Exploration Opportunities in the Pre-Salt Play, Deepwater
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structural Modeling Based on Sequential Restoration of Gravitational Salt Deformation in the Santos Basin (Brazil)
Marine and Petroleum Geology xxx (2012) 1e17 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Structural modeling based on sequential restoration of gravitational salt deformation in the Santos Basin (Brazil) Sávio Francis de Melo Garcia a,*, Jean Letouzey b, Jean-Luc Rudkiewicz b, André Danderfer Filho c, Dominique Frizon de Lamotte d a Petrobras E&P-EXP, Rio de Janeiro, Brazil b IFP Energies Nouvelles, France c Universidade Federal de Ouro Preto, Ouro Preto/MG, Brazil d Université de Cergy-Pontoise, France article info abstract Article history: The structural restoration of two parallel cross-sections in the central portion of the Santos Basin enables Received 8 December 2010 a first understanding of existent 3D geological complexities. Santos Basin is one of the most proliferous Received in revised form basins along the South Atlantic Brazilian margin. Due to the halokinesis, geological structures present 22 November 2011 significant horizontal tectonic transport. The two geological cross-sections extend from the continental shelf Accepted 2 February 2012 to deep waters, in areas where salt tectonics is simple enough to be solved by 2D restoration. Such cross- Available online xxx sections display both extensional and compressional deformation. Paleobathymetry, isostatic regional compensation, salt volume control and overall aspects related to structural style were used to constrain basic Keywords: fl Salt tectonics boundary conditions. Several restoration -
Lacustrine Coquinas and Hybrid Deposits from Rift Phase Pre-Salt
Journal of South American Earth Sciences 95 (2019) 102254 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Lacustrine coquinas and hybrid deposits from rift phase: Pre-Salt, lower T Cretaceous, Campos Basin, Brazil Vinicius Carbone Bernardes de Oliveiraa,b,*, Carlos Manuel de Assis Silvaa, Leonardo Fonseca Borghib, Ismar de Souza Carvalhob a Petrobras Research and Development Center (CENPES), Avenida Horacio de Macedo, 950, Ilha do Fundao – Cidade Universitaria, Rio de Janeiro, RJ, 21949-915, Brazil b Universidade Federal do Rio de Janeiro, Centro de Ciencias Matematicas e da Natureza, Instituto de Geociencias, Departamento de Geologia, Programa de Pos-graduacao em Geologia, Av. Athos da Silveira Ramos, 274, Bloco F, Ilha do Fundao – Cidade Universitaria, Rio de Janeiro, RJ, 21949-900, Brazil ARTICLE INFO ABSTRACT Keywords: This study presents a facies characterization, facies succession and conceptual depositional model of the Pre-salt Coqueiros Formation, Lower Cretaceous of Campos Basin, based on core analyses of two wells. WELL-1 is a Rift sedimentation shallow water drilling located at south of Campos Basin within the Badejo structural high, and WELL-2 is an ultra Coquinas deep water drilling located at north, over the “External High”. Ten carbonate facies, three siliciclastic facies, two Hybrid deposits magnesium clay mineral rich facies and two hybrid facies were identified. The carbonate facies were defined as Lower cretaceous rudstone, grainstone, packstone and mud supported carbonate rock, composed of bivalves, ostracods, and rare gastropods. Bivalve shells, mostly disarticulated with distinct degrees of fragmentation, characterized the main components of the ten carbonate facies. -
How Pumping Sands on NC Beaches
The Risks of Renourishment: North Carolina Coastal Federation How pumping sand on North Carolina’s beaches can affect Sea Turtles, Mole Crabs and other Critters April 2002 Who We Are The North Carolina Coastal Federation (NCCF) is the state’s largest non-profit organization working to restore and protect the coast. NCCF headquarters are at 3609 Highway 24 in Ocean between Morehead City and Swansboro and are open Monday through Friday. The headquarters houses NCCF’s main offices, a nature shop, library, and information area. NCCF also operates a field office at 3806-B Park Avenue in Wilmington. For more information call 252-393-8185 or visit our website at www.nccoast.org. This report was written by Ted Wilgis, the Federation’s Cape Fear Coastkeeper, and edited by Frank Tursi, the Cape Lookout Coastkeeper, and Jim Stephenson, Program Analyst. All are closely monitoring beach renourishment projects in North Carolina during the time covered in this report. Wilgis and Tursi also took all of the photographs. Cover Photo Bulldozers work the new sand being pumped onto the beach at Fort Macon State Park in Carteret County. 2 Index Executive Summary.................................................4 Recommendations....................................................5 Background..............................................................6 Sea Turtles ........................................................ 7-11 Mole Crabs and Other Critters...............................12 Other Effects ..........................................................13 -
40. Geologic History and Origin of Sao Paulo
