Balansia Oryzae-Sativae- References

Total Page:16

File Type:pdf, Size:1020Kb

Balansia Oryzae-Sativae- References Balansia oryzae-sativae- references Anonymous, 1960. Index of Plant Diseases in the United States. USDA Agricultural. Handbook, 165:1-531. Bischoff JF, Sullivan RF, Kjer KM, White, JF Jr, 2004. Phylogenetivc placement of the anamorphic tribe Ustilaginoidea (Hypocreales, Ascomycota). Mycologia, 96:1088-1094. Booth C, 1979. Balansia oryzae-sativae. CMI Descriptions of Pathogenic Fungi and Bacteria No. 640. Wallingford, UK: CAB International. CABI/EPPO, 2000. Balansia oryzae-sativae. Distribution Maps of Plant Diseases, Map No. 797. Wallingford, UK: CAB International. Cho WD, Shin HD, eds. 2004. List of Plant Diseases in Korea. Fourth edition. Seoul, Republic of Korea: Korean Society of Plant Pathology, 779 pp. Deighton FC, 1937. Mycological Work. Report of the Department of Agriculture, Sierra Leone, 1936, 44-46. Deighton FC, 1956. Diseases of cultivated and other economic plants in Sierra Leone. Government of Sierra Leone, 76 pp. EPPO, 2006. PQR database (version 4.5). Paris, France: European and Mediterranean Plant Protection Organization. www.eppo.org Firman ID, 1972. A list of fungi and plant parasitic bacteria, viruses and nematodes in Fiji. Phytopathological Papers, 15:1-36. Fomba SN, Raymundo SA, 1978. Incidence of udbatta in the mangrove swamps of northern Sierra Leone. International Rice Research Newsletter, 3(4):13-14. Gangopadhyay S, Padmanabhan SY, 1987. Breeding for disease resistance in rice. New Delhi, India: Oxford & IBH Publishing Co. Pvt. Ltd., 340 pp. Govindu CH, 1969. Occurrence of Ephelis on rice variety IR-8 and cotton grass in India. Plant Disease Reporter, 53:360. Govindhu HC, Thirumalachar MJ , 1961. Studies on some species of Ephelis and Balansia occurring in India. I. Morphological account of some species of Ephelis. Mycopathologia et Mycologia Applicata, 14:189-197. Gowda SS, 1980. Studies on udbatta disease in Karnataka, India. International Rice Research Newsletter, 5(5):16-17. Gowda DN, Janardhan A, Reddy HR, 1981. Occurrence of udabatti disease on sorghum in Karnataka. Current Science, 50:536. Guo YL, 2001. Anamorphic fungi. In: Zhuang W-Y, ed. Higher Fungi of Tropical China. Ithaca, New York, USA: Mycotaxon, Ltd., 125-232. Hashioka Y, 1971. Rice diseases in the world - VIII. Diseases due to Hypocreales, Ascomycetes (fungal diseases - 5). Riso, 20:235-258. Hiremath PC, Bdari VB, Patil-Kulkarni BG, 1982. Sorghum, an additional host for Ephelis oryzae. Indian phytopathology. 35:547-548. Hiremath SV, Srikant Kulkarni, Hegde RK, Pall BS, Bhat MN, Naik KS, Raghuchandar T, Hiremath PC, 1991. New host records of fungi. Current Research - University of Agricultural Sciences (Bangalore), 20(5):93-94. Hughes SJ, 1953. Fungi from the Gold Coast. II. Mycological Papers, 50:1-104. Indrasenan G, Thomas J, Sreekumar V, Mammen MK, 1981. On the chemical control of udbatta disease of rice incited by Ephelis oryzae Sydow. Agricultural Research Journal of Kerala, 19(1):123-125. Indrasenan G, Sreekumar V, Thomas J, Mammen MK, 1982. Resistance of some rice varieties to 'Udbatta' disease in