L-G-0013757470-0040741758.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

L-G-0013757470-0040741758.Pdf Copper, Brass, and Bronze Surfaces ZAHNER’S ARCHITECTURAL METALS SERIES Zahner’s Architectural Metals Series offers in-depth coverage of metals used in architecture and art today. Metals in architecture are selected for their durability, strength, and resistance to weather. The metals covered in this series are used extensively in the built environments that make up our world and also attract and fascinate the artist. These heavily illustrated guides offer comprehensive coverage of how each metal is used in creating surfaces for building exteriors, interiors, and art sculpture. The series provides architects, metal fabricators and developers, design professionals, and students of architecture and design with a logical framework for the selection and use of metal building and design materials. Forthcoming books in Zahner’s Architectural Metals Series will cover steel and zinc surfaces. Titles in Zahner’s Architectural Metals Series include: Stainless Steel Surfaces: A Guide to Alloys, Finishes, Fabrication, and Maintenance in Architecture and Art Aluminum Surfaces: A Guide to Alloys, Finishes, Fabrication, and Maintenance in Architecture and Art Copper, Brass, and Bronze Surfaces: A Guide to Alloys, Finishes, Fabrication, and Maintenance in Architecture and Art Copper, Brass, and Bronze Surfaces A Guide to Alloys, Finishes, Fabrication, and Maintenance in Architecture and Art L. William Zahner Cover image: © wepix / Getty Images Cover design: Wiley This book is printed on acid-free paper. Copyright © 2020 by John Wiley & Sons, Inc. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor the author shall be liable for damages arising herefrom. For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002. Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com. Library of Congress Cataloging-in-Publication Data: Names: Zahner, L. William, author. Title: Copper, brass, and bronze surfaces : a guide to alloys, finishes, fabrication, and maintenance in architecture and art / L. William Zahner. Description: Hoboken, New Jersey : Wiley, 2020. | Series: Zahner’s architectural metals series | Includes bibliographical references and index. Identifiers: LCCN 2019045098 (print) | LCCN 2019045099 (ebook) | ISBN 9781119541660 (paperback) | ISBN 9781119541677 (adobe pdf) | ISBN 9781119541684 (epub) Subjects: LCSH: Copper. | Brass. | Bronze. | Architectural metal—work. | Art metal—work. Classification: LCC TS620 .Z34 2020 (print) | LCC TS620 (ebook) |DDC 739—dc23 LC record available at https://lccn.loc.gov/2019045098 LC ebook record available at https://lccn.loc.gov/2019045099 Printed in the United States of America 10987654321 This book is in honor of Salvatore Orlando. He was a good friend and advocate of the red metal. Contents Preface xi CHAPTER 1 Introduction—Element 29 1 Introduction 1 Color 6 Colors of Alloys 8 Copper Minerals 12 History 13 The Modern Copper Production Process 19 Sustainability, Environmental, and Hygienic Concerns 22 Copper and Water 23 Health and Safety 24 Copper: The Antimicrobial Metal 25 Copper Alloys for the Arts 26 CHAPTER 2 Copper and Its Alloys 31 Introduction 31 The Rich History of Copper Alloys 31 Elements Added to Copper 33 Alloy Designation System 34 The Unified Numbering System 34 Tempers 36 Wrought Copper Alloys 38 Brasses 40 Leaded Brasses 49 Tin Brasses 54 Phosphor–Bronze Alloys 56 Aluminum–Bronze Alloys 58 Silicon–Bronze Alloys 60 Copper–Nickel and Nickel–Silver Alloys 61 Cast Alloys 66 Red Brasses 69 Yellow Brasses 71 Silicon–Bronze Alloys 73 vii viii Contents A Tin–Bronze Alloy 76 Nickel–Silver Alloys 77 A Manganese–Bronze Alloy 78 CHAPTER 3 Surface Finishes 79 Introduction 79 Mill Surfaces 80 Mechanical Finishes and Temporary Protection 81 Color from Oxidation and Chemical Reactions 91 Textures 123 Tin-Coated Copper 135 Melted Copper Alloy Surfacing 136 Copper and Glass 137 Protecting the Surface 138 CHAPTER 4 Expectations of the Visual Surface 139 Introduction 139 Intent: An Unchanged Surface Appearance 143 Intent: A Surface Appearance That Changes Naturally 154 Flatness 