40. GEOLOGIC HISTORY AND ORIGIN OF SAO PAULO PLATEAU (SOUTHEASTERN BRAZILIAN MARGIN), COMPARISON WITH THE ANGOLAN MARGIN, AND THE EARLY EVOLUTION OF THE NORTHERN SOUTH ATLANTIC Naresh Kumar and L.A.P. Gamboa,1 Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York B.C. Schreiber, Queens College, City University of New York, Flushing, New York and J. Mascle, Université Pierre et Marie Curie, Centre de Geodynamique sous Marine, 06230 Villefranche - sur mer, France ABSTRACT The Sào Paulo Plateau is a prominent marginal plateau in the southern Brazilian margin. It is underlain by oceanic crust and is bounded to the north and south by fracture zones. Seismic profiles and drilling data from Site 356 (located on its southeastern corner) indicate that the region occupied by the plateau has acted as a depocenter and has evolved as a marginal plateau since the Aptian time. The Oceanographic conditions and depositional environments prevailing over the plateau during its early evolution were almost identical to those suggested in the Angolan margin by the drilling data at Site 364 (DSDP). Reconstruction of the evolution of Sào Paulo Plateau and com- parison between the drilled geologic sequences on the opposing margins suggest the following history for the northern South Atlan- tic. Coarse terrigenous sediments were deposited in coastal basins at both the margins following the opening of the South Atlantic in the Neocomian. By Aptian time, a linear narrow basin, with barriers to the south and north, was created. The Walvis and Sào Paulo ridges formed the southern barrier whereas the equatorial fracture zones appear to have formed the northern barrier. -
Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee
Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee By ROBERT C. MILICI and HELMUTH WEDOW, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Milici, Robert C 1931- Upper Ordovician and Silurian stratigraphy in Sequatchie Valley and parts of the adjacent valley and ridge, Tennessee. (Geological Survey professional paper; 996) Bibliography: p. Supt. of Docs. no.: I 19.16:996 1. Geology, Stratigraphic--Ordovician. 2. Geology, Stratigraphic--Silurian. 3. Geology--Tennessee--Sequatchie Valley. 4. Geology--Tennessee--Chattanooga region. I. Wedow, Helmuth, 1917- joint author. II: Title. Upper Ordovician and Silurian stratigraphy in Sequatchie Valley .... III. Series: United States. Geological Survey. Professional paper; 996. QE660.M54 551.7'310976877 76-608170 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03002·1 CONTENTS Page Abstract 1 Introduction ----------------------------------------------------------------------------- -
Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins
geosciences Article Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins Luiz Gamboa 1,*, André Ferraz 1, Rui Baptista 2 and Eugênio V. Santos Neto 3 1 Geology & Geophysical Department, Universidade Federal Fluminense, UFF, Niterói 2410-364, Brazil; [email protected] 2 Geology Department, F. Ciências Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] 3 Independent Consultant, Rio de Janeiro 22271-110, Brazil; [email protected] * Correspondence: [email protected] Received: 7 March 2019; Accepted: 16 May 2019; Published: 5 June 2019 Abstract: Exploratory work for hydrocarbons along the southeastern Brazilian Margin discovered high concentrations of CO2 in several fields, setting scientific challenges to understand these accumulations. Despite significant progress in understanding the consequences of high CO2 in these reservoirs, the role of several variables that may control such accumulations of CO2 is still unclear. For example, significant differences in the percentages of CO2 have been found in reservoirs of otherwise similar prospects lying close to each other. In this paper, we present a hypothesis on how the rifting geodynamics are related to these CO2-rich accumulations. CO2-rich mantle material may be intruded into the upper crustal levels through hyper-stretched continental crust during rifting. Gravimetric and magnetic potential methods were used to identify major intrusive bodies, crustal thinning and other geotectonic elements of the southeastern Brazilian Margin. Modeling based on magnetic, gravity, and seismic data suggests a major intrusive magmatic body just below the reservoir where a high CO2 accumulation was found. Small faults connecting this magmatic body with the sedimentary section could be the fairway for the magmatic sourced gas rise to reservoirs. -
This Manuscript Is a Preprint and Has Been Formally Accepted for Publication in Basin Research