Wynad. Agricultural Research Journal of Kerala, 20(2):98-100 Indrasenan G, Mammen MK, 1983. New graminaceous weed hosts of Ephelis oryzae Syd. in Wynad. Agricultural Research Journal of Kerala, 21(2):92-94. V Kamat MN, Patel MK, 1951. Notes on two important plant diseases of Bombay State. Plant Protection Bulletin, 3:16. Kuldau GA, Liu J-S, W hite JF Jr, Siegel MR, Schardl CL, 1997. Molecular systematics of Clavicipitaceae supporting monophyly of genus Epichloe and form genus Ephelis. Mycologia, 89:431-441. Lee FN, Gunnell PS, 1992. Udbatta. In: Webster RK, Gunnell PS, eds. Compendium of rice diseases. St. Paul, Minnesota, USA: APS Press, 29. Litzenberger SC, Farr ML, Lip HT, 1962. A preliminary list of Cambodian plant diseases. Phnom-Penh, Cambodia Division of Agriculture and Natural Resources, Ministry of Agriculture, Cambodia/ USAID, 29 pp. Mathur RS, 1979. The Coelomycetes of India. Delhi, India.:Bishen Singh Mahendra Pal Singh, 460 pp. M e w TW, Gonzales P, 2002. Handbook of rice seedborne fungi. Makati City, Philippines: International Rice Research Institute; Enfield, New Hampshire, USA: Science Publishers, 83 pp. Mew TW, Misra JK, 1994. A manual of rice seed health testing. Manila, Philippines: International Rice Research Institute. –not cited Mishra RP, Pall BS, 1975. Ephelis oryzae Syd. on some hosts new to India. Current Science, 44:869. Misra JK, Merca SD, Mew TW, 1994a. Fungi. In: Mew TW, Misra JK, eds. A manual of rice seed health testing. , Manila, Philippines: International Rice Research Institute, 25- 28. Misra, JK, Merca SD, Mew TW, 1994b. Fungal pathogens. In: Mew TW, Misra JK, eds. A manual of rice seed health testing. Manila, Philippines: International Rice Research Institute, 75-89. Mohanty NN, 1964. Studies on 'Udbatta' disease of rice. Indian Phytopathology, 17:308- 316. Mohanty NN, 1971. Control of udbatta disease of rice. Proceedings of the Indian National Science Academy, B, 37:432-439. Mohanty NN, 1975a. Eff icacy of different physico-chemical methods of seed treatment for control of udbatta disease of rice. Indian Phytopathology, 28:521-523. M o hanty NN, 1975b. Ephelis on two new grass hosts. Indian Phytopathology, 28:537- 539. Mohanty NN, 1976. Influence of some meteorological factors on the development of udbatta disease of rice. Indian Journal of Agricultural Sciences, 46:399-403. Mohanty NN, 1977. Mode of infection of "udbatta" disease of rice. Riso, 26(3):243-247. Mohanty NN, 1979. Seed borne nature and systemic character of infection of Udbatta disease of rice. Riso, 28(2):133-139. Murty VST, Alimeer SH, 1978. Occurrence of 'Udbatta' disease of rice in Chhattisgarh region. Oryza, 15(1):92. Narasimhan MJ, Thirumalachar MJ, 1943. Preliminary note on the perfect stage of Ephelis oryzae Syd. (Balansia oryzae (Syd.) comb. nov.). Current Science, 12:276. NCBI, 2010. Entrez cross-database search engine. National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, Maryland, USA. http://www.ncbi.nlm.nih.gov/sites/gquery. Accessed February 23, 2010. Ou SH, 1985. Rice diseases. Second edition. Slough, UK: Commonwealth Agricultural Bureaux, 380 pp. Padhi NN, Mohanty NN, 1984. Efficacy of seed and soil