155 Texturing the Surface 160 Initial Oxidation on Copper Alloys 161 In Situ Patination 163 Prepatination 164 The Effect of Sealants 166 The Cast Surface 167 Arriving at the Best Possible Outcome 167 CHAPTER 5 Designing with the Available Forms 173 A Brief History 173 Wrought Forms 176 The Cast Form 204 CHAPTER 6 Fabrication Processes and Techniques 211 Introduction 211 Forming 213 V-cutting 215 Cutting Copper Alloys 220 Machining 227 Soldering, Brazing, and Welding 231 Casting 241 Contents ix CHAPTER 7 Corrosion Characteristics 251 General Information 251 Categories of Corrosion 260 Environmental Exposures 279 Acids and Bases 283 Copper Alloy Surface Categories 286 CHAPTER 8 Maintaining the Copper Alloy Surface 295 Introduction 295 Protecting the New Copper Alloy Surface 296 Achieving Physical Cleanliness 296 Achieving Chemical Cleanliness 311 Achieving Mechanical Cleanliness 320 Repairing Patinas 326 Protecting the Surfaces of Copper and Copper Alloys 328 Cleaning the Copper Surface 333 Removing Copper Stains from Other Substances 334 Deteriorating Patinas 335 APPENDIX A Comparative Attributes of Metals Used in Art and Architecture 337 APPENDIX B Hardware Finish Codes and Descriptions 341 APPENDIX C Numbering Systems Used for Copper Alloys 345 Further Reading 347 Index 349 Preface The passage of time is reflected in the color of copper. Of all the metals used in art and architecture, copper is the most engaging. Throughout history, mankind has had a special relationship with copper. Copper has a weight and feeling of substance. It can be shaped and formed into useful objects, and more importantly, it has an appearance as natural as the colors of an oak forest in the fall: a color that shows value and the passage of time. Power and force are needed to shape the other metals used in art and architecture. Copper, on the other hand, shapes and moves under the blows of handheld chasing tools. It can be easily folded, curved, stretched, and embossed. One gets close to the metal when working with copper. Throughout human time copper and copper alloys have played different and expanding roles. Bronze sculptures of ancient deities and heroes have outlived their civilizations, even while rest- ing under the sea for thousands of years. Copper has been mined by every major civilization and converted and cast into both useful tools and decorative statues. The maritime world embraced copper alloys, particularly brass. Alloys with names such as Admiralty Bronze and Naval Brass recall a time when this metal served as biocladding on the under- side of a ship and ornamentation on the top. Consider that the military term “brass” relates to someone of high rank: the one with the brass metals or the brass-adorned hat. Copper alloys, both those with new, untarnished surfaces and those with colorful patinas, offer the artist and the designer an amazing palette of color to choose from and design with. Oxide colors will be predictable to a point, but beyond that it is nature that will take over the design. These colors will also act as potent inhibitors of corrosion. But note that both natural, untarnished surfaces and beautiful patinas on art and architecture forms will require something additional—either in the form of a coating or in the form of energy applied from an elbow—to keep them looking good. I have worked with copper and many of its alloys for decades. I have hammered it, cut it, welded it, and shaped it into beautiful pieces of art. I have experimented with creating color on the surface of the metal with chemical interaction, heat, and selective electroplating. I have worked with friends to cast it and I have formed its sheets to create incredible surfaces. Copper is special for its amazing ability to be shaped and stretched and for its ability to react with other elements and compounds to achieve a unique and beautiful surface. Copper can be cast into glass, and the glass accepts it. It can be severely shaped, and it yields to take the new shape. It can withstand the attack of powerful acids and bases, all the while forming a natural mineral surface that slows further reaction while giving a beautiful patina.