This manuscript is a preprint and has been formally accepted for publication in Basin Research 1 Base-Salt Relief Controls on Salt-Tectonic Structural Style, São Paulo Plateau, Santos Basin, Brazil *Leonardo M. Pichel1, Christopher A-L. Jackson1; Frank Peel1,2, Tim P. Dooley2 1 – Basins Research Group (BRG), Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, SW7 2BP, United Kingdom 2 – The University of Texas at Austin, Bureau of Economic Geology, Jackson School of Geosciences, Austin, Texas, USA Key-words: SALT TECTONICS, MINIBASINS, DIAPIRISM, TRANSLATION, BASE- SALT RELIEF, RAMP-SYNCLINE BASINS, GRAVITY-DRIVEN DEFORMATION, SANTOS BASIN, BRAZIL, SÃO PAULO PLATEAU 2 ABSTRACT Base-salt relief influences salt flow, producing three-dimensionally complex strains and multiphase deformation within the salt and its overburden. Understanding how base-salt relief influences salt-related deformation is important to correctly interpret salt basin kinematics and distribution of structural domains, which have important implications to understand the development of key petroleum system elements. The São Paulo Plateau, Santos Basin, Brazil is characterized by a >2 km thick, mechanically layered Aptian salt layer deposited above prominent base-salt relief. We use 3D seismic reflection data, and physical and conceptual kinematic models to investigate how gravity-driven translation above thick salt, underlain by complex base-salt relief, generated a complex framework of salt structures and minibasins. We show that ramp-syncline basins developed above and downdip of the main pre- salt highs record c. 30 km of Late Cretaceous-Paleocene basinward translation. As salt and overburden translated downdip, salt flux variations caused by the base-salt relief resulted in non-uniform motion of the cover, and the simultaneous development of extensional and contractional structures. -
GROUND-WATER RESOURCES of FLAGLER COUNTY, FLORIDA by A.S
GROUND-WATER RESOURCES OF FLAGLER COUNTY, FLORIDA By A.S. Navoy and L.A. Bradner U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 87-4021 Prepared in cooperation with FLAGLER COUNTY and the ST. JOHNS RIVER WATER MANAGEMENT DISTRICT Tallahassee, Florida 1987 DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can write to: be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section Suite 3015 Federal Center, Bldg. 810 227 North Bronough Street Box 25425 Tallahassee, Florida 32301 Denver, Colorado 80225 CONTENTS Page Abstract............................................................. 1 Introduction......................................................... 2 Purpose and scope............................................... 2 Previous investigations.......................................... 2 Acknowledgments................................................. 4 Environmental setting........................... ..................... 4 Physiography and drainage....................................... 4 Rainfall and evapotranspiration................................. 6 Geology......................................................... 6 Hydrogeology......................................................... 8 Aquifers........................................................ 8 Upper Floridan aquifer..................................... 8 Intermediate aquifer system............................... -
Seismic Facies/Geometries of the Pre-Salt Limestone Units and Newly-Identified Exploration Trends Within the Santos and Campos Basins, Brazil
Seismic facies/geometries of the pre-salt limestone units and newly-identified exploration trends within the Santos and Campos basins, Brazil Senira Kattah *, PGS Petroleum Geo-Services Yermek Balabekov, PGS Petroleum Geo-Services Copyright 2015, SBGf - Sociedade Brasileira de Geofísica exploration targets in the pre-salt succession of Campos and Santos basins, proven by successful performance This paper was prepared for presentation during the 14th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, August 3-6, 2015. tests on Búzios and Libra discoveries. Contents of this paper were reviewed by the Technical Committee of the 14th The pre-salt hydrocarbon play fairway extends from the International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or Santos basin in the south through the Campos basin to storage of any part of this paper for commercial purposes without the written consent the north, possibly reaching the Espirito Santo Basin. It is of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ approximately 800 km from SW to NE and 200 km from NW to SE, extending into water depths exceeding 2,000 Abstract m. The NE trend approximates to the crustal extension of Based on preliminary seismic/geological the Early Cretaceous rift fabric, whereas the NW trend interpretation of nearly 36,000 sq. km of 3D PSDM reflects transfer/accomodation zones with transpression surveys and analogies with the pre-salt hydrocarbon and/or transtension regimes, mostly active during late commercial and sub-commercial discoveries, this phases of the rift development. -
Ongoing Compression Across Intraplate South America: Observations and Some Implications for Petroleum Exploitation and Exploration
