Flagler County -Historic Properties Study-1987-Nov

Total Page:16

File Type:pdf, Size:1020Kb

Flagler County -Historic Properties Study-1987-Nov HISTORIC PROPERTIES SURVEY OF FLAGLER COUNTY, FLORIDA Historic Property Associates, Inc. St. Augustine, Florida November, 1987 TABLE OF CONTENTS List of Illustrations. i Project Staff ••.. .ii Acknowledgements. ·-· . iii Survey Criteria. .vi Survey Method ... ......................... .ix Historical Development of Flagler County. .. 1 Architectural Analysis of Flagler. .31 Prehistory of Flagler County ...••. .45 Bibliography. .62 Bibliography (Prehistory) . .71 Recommendations . .76 Appendix: Inventory of Buildings Preservation Laws Flagler IL USTRA TIO NS Bulow Plantation .....••........•.•..............•.••.•.. cover Location of Flagler County, Florida. .v Map of Flagler County, Florida ..............•..•......•.•. xii Turpentine Street ............••............................ 30 Railroad Street 41 James F. Lambert House 42 Holden House . • • • • • • • • • • • 4 3 St. Mary's Church Korona ..••..••..••.•..••..••..••.•••••... 44 Archaeological Map .........................•............... 61 Flagler i PROJECT STAFF Coordinator: Paul L. Weaver, M.A. Architectural History: Paul L. Weaver, M.A. Historical Research: Paul L. Weaver, M.A. Leona Moody Knight Norma Turner Jamie Likens Photography and Graphics: Paul L. Weaver, M.A. James Quine Gregg Maxey Computer Applications: William R. Adams, Ph.D. Clerical Assistance: Christina Costello Juanita c. Potter The survey was made possible by funds and services provided by: Board of County Commissioners of Flagler County, Florida, Marvin w. Henry, Chairman The Division of Historic Resources, George Percy, Director and State Historic Preservation Officer Florida Department of State, Jim Smith, Secretary Flagler ii ACKNOWLEDGMENTS A successful survey of historic properties requires the efforts and cooperation of a variety of individuals and groups within a community. Inevitably, the survey team accumulates debts which it can only acknowledge. First, we would like to thank the Flagler County Historical Society, its officers, and in particular, its president, Nancy Dance. Nancy, despite an extremely busy schedule, has coordinated volunteer workers, provided research materials, and been willing to assist with even the most mundane of tasks. If any one person deserves credit for the success of the survey, it is she. Volunteers from the Flagler County Historical Society provided much - of the historical information contained in the survey report and Florida Master Site File forms. Those who contributed their time and effort to the project were Tom Lenssen, Chuck Gabrielle, Audrey Darrow Long, Jamie Likens, Norma Turner, and Leona Moody Knight. Norma and Leona are worthy of special recognition. Both have been keenly interested in local history and have voluntarily served as stewards of many of the most valuable and irreplaceable records of the county's history. They have been eyewitnesses to many of the events which shaped the history of the county and have personally known virtually all of its significant business, civrc, and political leaders. Leona, especially, is closely linked with the history of the county. Her father, I.I. Moody, was the individual most directly responsible for the creation of the county and its economic development during the first ,two decades of the twentieth century. Both she and Norma have been an invaluable sources of information, and we wish to thank them greatly for their assistance. We also wish to thank Jamie Likens for helping publicize the project and for always being willing and able to assist in any way possible. Activities such as the historic properties survey could not be undertaken without financial support. We would like to express our gratitude to the Historical Society and Board of County Commissioners of Flagler County, Marvin W. Henry, Chairman.° for contributing in-kind services and funds to the survey. We would also like to acknowledge State ~resent.ative Hamilton Upchurch and Senator Mattox Hair for their support of funding for historic preservation 7n the Florida state legislature. We would further like to thank a number of Flagler County Official for their cooperation. We would especially like to recognized Dave Bailey, _c';;nty _Administrator; Ken Koch, Dl!ec_!Q!... of Planning; John Seay, e_roperty pprarser; and Guy Sapp. Dave has administered the Department Flagler iii of State grant that funded the survey. Ken provided historical and planning information and assisted with mapping for the final survey report. John and Guy were of tremendous assistance in providing information about ownership of properties and legal descriptions. The preparation of the archaeological portion of the report was facilitated by the significant contributiions of Jim Miller, Henry Baker, and Ray Willis. We performed considerable research at the Library of Florida History, University of Florida. As always, Directress Elizabeth Alexander and Bruce Cliapell and Stephen Kerber of her staff were generous with their facilities and their knowledge of the collections of the Library. Dr. Helen Armstrong of the University of Florida Map Library allowed us to make copies of the Sanborn Fire Insurance Maps of Bunnell for which we are most grateful. We would also like to thank the staff of the Bureau of Historic Preservation, especially Carl Shiver, Fred Gaske, and Michael Wisen6aker, ·· who provided technical assistance and administrative support throughout the project. We must also credit Suzanne Walker, Chief of the Bureau