Recommended publications
  • Deep Textured Architectural Metals Custom Fabricated Products Contents
    Deep Textured Architectural Metals Custom Fabricated Products contents 4 interior panels 6 exterior panels 8 patterns 10 panel systems 14 fabrication 15 color and tile finishes 16 finishes 18 Trim-Tex™ 19 Rigi-Grip™ 20 partitions 21 elevators 22 Rigi-Bump™ 24 sustainability 26 textured perforations 27 technical data 2 metal made better who we are As the originator and world leader of deep textured metals, Rigidized® Metals manufactures lasting impressions. We continue to explore the world of textures, finishes, forms and shapes to enhance the performance of all metals. For over seventy years our journey has allowed us to develop a one-of- a-kind expertise in how metals can be improved. Many discoveries have created imaginative products and some surprising applications. We strive to use less & give you more. A proud American manufacturer of metal products since 1940. metal made better 3 interiors Nordstrom Cafe 1HM Pattern in Copper Coastline Design Metal Made Better We make metals for interior surfaces richer with textures that reflect the glow of light. These patterned metals offer significantly more durable, longer lasting 1NA Pattern in Stainless Steel surfaces. 4 metal made better interiors Grand Junction Readiness Center Courtesy of CooverClark Architects 1NA 304 Stainless Steel Powder Coated “Brass Transparent” 6WL Column Covers metal made better 5 exteriors 6WL Pattern ZGF Architects-Twelve West, Portland, OR ZGF Architects-Twelve West, Portland, OR 6 metal made better exteriors 1UN Pattern Sherbourne Common Park, Toronto, Ontario Javits Convention Center, FXFOWLE Architects Metal Made Better Our Rigidized® Metals for exterior applications are uniquely durable, long lasting, luminescent, and visu- ally appealing.
    [Show full text]
  • Architectural Metals: Cast Iron, Steel, Pressed Tin, Copper, Aluminum and Zinc
    CITY OF GRANBURY Historic Preservation DESIGN GUIDELINES 10. ARCHITECTURAL METALS: CAST IRON, STEEL, PRESSED TIN, COPPER, ALUMINUM AND ZINC Evaluate the overall condition of architectural metals to determine whether more protection and maintenance may be required and if repairs are warranted. Most architectural features on Granbury's historic buildings were made of pressed tin. Most hardware on Granbury's historic buildings (before 1930) were made of brass, bronze and/or copper. Identify and Retain architectural metal features, such as columns, pilasters, soffits, cornices, capitals, window frames, awnings or stairways that are important to defining the historic character of a building, its finishes and colors. Protect and Maintain architectural metals from corrosion by providing proper drainage, preventing water from standing on horizontal surfaces or accumulating in curved, decorative features. Clean architectural metals, when necessary, to remove corrosion prior to repainting or applying other appropriate protective coatings. Do not remove historic patinas found on some metals such as copper or bronze. This will diminish the metal's historic character and may damage it. Prohibited: ¦ Removing or radically changing architectural metal features, so that, as a result, their character is diminished. ¦ Removing a major portion of the historic architectural metal from a facade instead of repairing or replacing only the portion(s) of deteriorated metal. ¦ Radically changing a metal’s type of finish, patina, historic color or accent theme. ¦ Failing to identify, evaluate and treat the causes of corrosion, like moisture from leaking roofs or flashing. ¦ Placing incompatible metals together without first providing a reliable separation material, thus causing a galvanic or corrosive reaction, and damaging the adjacent metals.
    [Show full text]
  • SPECIFYING STOCK COMPONENTS for ARCHITECTURAL METAL WORK
    • About the Instructor • About the Sponsor • Ask an Expert SPECIFYING STOCK COMPONENTS for ARCHITECTURAL METAL WORK Architectural Metals, Railing Systems, and Engineering Information This Online Learning Seminar is available through a professional courtesy provided by: Julius Blum & Co., Inc. P.O. Box 816 Carlstadt, NJ 07072 Toll‐Free: 800‐526‐6293 Tel: 201‐438‐4600 (local NJ) Fax: 201‐438‐6003 Email: [email protected] Web: www.juliusblum.com START ©2013 Julius Blum & Co., Inc. The material contained in this course was researched, assembled, and produced by powered by Julius Blum & Co., Inc. and remains its property. Questions or concerns about the content of this course should be directed to the program instructor. This multimedia product is the copyright of AEC Daily. ©2013 ∙ Table of Contents Slide 1of 70 • About the Instructor • About the Sponsor • Ask an Expert SPECIFYING STOCK COMPONENTS for ARCHITECTURAL METAL WORK Presented by: Julius Blum & Co., Inc. P.O. Box 816. Carlstadt, NJ 07072. Description: The course includes a discussion on: how to choose the best material for your job; available systems and their components; engineering data and the formulas to provide safe installations. To ensure the accuracy of this program material, this course is valid only when listed on AEC Daily’s Online Learning Center. Please click here to verify the status of this course. If the course is not displayed on the above page, it is no longer offered. The American Institute of Architects ∙ Course No. AEC659 ∙ This program qualifies for 1.0 LU/HSW Hour. AEC Daily Corporation is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES).
