A Classification of Infographics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discover Materials Infographic Challenge
Website: www.discovermaterials.uk Twitter: @DiscovMaterials Instagram: @discovermaterials Email: [email protected] Discover Materials Infographic Challenge The Challenge: We would like you to produce an infographic that highlights and explores a material that has been important to you during the pandemic. We will be awarding prizes for the top two infographics based upon the following criteria: visual appeal content (facts/depth/breadth) range of sources Entries must be submitted to: [email protected] by 9pm (BST) on Sunday 2nd August and submitted as a picture file. Please include your name, as the author of the infographic, within the image. In submitting the infographic to be judged, you are agreeing that the graphic can be shared by Discover Materials more widely. Introduction: An infographic provides us with a short, interesting and timely manner to communicate a complex idea with the wider public. An important aspect of using an infographic is that our target is to make something with high shareability and this can be achieved by telling a good story with a design that conveys data in a manner that is easily interpreted, as highlighted in Figure 1. In this challenge we want you to consider a material that has been important in the pandemic. There are a huge range of materials that have been vitally important to us all during these chaotic and challenging times. We could imagine materials that have been important in personal protection & healthcare, materials that Figure 1: The overlapping aspects of a good infographic enable our new forms of engagement and https://www.flickr.com/photos/dashburst/8448339735 communication in the digital world, or the ‘day- to-day’ materials that we rely upon and without which we would find modern life incredibly difficult. -
Visual Literacy of Infographic Review in Dkv Students’ Works in Bina Nusantara University
VISUAL LITERACY OF INFOGRAPHIC REVIEW IN DKV STUDENTS’ WORKS IN BINA NUSANTARA UNIVERSITY Suprayitno School of Design New Media Department, Bina Nusantara University Jl. K. H. Syahdan, No. 9, Palmerah, Jakarta 11480, Indonesia [email protected] ABSTRACT This research aimed to provide theoretical benefits for students, practitioners of infographics as the enrichment, especially for Desain Komunikasi Visual (DKV - Visual Communication Design) courses and solve the occurring visual problems. Theories related to infographic problems were used to analyze the examples of the student's infographic work. Moreover, the qualitative method was used for data collection in the form of literature study, observation, and documentation. The results of this research show that in general the students are less precise in the selection and usage of visual literacy elements, and the hierarchy is not good. Thus, it reduces the clarity and effectiveness of the infographic function. This is the urgency of this study about how to formulate a pattern or formula in making a work that is not only good and beautiful but also is smart, creative, and informative. Keywords: visual literacy, infographic elements, Visual Communication Design, DKV INTRODUCTION Desain Komunikasi Visual (DKV - Visual Communication Design) is a term portrayal of the process of media in communicating an idea or delivery of information that can be read or seen. DKV is related to the use of signs, images, symbols, typography, illustrations, and color. Those are all related to the sense of sight. In here, the process of communication can be through the exploration of ideas with the addition of images in the form of photos, diagrams, illustrations, and colors. -
Blueprints Free
FREE BLUEPRINTS PDF Barbara Delinsky | 512 pages | 25 Feb 2016 | Little, Brown Book Group | 9780349405049 | English | London, United Kingdom Blueprints | Changing Lives and Shaping Futures in Southwest Pennsylvania and West Virginia How does Blueprints complicated structure with so many parts, materials and workers come together? The answer is in the history of blueprints. These documents are truly the Blueprints of any construction project but they have been around for some time now. So, where did blueprints originate from and where are they evolving today? Before blueprints evolved into their modern form, look and purpose, drawings from the medieval times appear to be their earliest formations. The Plan of St. Gall, is one of the oldest known surviving architectural plans. Some historians consider Blueprints 9th century drawing as the very beginning of the history of Blueprints. Mysteriously, the monastery depicted in the drawing was never actually built. So, a group in Germany is using this drawing, along with period tools and techniques, to learn Blueprints about architectural history. You can view a detailed Blueprints and models based on the plan here. The documents that emerged from the Blueprints era look more like modern blueprints than Blueprints ones from the Blueprints Period. In fact, Blueprints and engineer Filippo Brunelleschi Blueprints the camera obscura to copy architectural details from the classical ruins that inspired his work. Today, Brunelleschi is considered to be the father the modern history of blueprints. The architects of the Blueprints period brought architectural drawing Blueprints we know it into existence, precisely and accurately reproducing the detail Blueprints a structure via the tools of scale and perspective. -