of Historic Preservation; George Percy, Director of the Division of Historic Resources; and former Secretary of State George Firestone for their leadership in moving Florida to the forefront of historic preservation in the United States. Finally, we must acknowledge the residents of Flagler County who answered our questions and permitted the site inspections that we made and the photographs which we took. We hope the survey will serve its intended role in the preservation of their county's cultural legacy. Flagler iv •TALLAHASSEE ORLANDO • MILES 0 50 100 0 Location of Flagler County Figure 1 SURVEY CRITERIA All surveys conducted in association with the Division of Historic Resources, Florida Department of State, utilize the criteria for placement of historic properties on the National Register of Historic Places as a basis for site evaluations. In this way, the survey results can be used as an authoritative data bank for those agencies required to comply with both state and federal preservation regulations. The criteria are worded in a subjective manner in order to provide for the diversity of resources in the United States. The following is taken from criteria published by United States Department of the Interior to evaluate properties for possible inclusion in the National Register. Criteria for Evaluation The quality of significance in American history, architecture, archaeology, and culture is present in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and: A) that are associated with events that have made a significant contribution to broad patterns of our history; or B) that are associated with the lives of persons significant in the past; or C) that embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or D) that have yielded, or may be likely to yield, information important in pre-history or history. Certain properties shall not ordinarily be considered for inclusion in the National Register. They include cemeteries, birthplaces or graves of historical figures, properties owned by religious institutions or used for religious purposes, structures that have been moved from their original locations, reconstructed historic buildings, properties primarily commemorative in nature, and properties that have achieved significance within the past fifty years. However, such properties will qualify if they are integral parts of districts that do meet the criteria or if they fall within the following categories: A) a religious property deriving primary significance from architectural or artistic distinction or historical importance; or B) a building or structure from its original location but which is Flagler vi significant primarily for architectural value, or which is the surviving structure most importantly associated with a historic person or event; or C) a birthplace or grave of a historical figure of outstanding importance if there is no appropriate site or building directly associated with his productive life; or D) a cemetery which derives its primary significance from graves of persons of transcendent importance, from age, from distinctive design features, or from association with historic events; or E) a reconstructed building when accurately executed in a suitable environment and presented in a dignified manner as part of a restoration master plan, and when no other building or structure with the same association has survived; or F) a property primarily commemorative in intent if design, age, tradition, or symbolic value has invested it with its own historical significance; or G) a property achieving significance within the past fifty years if it is of exceptional importance. The Division of Historic Resources utilizes the same criteria in a somewhat less restrictive manner in selecting properties to be placed in the Florida
Recommended publications
  • Lacustrine Coquinas and Hybrid Deposits from Rift Phase Pre-Salt
    Journal of South American Earth Sciences 95 (2019) 102254 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Lacustrine coquinas and hybrid deposits from rift phase: Pre-Salt, lower T Cretaceous, Campos Basin, Brazil Vinicius Carbone Bernardes de Oliveiraa,b,*, Carlos Manuel de Assis Silvaa, Leonardo Fonseca Borghib, Ismar de Souza Carvalhob a Petrobras Research and Development Center (CENPES), Avenida Horacio de Macedo, 950, Ilha do Fundao – Cidade Universitaria, Rio de Janeiro, RJ, 21949-915, Brazil b Universidade Federal do Rio de Janeiro, Centro de Ciencias Matematicas e da Natureza, Instituto de Geociencias, Departamento de Geologia, Programa de Pos-graduacao em Geologia, Av. Athos da Silveira Ramos, 274, Bloco F, Ilha do Fundao – Cidade Universitaria, Rio de Janeiro, RJ, 21949-900, Brazil ARTICLE INFO ABSTRACT Keywords: This study presents a facies characterization, facies succession and conceptual depositional model of the Pre-salt Coqueiros Formation, Lower Cretaceous of Campos Basin, based on core analyses of two wells. WELL-1 is a Rift sedimentation shallow water drilling located at south of Campos Basin within the Badejo structural high, and WELL-2 is an ultra Coquinas deep water drilling located at north, over the “External High”. Ten carbonate facies, three siliciclastic facies, two Hybrid deposits magnesium clay mineral rich facies and two hybrid facies were identified. The carbonate facies were defined as Lower cretaceous rudstone, grainstone, packstone and mud supported carbonate rock, composed of bivalves, ostracods, and rare gastropods. Bivalve shells, mostly disarticulated with distinct degrees of fragmentation, characterized the main components of the ten carbonate facies.