treatments with different fungicides on control of udbatta disease of rice. Indian Phytopathology, 37:686-688. Padwick GW, 1950. Manual of Rice Diseases. Wallingford, UK: CAB International, 198 pp. Pandurangegowda KT, Kumaraswamy S, Rabindra B, 1986. Chemical control of udbatta disease of rice. Oryza, 23(2):140-141. Rao PG, Reddy GS, Reddy TCV, 1959. Four new hosts of Ephelis. Science and Culture, 25:74-75. Reddy HR, Channamma KAL, 1976. Occurrence of Ephelis oryzae Syd. on pearl millet. Current Science, 45:394. Reddy PV, Bergen MS, Patel R, White JF Jr, 1998. An examination of molecular phylogeny and morphology of the grass endophyte Balansia claviceps and similar species. Mycologia, 90:108-117. Roberts EL, White JF Jr, 2006. Black choke disease caused by an Ephelis sp. on purple fountain grass in Maryland. Plant Disease, 90:112. Sanne-Gowda S, Mahadevappa M, Ravi PC, 1973. Reactions of some new varieties of rice to various diseases occurring in Mysore State. Current Research, 2(10):77-78. Sannegowda S, Pandurangegowda KT, 1986. Studies on mode of infection and chemical control of udbatta or agarbatti disease of rice. Pesticides, 20(9):22-23. Shivanandappa N, Govindu CH, 1976. Direct and indirect effect of Udbatta disease on total number of panicles per hill in different paddy cultures. International Rice Research Newsletter, 1(1):12. Stevenson JA, 1975. Fungi of Puerto Rico and the American Virgin Islands. Contributions of the Reed Herbarium, 23:743. Sydow H, 1914. Beitrage zur Kenntnis der Pilzflora des Sudlichen Ostindiens. II. Annales mycologici, Berlin, 12:484-490. Tai FL, 1979. Sylloge Fungorum Sinicorum. Beijing, China: Science Press Academica Sinica, 1527 pp Tai FL, Siang WN, 1948. `I-chu-hsiang'disease of rice caused by Ephelis oryzae S ydo w in Yunnan. Acta Agriculture, 1:125-131. Tanaka E, Kawasaki S, Matsumura K, Kusuda R, Tanaka C, Peng Y-L, Tsukiboshi T, Tsuda M, 2001. Phylogenetic studies of Ephelis species from various locations and hosts in Asia. Mycological Research, 105:811-817. Teodoro NG, 1937. An Enumeration of Philippine Fungi. Technical Bulletin, Department Agriculture Communications Manila, 4: 1-585. Tsukiboshi T, Takahashi K, Uegaki R, Sugawara K, 2008. Black choke disease of warm season grasses caused by Ephelis japonica in Japan and its epiphytic features. Japan Agricultural Research Quarterly, 42:173-179. USDA/SMML, 2010. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. http://nt.ars-grin.gov/fungaldatabases/ Accessed February 22, 2010. Venkatakrishniah NS, 1952. Ephelis on Echinochloa crus-galli Beauv. and Setaria italica Beauv. Phytopathology, 42:634-635. Venkatarayan SV, 1937. Report of work done in Mycological Section during the year 1935-1936. Administration Report. Department of Agriculture, Mysore, 1935-1936:51-55. White, JF Jr, Sullivan R, Moy M, Patel R, Duncan R, 2000. An overview of problems in the classification of plant-parasitic Clavicipitaceae. Studies in Mycology, 45:95-106. Zhou Y-L, Izumitsu K, Sonoda R, Nakazaki T, Tanaka E, Tsuda M, Tanaka C, 2003. PCR-based specific detection of Ustilaginoidea virens and Ephelis japonica. Journal of Phytopathology, 151:513-518. .