Maps and Diagrams. Their Compilation and Construction
~r HJ.Mo Mouse andHR Wilkinson MAPS AND DIAGRAMS 8 his third edition does not form a ramatic departure from the treatment of artographic methods which has made it a standard text for 1 years, but it has developed those aspects of the subject (computer-graphics, quantification gen- erally) which are likely to progress in the uture. While earlier editions were primarily concerned with university cartography ‘ourses and with the production of the- matic maps to illustrate theses, articles and books, this new edition takes into account the increasing number of professional cartographer-geographers employed in Government departments, planning de- partments and in the offices of architects pnd civil engineers. The authors seek to ive students some idea of the novel and xciting developments in tools, materials, echniques and methods. The growth, mounting to an explosion, in data of all inds emphasises the increasing need for discerning use of statistical techniques, nevitably, the dependence on the com- uter for ordering and sifting data must row, as must the degree of sophistication n the techniques employed. New maps nd diagrams have been supplied where ecessary. HIRD EDITION PRICE NET £3-50 :70s IN U K 0 N LY MAPS AND DIAGRAMS THEIR COMPILATION AND CONSTRUCTION MAPS AND DIAGRAMS THEIR COMPILATION AND CONSTRUCTION F. J. MONKHOUSE Formerly Professor of Geography in the University of Southampton and H. R. WILKINSON Professor of Geography in the University of Hull METHUEN & CO LTD II NEW FETTER LANE LONDON EC4 ; © ig6g and igyi F.J. Monkhouse and H. R. Wilkinson First published goth October igj2 Reprinted 4 times Second edition, revised and enlarged, ig6g Reprinted 3 times Third edition, revised and enlarged, igyi SBN 416 07440 5 Second edition first published as a University Paperback, ig6g Reprinted 5 times Third edition, igyi SBN 416 07450 2 Printed in Great Britain by Richard Clay ( The Chaucer Press), Ltd Bungay, Suffolk This title is available in both hard and paperback editions. -
Graph Visualization and Navigation in Information Visualization 1
HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 1 Graph Visualization and Navigation in Information Visualization: a Survey Ivan Herman, Member, IEEE CS Society, Guy Melançon, and M. Scott Marshall Abstract—This is a survey on graph visualization and navigation techniques, as used in information visualization. Graphs appear in numerous applications such as web browsing, state–transition diagrams, and data structures. The ability to visualize and to navigate in these potentially large, abstract graphs is often a crucial part of an application. Information visualization has specific requirements, which means that this survey approaches the results of traditional graph drawing from a different perspective. Index Terms—Information visualization, graph visualization, graph drawing, navigation, focus+context, fish–eye, clustering. involved in graph visualization: “Where am I?” “Where is the 1 Introduction file that I'm looking for?” Other familiar types of graphs lthough the visualization of graphs is the subject of this include the hierarchy illustrated in an organisational chart and Asurvey, it is not about graph drawing in general. taxonomies that portray the relations between species. Web Excellent bibliographic surveys[4],[34], books[5], or even site maps are another application of graphs as well as on–line tutorials[26] exist for graph drawing. Instead, the browsing history. In biology and chemistry, graphs are handling of graphs is considered with respect to information applied to evolutionary trees, phylogenetic trees, molecular visualization. maps, genetic maps, biochemical pathways, and protein Information visualization has become a large field and functions. Other areas of application include object–oriented “sub–fields” are beginning to emerge (see for example Card systems (class browsers), data structures (compiler data et al.[16] for a recent collection of papers from the last structures in particular), real–time systems (state–transition decade). -
Toward Unified Models in User-Centered and Object-Oriented
CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design William Hudson Abstract Many members of the HCI community view user-centered design, with its focus on users and their tasks, as essential to the construction of usable user inter- faces. However, UCD and object-oriented design continue to develop along separate paths, with very little common ground and substantially different activ- ities and notations. The Unified Modeling Language (UML) has become the de facto language of object-oriented development, and an informal method has evolved around it. While parts of the UML notation have been embraced in user-centered methods, such as those in this volume, there has been no con- certed effort to adapt user-centered design techniques to UML and vice versa. This chapter explores many of the issues involved in bringing user-centered design and UML closer together. It presents a survey of user-centered tech- niques employed by usability professionals, provides an overview of a number of commercially based user-centered methods, and discusses the application of UML notation to user-centered design. Also, since the informal UML method is use case driven and many user-centered design methods rely on scenarios, a unifying approach to use cases and scenarios is included. 9.1 Introduction 9.1.1 Why Bring User-Centered Design to UML? A recent survey of software methods and techniques [Wieringa 1998] found that at least 19 object-oriented methods had been published in book form since 1988, and many more had been published in conference and journal papers. This situation led to a great 313 314 | CHAPTER 9 Toward Unified Models in User-Centered and Object-Oriented Design deal of division in the object-oriented community and caused numerous problems for anyone considering a move toward object technology. -