    [Show full text]
  • Design Guidelines September, 1999 Table of Contents
    Design Guidelines September, 1999 Table of Contents I: Introduction ............................................................................................................................................................................................. 1 A. Preserving the Architectural Heritage............................................................................................................................................. 1 B. History of the Historic District Area............................................................................................................................................... 1 C. Other Areas of Historical Significance........................................................................................................................................... 2 D. Historic Preservation Commission................................................................................................................................................. 3 E. Purpose............................................................................................................................................................................................ 3 F. Scope and Jurisdiction .................................................................................................................................................................... 4 G. Certificate of Appropriateness .......................................................................................................................................................
    [Show full text]
  • COATINGS for ARCHITECTURAL METALS Durability + Design a Collection Coatings for Architectural Metals
    COATINGS FOR ARCHITECTURAL METALS Durability + Design A Collection Coatings for Architectural Metals A Durability + Design Collection Copyright 2012 Technology Publishing Company 2100 Wharton Street, Suite 310 Pittsburgh, PA 15203 All Rights Reserved This eBook may not be copied or redistributed without the written permission of the publisher. SPONSORED BY Contents ii ® FEVE RESIN Contents iv Introduction COATINGS FOR BUILDING ENVELOPE METALS 1 The Finish Line: Picking a Winning Chemistry for Architectural Aluminum by Tony Pupp, Linetec 6 Curtain Walls—Exterior Metals: A Premium on Performance by Allen Zielnik, Atlas Material Testing Technology LLC 10 Warning: Powder Coatings Zone by Walter R. Scarborough, Hall Building Information Group, LLC 15 Anodization Analyzed by Tammy Schroeder, Linetec 21 Getting More Mileage from the Metal Roof by Bob Brenk, Aldo Products Company, Inc. Ready for Prime Time: Low-VOC Fluoropolymer Coating Counted On to 25 Generate Buzz in California and Other Venues Where ‘Green’ Takes Top Billing by Joe Maty, D+D 28 Mega Makeover Delivers... More Than a Pretty Facade by Joe Maty, D+D Contents iii Contents COATINGS FOR STRUCTURAL STEEL 31 Proving Their Mettle by Jayson L. Helsel, KTA-Tator, Inc. New Possibilities for Polyurethanes: Waterbornes on Metal 34 by Margaret Kendi, Pete Schmitt, and Raymond Stewart, Bayer MaterialScience, LLC High Performance, Low VOCs: Formulating Advances Deliver Water- 39 borne Epoxies That Meet the Demands of the Day for Metal Coatings by Daniel J. Weinmann, Ph.D., Hexion Specialty Chemicals FIRE-RESISTIVE COATINGS FOR METAL Fire-Resistive Coatings for Metal—Fire Drill: The Basics on Coatings 43 that Protect by Jayson Helsel, KTA-Tator, Inc.
    [Show full text]
  • Nelson Industrial Inc. / Architectural Metals Division / Left: 51 Astor Place, NYC
    Nelson Industrial Inc. / Architectural Metals Division / http://www.nelsonii.com/arch Left: 51 Astor Place, NYC Allow us to take you on a journey through the world of metals where size, shape and sheen define style in metal expressions. Experience the unique impact of seeing intriguing geometric achievements in metal, brought to life by the experienced Nelson team. Every installation reflects the collaborative spirit that exists between Nelson and it's customers, in the ongoing creative dialogue of urban life. Ourborite™ A natural looking and very durable laminate applied to an aluminum sheet, available in over a dozen replicated wood veneers. Shown here: Light Cherry Cathedral Karri ACOUSTICS Metal Ceilings and Walls are available both non-perforated (sound reflective) and perforated (sound absorbing). Perforation patterns are limited only by the type of material and thickness chosen and available tooling. Presently Nelson offers more than fifty different perforation patterns ranging from diagonal, staggered to straight as well as round, square and oblong holes. Typically a 15 to 25% perforated open area is required for absorption values (NRC) of .70 or higher. Nelson’s standard acoustical material consists of a Black pre-laminated fleece (SoundTex®) typically bonded to the concealed face of the perforated ceiling panel. For additional sound absorbing qualities and in particular for wall panel applications due to the requirement of a minimum of 8”/200 mm of free airspace behind the perforated metal surface when applied with SoundTex, Nelson recommends filling the void within the panel with a fiberglass or mineral wool inlay in a thickness that matches the void and has a minimum density of 1.5 pounds per cu.ft.