    [Show full text]
  • How Pumping Sands on NC Beaches
    The Risks of Renourishment: North Carolina Coastal Federation How pumping sand on North Carolina’s beaches can affect Sea Turtles, Mole Crabs and other Critters April 2002 Who We Are The North Carolina Coastal Federation (NCCF) is the state’s largest non-profit organization working to restore and protect the coast. NCCF headquarters are at 3609 Highway 24 in Ocean between Morehead City and Swansboro and are open Monday through Friday. The headquarters houses NCCF’s main offices, a nature shop, library, and information area. NCCF also operates a field office at 3806-B Park Avenue in Wilmington. For more information call 252-393-8185 or visit our website at www.nccoast.org. This report was written by Ted Wilgis, the Federation’s Cape Fear Coastkeeper, and edited by Frank Tursi, the Cape Lookout Coastkeeper, and Jim Stephenson, Program Analyst. All are closely monitoring beach renourishment projects in North Carolina during the time covered in this report. Wilgis and Tursi also took all of the photographs. Cover Photo Bulldozers work the new sand being pumped onto the beach at Fort Macon State Park in Carteret County. 2 Index Executive Summary.................................................4 Recommendations....................................................5 Background..............................................................6 Sea Turtles ........................................................ 7-11 Mole Crabs and Other Critters...............................12 Other Effects ..........................................................13
    [Show full text]
  • Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee
    Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee By ROBERT C. MILICI and HELMUTH WEDOW, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Milici, Robert C 1931- Upper Ordovician and Silurian stratigraphy in Sequatchie Valley and parts of the adjacent valley and ridge, Tennessee. (Geological Survey professional paper; 996) Bibliography: p. Supt. of Docs. no.: I 19.16:996 1. Geology, Stratigraphic--Ordovician. 2. Geology, Stratigraphic--Silurian. 3. Geology--Tennessee--Sequatchie Valley. 4. Geology--Tennessee--Chattanooga region. I. Wedow, Helmuth, 1917- joint author. II: Title. Upper Ordovician and Silurian stratigraphy in Sequatchie Valley .... III. Series: United States. Geological Survey. Professional paper; 996. QE660.M54 551.7'310976877 76-608170 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03002·1 CONTENTS Page Abstract 1 Introduction -----------------------------------------------------------------------------
    [Show full text]
  • GROUND-WATER RESOURCES of FLAGLER COUNTY, FLORIDA by A.S
    GROUND-WATER RESOURCES OF FLAGLER COUNTY, FLORIDA By A.S. Navoy and L.A. Bradner U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 87-4021 Prepared in cooperation with FLAGLER COUNTY and the ST. JOHNS RIVER WATER MANAGEMENT DISTRICT Tallahassee, Florida 1987 DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section Suite 3015 Federal Center, Bldg. 810 227 North Bronough Street Box 25425 Tallahassee, Florida 32301 Denver, Colorado 80225 CONTENTS Page Abstract............................................................. 1 Introduction......................................................... 2 Purpose and scope............................................... 2 Previous investigations.......................................... 2 Acknowledgments................................................. 4 Environmental setting........................... ..................... 4 Physiography and drainage....................................... 4 Rainfall and evapotranspiration................................. 6 Geology......................................................... 6 Hydrogeology......................................................... 8 Aquifers........................................................ 8 Upper Floridan aquifer..................................... 8 Intermediate aquifer system...............................