Infovis and Statistical Graphics: Different Goals, Different Looks1
Infovis and Statistical Graphics: Different Goals, Different Looks1 Andrew Gelman2 and Antony Unwin3 20 Jan 2012 Abstract. The importance of graphical displays in statistical practice has been recognized sporadically in the statistical literature over the past century, with wider awareness following Tukey’s Exploratory Data Analysis (1977) and Tufte’s books in the succeeding decades. But statistical graphics still occupies an awkward in-between position: Within statistics, exploratory and graphical methods represent a minor subfield and are not well- integrated with larger themes of modeling and inference. Outside of statistics, infographics (also called information visualization or Infovis) is huge, but their purveyors and enthusiasts appear largely to be uninterested in statistical principles. We present here a set of goals for graphical displays discussed primarily from the statistical point of view and discuss some inherent contradictions in these goals that may be impeding communication between the fields of statistics and Infovis. One of our constructive suggestions, to Infovis practitioners and statisticians alike, is to try not to cram into a single graph what can be better displayed in two or more. We recognize that we offer only one perspective and intend this article to be a starting point for a wide-ranging discussion among graphics designers, statisticians, and users of statistical methods. The purpose of this article is not to criticize but to explore the different goals that lead researchers in different fields to value different aspects of data visualization. Recent decades have seen huge progress in statistical modeling and computing, with statisticians in friendly competition with researchers in applied fields such as psychometrics, econometrics, and more recently machine learning and “data science.” But the field of statistical graphics has suffered relative neglect. -
Defining Visual Rhetorics §
DEFINING VISUAL RHETORICS § DEFINING VISUAL RHETORICS § Edited by Charles A. Hill Marguerite Helmers University of Wisconsin Oshkosh LAWRENCE ERLBAUM ASSOCIATES, PUBLISHERS 2004 Mahwah, New Jersey London This edition published in the Taylor & Francis e-Library, 2008. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Copyright © 2004 by Lawrence Erlbaum Associates, Inc. All rights reserved. No part of this book may be reproduced in any form, by photostat, microform, retrieval system, or any other means, without prior written permission of the publisher. Lawrence Erlbaum Associates, Inc., Publishers 10 Industrial Avenue Mahwah, New Jersey 07430 Cover photograph by Richard LeFande; design by Anna Hill Library of Congress Cataloging-in-Publication Data Definingvisual rhetorics / edited by Charles A. Hill, Marguerite Helmers. p. cm. Includes bibliographical references and index. ISBN 0-8058-4402-3 (cloth : alk. paper) ISBN 0-8058-4403-1 (pbk. : alk. paper) 1. Visual communication. 2. Rhetoric. I. Hill, Charles A. II. Helmers, Marguerite H., 1961– . P93.5.D44 2003 302.23—dc21 2003049448 CIP ISBN 1-4106-0997-9 Master e-book ISBN To Anna, who inspires me every day. —C. A. H. To Emily and Caitlin, whose artistic perspective inspires and instructs. —M. H. H. Contents Preface ix Introduction 1 Marguerite Helmers and Charles A. Hill 1 The Psychology of Rhetorical Images 25 Charles A. Hill 2 The Rhetoric of Visual Arguments 41 J. Anthony Blair 3 Framing the Fine Arts Through Rhetoric 63 Marguerite Helmers 4 Visual Rhetoric in Pens of Steel and Inks of Silk: 87 Challenging the Great Visual/Verbal Divide Maureen Daly Goggin 5 Defining Film Rhetoric: The Case of Hitchcock’s Vertigo 111 David Blakesley 6 Political Candidates’ Convention Films:Finding the Perfect 135 Image—An Overview of Political Image Making J. -
Survey of Information Visualization Books
A Survey of Information Visualization Books D. Rees and R. S. Laramee Swansea University, UK Abstract Information visualization is a rapidly evolving field with a growing volume of scientific literature and texts continually published. To keep abreast of the latest developments in the domain, survey papers and state-of-the-art reviews provide valuable tools for managing the large quantity of scientific literature. Recently a survey of survey papers (SoS) was published to keep track of the quantity of refereed survey papers in information visualization conferences and journals. However no such resources exist to inform readers of the large volume of books being published on the subject, leaving the possibility of valuable knowledge being overlooked. We present the first literature survey of information visualization books that addresses this challenge by surveying the large volume of books on the topic of information visualization and visual analytics. This unique survey addresses some special challenges associated with collections of books (as opposed