    [Show full text]
  • Stainless Steel Architectural Facts
    8844-Architectural Facts 6/19/01 3:23 PM Page 3 DESIGNER HANDBOOK STAINLESS STEEL ARCHITECTURAL FACTS Stainless Steel The Value Option® . 8844-Architectural Facts 6/19/01 3:23 PM Page 4 WHY DESIGN IN A STAINLESS STEEL? D Stainless steel is a series of steel A corollary of stainless’ high life alloys which includes at least 10.5 per- expectancy is the ease with which it can a cent chromium. Most grades used in be maintained. In an urban or industrial f architecture also include a percentage of atmosphere all that is generally needed a nickel, and manganese, molybdenum, is a washing with detergent and water or w or other elements may be added for spe- with one of the commercial stainless steel v cial characteristics. Because of its cleaners. This can often be handled in a appearance, strength and high corrosion the course of the regular window wash- c resistance, stainless steel is finding ing operation. In many circumstances, t increasingly wide use in architecture for however, washing can be left to the e both exterior and interior applications. action of rain and wind, with no fear that This fact sheet has been prepared to the metal will deteriorate. Savings that give architects and architectural students accrue from the low cost of maintaining h most of the basic data they will need to stainless can make up any difference in t put stainless steel to work effectively. cost that may appear between compo- e The fact sheet provides information on nents made of stainless and other materi- b the characteristics of the metal, the forms als.
    [Show full text]
  • Architectural Metals Guidelines
    ARCHITECTURAL METALS GUIDELINES General Principles Every effort should be made to save and maintain unique, important architectural features of a building to help preserve its original character and history. Repairing and protecting original architectural features and materials is preferable to their replacement. Removal or alteration of any historic material or distinctive architectural features should be avoided. This applies primarily to the exterior of houses, but can also apply to important interior features and spaces. In some cases, replacement of significant historical materials may be allowed as determined on a case-by-case basis. Any replacement materials may be used only with the approval of the Home Preservation Program. These materials shall enhance the building’s historic architecture and be compatible with any adjacent historic buildings and streetscapes. All buildings and sites are to be recognized as products of their time. Any changes that have no historical references or which attempt to seek an earlier appearance are to be discouraged. Changes which have taken place through the course of time but may represent another style or character are still evidence of historical development and may have historical significance in their own right. These changes are to be recognized and respected. Limited replacement in kind of extensively damaged metal details and features is preferable to replacing the entire feature. ARCHITECTURAL METALS RECOMMENDED: • Retain the original material whenever possible. • Identify metal features such as columns, capitals or bases, window hoods, porch balusters, porch cresting, and stairways that are important in defining the architectural and historic character of the building. • Identify different types of metals used on existing building prior to renovation and repair.
    [Show full text]
  • Deicing Salt – Recognizing the Corrosion Threat by Catherine Houska, CSI, TMR Consulting, Pittsburgh, PA USA
    Deicing Salt – Recognizing The Corrosion Threat by Catherine Houska, CSI, TMR Consulting, Pittsburgh, PA USA Worldwide, the use of deicing salt has been common since the Seasonal deicing salt exposure in ‘snowbelt’ cities (e.g. Düssel- 1960’s in areas where snow or ice is a seasonal roadway safety dorf, Germany, Chicago, Illinois, and Toronto, Canada) can be very hazard. Automobile and highway bridge corrosion and ecosystem high and corrosion can begin to appear quickly if the wrong metal changes caused by deicing salt are well documented and the is selected. Sometimes corrosion begins during warm periods in focus of considerable study. the first winter of the installation’s first year. Inland cities with mild winters, like Beijing, China, or Nashville, Tennessee, also have at Unfortunately, the deterioration of building materials has largely least localized salt exposure because deicing is used to combat been ignored due to the common misconception that deicing salt freezing rain. damage is limited to areas immediately adjoining roadways. Deicing salt poses a significant but often unrecognized corrosion Inadequate understanding of deicing salt can lead to inappropriate threat to architectural metals and other construction materials. metal selection and premature failure. Frank Gehry’s Weisman Art Museum (Figure 1) illustrates that success is readily achievable, Seasonal deicing salt accumulations have been documented up to but specifiers must be aware of recent research on the severity of 1.9 km (1.2 miles) from busy roadways and as high as the the deicing salt problem, corrosion principles, comparative metal 59th floor of a high-rise building.1, 2 Whether a project is located in corrosion rates, and common deicing myths.