    [Show full text]
  • Seismic Facies/Geometries of the Pre-Salt Limestone Units and Newly-Identified Exploration Trends Within the Santos and Campos Basins, Brazil
    Seismic facies/geometries of the pre-salt limestone units and newly-identified exploration trends within the Santos and Campos basins, Brazil Senira Kattah *, PGS Petroleum Geo-Services Yermek Balabekov, PGS Petroleum Geo-Services Copyright 2015, SBGf - Sociedade Brasileira de Geofísica exploration targets in the pre-salt succession of Campos and Santos basins, proven by successful performance This paper was prepared for presentation during the 14th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, August 3-6, 2015. tests on Búzios and Libra discoveries. Contents of this paper were reviewed by the Technical Committee of the 14th The pre-salt hydrocarbon play fairway extends from the International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or Santos basin in the south through the Campos basin to storage of any part of this paper for commercial purposes without the written consent the north, possibly reaching the Espirito Santo Basin. It is of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ approximately 800 km from SW to NE and 200 km from NW to SE, extending into water depths exceeding 2,000 Abstract m. The NE trend approximates to the crustal extension of Based on preliminary seismic/geological the Early Cretaceous rift fabric, whereas the NW trend interpretation of nearly 36,000 sq. km of 3D PSDM reflects transfer/accomodation zones with transpression surveys and analogies with the pre-salt hydrocarbon and/or transtension regimes, mostly active during late commercial and sub-commercial discoveries, this phases of the rift development.
    [Show full text]
  • BISCAYNE NATIONAL PARK the Florida Keys Begin with Soldier Key in the Northern Section of the Park and Continue to the South and West
    CHAPTER TWO: BACKGROUND HISTORY GEOLOGY AND PHYSICAL GEOGRAPHY OF BISCAYNE NATIONAL PARK The Florida Keys begin with Soldier Key in the northern section of the Park and continue to the south and west. The upper Florida Keys (from Soldier to Big Pine Key) are the remains of a shallow coral patch reef that thrived one hundred thousand or more years ago, during the Pleistocene epoch. The ocean level subsided during the following glacial period, exposing the coral to die in the air and sunlight. The coral was transformed into a stone often called coral rock, but more correctly termed Key Largo limestone. The other limestones of the Florida peninsula are related to the Key Largo; all are basically soft limestones, but with different bases. The nearby Miami oolitic limestone, for example, was formed by the precipitation of calcium carbonate from seawater into tiny oval particles (oolites),2 while farther north along the Florida east coast the coquina of the Anastasia formation was formed around the shells of Pleistocene sea creatures. When the first aboriginal peoples arrived in South Florida approximately 10,000 years ago, Biscayne Bay was a freshwater marsh or lake that extended from the rocky hills of the present- day keys to the ridge that forms the current Florida coast. The retreat of the glaciers brought about a gradual rise in global sea levels and resulted in the inundation of the basin by seawater some 4,000 years ago. Two thousand years later, the rising waters levelled off, leaving the Florida Keys, mainland, and Biscayne Bay with something similar to their current appearance.3 The keys change.
    [Show full text]
  • Morphology and Histology of Acanthodian Fin Spines from the Late Silurian Ramsasa E Locality, Skane, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E
    Morphology and histology of acanthodian fin spines from the late Silurian Ramsasa E locality, Skane, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E. Ahlberg To cite this version: Anna Jerve, Oskar Bremer, Sophie Sanchez, Per E. Ahlberg. Morphology and histology of acanthodian fin spines from the late Silurian Ramsasa E locality, Skane, Sweden. Palaeontologia Electronica, Coquina Press, 2017, 20 (3), pp.20.3.56A-1-20.3.56A-19. 10.26879/749. hal-02976007 HAL Id: hal-02976007 https://hal.archives-ouvertes.fr/hal-02976007 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Palaeontologia Electronica palaeo-electronica.org Morphology and histology of acanthodian fin spines from the late Silurian Ramsåsa E locality, Skåne, Sweden Anna Jerve, Oskar Bremer, Sophie Sanchez, and Per E. Ahlberg ABSTRACT Comparisons of acanthodians to extant gnathostomes are often hampered by the paucity of mineralized structures in their endoskeleton, which limits the potential pres- ervation of phylogenetically informative traits. Fin spines, mineralized dermal struc- tures that sit anterior to fins, are found on both stem- and crown-group gnathostomes, and represent an additional potential source of comparative data for studying acantho- dian relationships with the other groups of early gnathostomes.
