditional buildings in Indonesia were based on camera images, aerial camera images, and documentation techniques. We first analyzed the images of some sample of the traditional houses in Indonesia using projective geometry and simple house theory and then formulated the definitions of building numbers and projective coordinates. The sample of the traditional houses is divided into two categories which are stilt houses and nonstilt house. The present article presents 7 types of simple houses, 21 building numbers, and 9 projective coordinates.