Revista Brasileira de Geociências 30(1):203-207, março de 2000 ONGOING COMPRESSION ACROSS INTRAPLATE SOUTH AMERICA: OBSERVATIONS AND SOME IMPLICATIONS FOR PETROLEUM EXPLOITATION AND EXPLORATION CLÁUDIO COELHO DE LIMA1 ABSTRACT Stress data compilations, intraplate stress field numerical models and space-based geodetic results show that the South American plate is now in horizontal compression and shortening. Plate wide deformation related to the Andean tectonics has been put in evidence by analyses of integrated visualizations of plate-scale information on tectonics, continental geology, topography/bathymetry, seismicity, stresses, active deformation, residual isostatic anomalies, fission track analyses, and seismically derived Moho depths and P and S wave velocity anomalies. Here, a few results of these analyses are presented and some implications of the ongoing compression for petroleum exploitation and exploration are discussed. A conceptual model for the plate-wide deformation is presented. The model states that in response to the compression, the lithosphere as a whole (or only the crust if thermal gradients are high enough) tends to buckle. The resulting antiforms are responsible for uplift along erosional borders of the basins, whereas the resulting synforms are sites of continental sedimentation, at basin centers. The denudation of sedimentary covers promotes the exhumation of increasingly deeper rocks and the adiabatic decompression, facilitating fusion and hence the observed Upper Cretaceous and Tertiary alkali-magmatism. The basement low topography adjacent to the retreating scarps is frequently associated with large Neogene basins (e.g. the Pantanal). The tendency to buckle is controlled by the previous lithospheric/crustal structure. The perception of ongoing compression opens up new perspectives for petroleum exploitation and exploration. -
Seismic Interpretation of the Main Turbidites at Enchova and Bonito Oil Fields (Campos Basin - Brazil) João Pedro M
Seismic interpretation of the main Turbidites at Enchova and Bonito oil fields (Campos Basin - Brazil) João Pedro M. de Mello (UNESP), Maria Gabriela C. Vincentelli (FUNDUNESP/UNESPetro) Copyright 2017, SBGf - Sociedade Brasileira de Geofísica The evolutionary history of the sedimentary basins of the This paper was prepared for presentation during the 15th International Congress of the Brazilian East margin is subdivided into three Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 31 July to 3 August, 2017. Supersequences: Rift, Post-Rift and Drift (Winter et al. Contents of this paper were reviewed by the Technical Committee of the 15th 2007). The stratigraphic chart of the Campos Basin International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or showing the geological ages of interest of this study area storage of any part of this paper for commercial purposes without the written consent (figure1). of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ Abstract The goal of this research is to evaluate the tectonic- stratigraphic features at Enchova and Bonito oil fields, located at the Southwest of Campos basin (Brazil). The main objective is to characterize the main turbidites reservoirs at these fields. The results were obtained based on geophysical interpretation of the different turbidites reservoir levels at both analyzed regions. The job was developed through the analysis and correlation of four-wells profiles, as well as the interpretation of approximately 1250 km of 2D seismic sections. The elaborated stratigraphic sections allowed the identification and correlation of the main turbidites seismic interest´s Figure 1 - Stratigraphic chart of the Campos Basin horizons; and the interpreted seismic data, in association (Winter et al. -
BISCAYNE NATIONAL PARK the Florida Keys Begin with Soldier Key in the Northern Section of the Park and Continue to the South and West
CHAPTER TWO: BACKGROUND HISTORY GEOLOGY AND PHYSICAL GEOGRAPHY OF BISCAYNE NATIONAL PARK The Florida Keys begin with Soldier Key in the northern section of the Park and continue to the south and west. The upper Florida Keys (from Soldier to Big Pine Key) are the remains of a shallow coral patch reef that thrived one hundred thousand or more years ago, during the Pleistocene epoch. The ocean level subsided during the following glacial period, exposing the coral to die in the air and sunlight. The coral was transformed into a stone often called coral rock, but more correctly termed Key Largo limestone. The other limestones of the Florida peninsula are related to the Key Largo; all are basically soft limestones, but with different bases. The nearby Miami oolitic limestone, for example, was formed by the precipitation of calcium carbonate from seawater into tiny oval particles (oolites),2 while farther north along the Florida east coast the coquina of the Anastasia formation was formed around the shells of Pleistocene sea creatures. When the first aboriginal peoples arrived in South Florida approximately 10,000 years ago, Biscayne Bay was a freshwater marsh or lake that extended from the rocky hills of the present- day keys to the ridge that forms the current Florida coast. The retreat of the glaciers brought about a gradual rise in global sea levels and resulted in the inundation of the basin by seawater some 4,000 years ago. Two thousand years later, the rising waters levelled off, leaving the Florida Keys, mainland, and Biscayne Bay with something similar to their current appearance.3 The keys change.