    [Show full text]
  • Florida's Rocks and Minerals
    FLORIDA’S ROCKS KEY LARGO LIMESTONE: The Key Largo red sandy clay formations of the central peninsula Limestone is a hard, white to light gray rock which and northwestern part of the state. No commercial CHERT: Chert is also known as flint or flint rock and contains numerous fossil corals. The Key Largo use is made of Florida sandstone, though it has been is a deposit of microcrystalline silica. Florida’s cherts Limestone extends on the surface from Soldier Key on used on a very limited scale as a building stone. are generally gray in color, though some are bright the north to the New Harbor Keys just south of Big Pine shades of blue, red, yellow and orange. It is Key. FLORIDA'S MINERALS characterized by its extreme hardness and is found in association with some of the limestone formations, MIAMI LIMESTONE: The Miami Limestone is a ANHYDRITE: The mineral anhydrite is an especially the Ocala. Florida’s Native Americans used soft to hard, recrystallized limestone. Near the east coast, anhydrous calcium sulfate. It is closely related to the chert in the manufacturing of axes, spear heads and it is composed mainly of ooliths with some quartz sand mineral gypsum but has a marble-like texture and arrow points. and fossils. Inland, it is a fossiliferous limestone with usually shows no crystal form. Anhydrite has a some sand. Ooliths are small rounded grains that look white, gray or brown color and a white streak. It is COMMON CLAY: Another sedimentary rock found like fish eggs and are composed of layers of calcite harder than calcite and does not effervesce in throughout Florida, common clay is sticky and is deposited around sand grains or fossil fragments.
    [Show full text]
  • Sedimentary Rocks
    Sedimentary Rocks Adapted from Brunkel (2012) What is a sedimentary rock? . Product of mechanical and chemical weathering and erosion . 5% (by volume) of Earth’s outer 10 miles From Rocks to Soils Fresh Rocks (I) Weak Rocks - Stiff Soils (II-V) Soils (VI) Erosion – Point A to Point B . Gravity . Sometimes stuff rolls downhill . Water . Obvs the largest mover of sediments . Wind . Moves a lot of small stuff – fine sand, silt . Ice . Moves a lot of stuff, all sizes, in one big push Erosion . Where does the sediment stop? . What happens to it when it stops? Sediments Sediments form by: . Weathering of rocks (mainly continental rocks) . The remains of small skeleton building organisms . Inorganic crystals that precipitate from solution Sediments . Sediments are small pieces rocks (or minerals) from other rocks . Sediments are transported and deposited by erosional processes . Sediments go through the process of lithification to become sedimentary rocks Lithification . the process of turning sediments into rocks . Compaction and Cementation . The Matrix Turning sediment into rock sediment rock Sedimentary rocks . Provide evidence of past environments .i.e, Limestone reefs indicate past tropical climate, dune sandstones indicate past arid climate and show wind direction. .Often contain fossils Sedimentary rocks . Sedimentary rocks economically important .Coal .Petroleum and natural gas .Sources of iron, aluminum, and manganese 2 Types of sedimentary rocks . Detrital (Clastic) sedimentary rocks – formed from sediment that was transported as solid particles (clasts) of quartz, clay, feldspar, mica. 2 Types of sedimentary rocks . Chemical sedimentary rocks – formed from sediment that was precipitated from solution through metabolism by organisms or by inorganic precipitation.
    [Show full text]
  • Sedimentary Rocks and the Rock Cycle
    Sedimentary Rocks and the Rock Cycle Designed to meet South Carolina Department of Education 2005 Science Academic Standards 1 Table of Contents What are Rocks? (slide 3) Major Rock Types (slide 4) (standard 3-3.1) The Rock Cycle (slide 5) Sedimentary Rocks (slide 6) Diagenesis (slide 7) Naming and Classifying Sedimentary Rocks (slide 8) Texture: Grain Size (slide 9), Sorting (slide 10) , and Rounding (slide 11) Texture and Weathering (slide 12) Field Identification (slide 13) Classifying Sedimentary Rocks (slide 14) Sedimentary Rocks: (slide 15) Clastic Sedimentary Rocks: Sandstone (16) , Siltstone (17), Shale (18), Mudstone (19) , Conglomerate (20), Breccia (21) , and Kaolin (22) Chemical Inorganic Sedimentary Rocks : Dolostone (23) and Evaporites (24) Chemical / Biochemical Sedimentary Rocks: Limestone (25) , Coral Reefs (26), Coquina and Chalk (27), Travertine (28) and Oolite (29) Chemical Organic Sedimentary Rocks : Coal (30), Chert (31): Flint, Jasper and Agate (32) Stratigraphy (slide 33) and Sedimentary Structures (slide 34 ) Sedimentary Rocks in South Carolina (slide 35) Sedimentary Rocks in the Landscape (slide 36) South Carolina Science Standards (slide 37) Resources and References (slide 38) 2 What are Rocks? Most rocks are an aggregate of one or more minerals and a few rocks are composed of non-mineral matter. There are three major rock types: 1. Igneous 2. Metamorphic 3. Sedimentary 3 Table of Contents Major Rock Types Igneous rocks are formed by the cooling of molten magma or lava near, at, or below the Earth’s surface. Sedimentary rocks are formed by the lithification of inorganic and organic sediments deposited at or near the Earth’s surface. Metamorphic rocks are formed when preexisting rocks are transformed into new rocks by elevated heat and pressure below the Earth’s surface.