to research papers) including searching, browsing and cost. This paper features a novel two-level classification based on both books and chapter topics examined in each book, enabling the reader to quickly identify to what depth a topic of interest is covered within a particular book. Readers can use this survey to identify the most relevant book for their needs amongst a quickly expanding collection. In indexing the landscape of information visualization books, this survey provides a valuable resource to both experienced researchers and newcomers in the data visualization discipline. CCS Concepts •General and reference ! Surveys and overviews; General literature; •Human-centered computing ! Information visual- ization; "The book you don’t read won’t help." − Jim Rohn - entrepreneur, Visualization books published each year author, motivational speaker. -
VAN-WINKLE-DISSERTATION-2016.Pdf (2.773Mb)
Advancing a Critical Framework for the Identification and Analysis of Visual Euphemism in Technical Communication Visuals by Kevin W. Van Winkle, B.A., M.A. A Dissertation In TECHNICAL COMMUNICATION AND RHETORIC Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Dr. Sean Zdenek Chair of Committee Dr. Craig Baehr Dr. Joyce Carter Dr. Mark Sheridan Dean of the Graduate School May, 2016 Copyright 2016, Kevin W. Van Winkle Texas Tech University, Kevin Van Winkle, May 2016 ACKNOWLEDGMENTS To the chair of this dissertation, Dr. Sean Zdenek, thank you for your early interest in this project and continued support throughout it. Your feedback, questions, and critiques were invaluable, ultimately helping me to achieve a deeper understanding of the topics and issues discussed herein. To Dr. Craig Baehr, thank you, as well, for the insight you were able to provide me during this dissertation process. Also, thank you for helping me to ensure that this dissertation was a “tech comm” dissertation. It was very important to me that it be such, and having you as a committee member guaranteed that it would be. To Dr. Joyce Carter, thank you for sitting on my committee and your willingness to help me complete this dissertation. More than this, though, I want to thank you for your leadership over the TCR program. Upon listening to the “You-Are- Texas-Tech” speech on the first day of my first May seminar, I felt both fortunate and proud. Because of you and the entire TCR faculty and students I have had the opportunity to study and work with, I still feel the same way today. -
Poster Summary
Grand Challenge Award 2008: Support for Diverse Analytic Techniques - nSpace2 and GeoTime Visual Analytics Lynn Chien, Annie Tat, Pascale Proulx, Adeel Khamisa, William Wright* Oculus Info Inc. ABSTRACT nSpace2 allows analysts to share TRIST and Sandbox files in a GeoTime and nSpace2 are interactive visual analytics tools that web environment. Multiple Sandboxes can be made and opened were used to examine and interpret all four of the 2008 VAST in different browser windows so the analyst can interact with Challenge datasets. GeoTime excels in visualizing event patterns different facets of information at the same time, as shown in in time and space, or in time and any abstract landscape, while Figure 2. The Sandbox is an integrating analytic tool. Results nSpace2 is a web-based analytical tool designed to support every from each of the quite different mini-challenges were combined in step of the analytical process. nSpace2 is an integrating analytic the Sandbox environment. environment. This paper highlights the VAST analytical experience with these tools that contributed to the success of these The Sandbox is a flexible and expressive thinking environment tools and this team for the third consecutive year. where ideas are unrestricted and thoughts can flow freely and be recorded by pointing and typing anywhere [3]. The Pasteboard CR Categories: H.5.2 [Information Interfaces & Presentations]: sits at the bottom panel of the browser and relevant information User Interfaces – Graphical User Interfaces (GUI); I.3.6 such as entities, evidence and an analyst’s hypotheses can be [Methodology and Techniques]: Interaction Techniques. copied to it and then transferred to other Sandboxes to be assembled according to a different perspective for example. -
Master Thesis SC Final
The Potential Role for Infographics in Science Communication By: Laura Mol (2123177) Biomedical Sciences Master Thesis Communication specialization (9 ECTS) Vrije Universiteit Amsterdam Under supervision of dr. Frank Kupper, Athena Institute, Vrije Universiteit Amsterdam November 2011 Cover art: ‘Nonsensical Infograhics’ by Chad Hagen (www.chadhagen.com) "Tell me and I'll forget; show me and I may remember; involve me and I'll understand" - Chinese proverb - 2 Index !"#$%&'$()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(*! "#!$%&'()*+&,(%())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(+! ,),! !(#-.%$(-/#$.%0(.1(#'/23'2('.4453/'&$/.3())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(6! ,)7! 8#/39(/4&92#(/3(#'/23'2('.4453/'&$/.3()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(:! -#!$%.(/'012,+3()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(,;! 7),! <3$%.=5'$/.3())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(,;! 7)7! >/#$.%0()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(,,! 7)?! @/112%23$(AB2423$#())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(,:! 7)*! C5%D.#2()))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))(,:!