    [Show full text]
  • Stainless Steels in Architecture, Building and Construction
    Stainless Steels in Architecture, Building and Construction Guidelines for Corrosion Prevention Nickel Institute Reference Book Series No 11 024 Stainless Steels in Architecture, Building and Construction The material presented in this publication has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, its members, staff, and consultants do not represent or warrant its suitability for any general or specific use and assume no lia- bility or responsibility of any kind in connection with the information herein. This report was prepared by Catherine Houska, Technical Marketing Resources Inc., Pittsburgh, PA, USA, consultant to the Nickel Institute. Front Cover: The Gateway Arch (completed in 1965) in St. Louis, Missouri, is the second largest structural application for stainless in the world (904 metric tons) and is exposed to moderate pollution levels. The exterior Type 304 plate has a No. 3 polished finish and is cleaned only by natural rain washing. (Courtesy United States National Park Service) TABLE OF CONTENTS Introduction ............................................................................................3 Design, Fabrication, Maintenance and Surface Finish ......................................4 Practical Guidelines for Design and Fabrication ................................................................4 Surface Finish .............................................................................................5
    [Show full text]
  • Architectural Metals
    ARCHITECTURAL METALS SECTION: 097800 Architectural Metals High Pressure Laminates with a Real Metal Surface PREMIUM DURABILITY A collection of High Pressure Laminates with a real Architectural Metals are metal surface and phenolic paper backing. MDC engineered to withstand Architectural Metals are 4' x 8' sheets in Aluminum scuffs, cuts, chemical or Copper; featuring embossing, hand painting, exposures, and collision etching, and other innovative techniques to impact without showing enhance the look of metals. High quality design visible signs solutions are its trademark. of wear and tear. MDC Architectural Metals are created for commercial spaces where durability of design reigns supreme. As experts in surfaces that remain abrasion resistant, in addition to performance, MDC Architectural Metals meet safety and material standards. Ideal for hospitality, healthcare, retail, institutional, and commercial design interiors. REAL METAL SURFACES Constructed from Aluminum and Copper Surfaces DISTINCTLY UNIQUE Features Embossed, Etched and Hand Painted treatments to enhance real metal surfaces t: 847.437.4000 | mdc.is/metals Design Solving Your Design Needs 1. HPLs (High Pressure Laminates) with Real Metal Surfaces Beyond the Available in real aluminum and copper surfaces with a phenolic paper backing. Like other HPLs, counterbalancing is required to Surface prevent warping of the substrate. 2. High Quality, Handmade Designs MDC Architectural Metals offes design flexibility and is available as flat sheets or with a combination of embossed designs and a finish. 3. Suitable for a Variety of Applications Architectural Metals are suitable for a variety of vertical applications including wall panels, accent walls, reception desks, store fixtures, point-of-purchase (POP) displays, and more.
    [Show full text]
  • Finishes Manual
    N A A M M / N O M M A M E T A L A M P 5 0 0 - 0 6 F I N I S H E S MANUAL F o r A r c h i t e c t u r a l and Metal Products National Association of Architectural Metal Manufacturers National Ornamental Copyright @ 1964, 1969, 1976, 1988, and 2006 & Miscellaneous By the National Association of Architectural Metal Manufacturers Metals Association All Rights Reserved DISCLAIMER This manual was developed by representative members of the National Association of Architectural Metal Manufacturers (NAAMM) and the National Ornamental & Miscellaneous Metals Association (NOMMA) to provide their opinion and guidance on the selection and specification of metal finishes. This manual contains advisory information only and is published as a public service by NAAMM and NOMMA. NAAMM and NOMMA disclaim all liability of any kind for the use, application, or adaptation of material published in this manual. National Association of Architectural Metal Manufacturers 8 South Michigan Ave., Suite 1000, Chicago, IL 60603 312-332-0405 Fax 312-332-0706 www.naamm.org National Ornamental & Miscellaneous Metals Association 1535 Pennsylvania Ave., McDonough, GA 30253 888-516-8585 Fax 770-288-2006 www.nomma.org Copyright © 1964, 1969, 1976, 1988, and 2006 by National Association of Architectural Metal Manufacturers All Rights Reserved CONTENTS INTRODUCTION TO METAL FINISHING ...................................................................................... i CHAPTER 1 - ALUMINUM ..........................................................................................................1-1
    [Show full text]