    [Show full text]
  • Larval Cestode Parasites of Edible Mollusks of the Northeastern Gulf of Mexico
    Gulf and Caribbean Research Volume 6 Issue 1 January 1977 Larval Cestode Parasites of Edible Mollusks of the Northeastern Gulf of Mexico Edwin W. Cake Jr. Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Cake, E. W. Jr. 1977. Larval Cestode Parasites of Edible Mollusks of the Northeastern Gulf of Mexico. Gulf Research Reports 6 (1): 1-8. Retrieved from https://aquila.usm.edu/gcr/vol6/iss1/1 DOI: https://doi.org/10.18785/grr.0601.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Kesearch Reports, Val. 6, No. 1, 1-8 LARVAL CESTODE PARASITES OF EDIBLE MOLLUSKS OF THE NORTHEASTERN GULF OF MEXICO EDWIN W. CAKE, JR. Oyster Biology Sectioti, Gulf Coast RcJseurcli Laboratory, Ocean Springs, Afississippi 39564 .4BSTRAL'T Ten distinct species of larval cestodes were obtained from 43 ediHe, or potentially edible, benthic mollusks of the northeastern Gulf of Mexico. Three of the infected mollusks, American oysters, Crassostrea virginica (Gmelin), Atlantic bay scallops, Argopecten irradians concentricus (Say), and sunray venus clums, Manocallisfa nimhosa (Lightfoot), are important commercial species in the eastern Gulf and the remainder are occasionally eaten by epicurean shellfishermen or \vcre consumed by prehistoric, ahoriFina1 Indians of the Gulf coast. The cestodes represent four orders, seven families and iiinc rccogized genera and include tlie trypanorhynclis.
    [Show full text]
  • Florida Aquifer Geology
    Florida Aquifer Geology September 2016 Sampler Training Workshop Thomas Seal, ES III Watershed Monitoring Section (WMS) Water Quality Assessment Program DEAR Tallahassee ● Aquifer Basics – Essential Definitions An aquifer is a rock or sediment layer that contains and transmits ground water. An aquitard is a rock or sediment layer that slows down or prevents ground water flow. Porosity is the amount of pore (void) space between the grains of a rock or sediment sample. Porosity values range from 0% up to 35%. Permeability is the ability of a sample to transmit ground water through interconnected pores. Permeability can be measured in the laboratory with a soil or even a rock (drill core) sample. Aquifer Basics - Confined vs Unconfined Ground water samples collected for the Status Network or the Ground Water Trend Network are from both unconfined and confined aquifers. A confined aquifer is confined beneath an aquitard, whereas an unconfined aquifer has no overlying aquitard layer. Confined aquifers can build up (artesian) pressure. A productive aquifer such as the Floridan aquifer in north Florida, or the Biscayne Aquifer in south Florida, has both high porosity and high permeability. Unconfined Aquifer Confined Aquifer Aquifer Basics - Rock types Hydrogeologists have defined at least (5) types of water-yielding aquifers in North America. 1. Sandstone aquifers – e.g., Oglala Aquifer, Great Plains, central US; Edwards Aquifer, Texas 2. *Carbonate rock (limestone, dolostone) aquifers – e.g., Floridan Aquifer, SE US; Biscayne Aquifer, S.FL 3. *Unconsolidated sand and gravel aquifers – SE Coastal Plain states ) AR, LA, MS, AL, GA, TN 4. *Interbedded clastic (sand/silt) + carbonate aquifer common in south FL 5.
    [Show full text]