Recommended publications
  • Rice False Smut [Ustilaginoidea Virens (Cooke) Takah.] in Paraguay
    ISSN (E): 2349 – 1183 ISSN (P): 2349 – 9265 3(3): 704–705, 2016 DOI: 10.22271/tpr.2016. v3.i3. 093 Short communication Rice false smut [Ustilaginoidea virens (Cooke) Takah.] in Paraguay Lidia Quintana1*, Susana Gutiérrez2, Marco Maidana1 and Karina Morinigo1 1Facultad de Ciencias Agropecuarias y Forestales, Universidad Nacional de Itapúa, Encarnación, Paraguay 2 Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina *Corresponding Author: [email protected] [Accepted: 28 December 2016] [Cite as: Quintana L, Gutiérrez S, Maidana M & Morinigo K (2016) Rice false smut [Ustilaginoidea virens (Cooke) Takah.] in Paraguay. Tropical Plant Research 3(3): 704–705] False smut of rice, caused by Ustilaginoidea virens (Cooke) Takah., is a common disease in rice panicles. Disease was first reported in India (1878) and was considered as a secondary disease due to their sporadic occurrence (Ladhalakshmi et al. 2012). In the 2014–2015 growing season disease survey was conducted in different rice producting areas of the country. Rice plants of IRGA 424 cultivar were observed, whose panicles had grains replaced by globose yellowish green masses of spores. These symptoms were visible after crop flowering, when the fungus transforms individual grains of the panicle into globose green-yellow mass that subsequently acquire greyish-black color. In the national bibliography no history published about this disease was found, thus the objective of this study was to determine the etiology of this new disease in Paraguay. One hundred and twenty panicles taken from fields with symptoms and signs of false smut were collected in the districts of General Delgado, General Artigas and Coronel Bogado (Itapúa Department), districts of Santa Maria, San Juan Bautista and San Juan de Ñeembucú (Misiones Department).
    [Show full text]
  • Pseudodidymellaceae Fam. Nov.: Phylogenetic Affiliations Of
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 187–206 (2017). Pseudodidymellaceae fam. nov.: Phylogenetic affiliations of mycopappus-like genera in Dothideomycetes A. Hashimoto1,2, M. Matsumura1,3, K. Hirayama4, R. Fujimoto1, and K. Tanaka1,3* 1Faculty of Agriculture and Life Sciences, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan; 2Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; 3The United Graduate School of Agricultural Sciences, Iwate University, 18–8 Ueda 3 chome, Morioka, 020-8550, Japan; 4Apple Experiment Station, Aomori Prefectural Agriculture and Forestry Research Centre, 24 Fukutami, Botandaira, Kuroishi, Aomori, 036-0332, Japan *Correspondence: K. Tanaka, [email protected] Abstract: The familial placement of four genera, Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina, was taxonomically revised based on morphological observations and phylogenetic analyses of nuclear rDNA SSU, LSU, tef1, and rpb2 sequences. ITS sequences were also provided as barcode markers. A total of 130 sequences were newly obtained from 28 isolates which are phylogenetically related to Melanommataceae (Pleosporales, Dothideomycetes) and its relatives. Phylo- genetic analyses and morphological observation of sexual and asexual morphs led to the conclusion that Melanommataceae should be restricted to its type genus Melanomma, which is characterised by ascomata composed of a well-developed, carbonaceous peridium, and an aposphaeria-like coelomycetous asexual morph. Although Mycodidymella, Petrakia, Pseudodidymella, and Xenostigmina are phylogenetically related to Melanommataceae, these genera are characterised by epi- phyllous, lenticular ascomata with well-developed basal stroma in their sexual morphs, and mycopappus-like propagules in their asexual morphs, which are clearly different from those of Melanomma.
    [Show full text]
  • Corn Smuts S
    A Pacific Northwest Extension Publication Oregon State University • University of Idaho • Washington State University PNW 647 • July 2013 Corn Smuts S. K. Mohan, P. B. Hamm, G. H. Clough, and L. J. du Toit orn smuts are widely distributed throughout the world. The incidence of corn smuts in the Pacific Northwest (PNW) varies Cby location and is usually low. Nonetheless, these diseases occasionally cause significant economic losses when susceptible cultivars are grown under conditions favorable for disease development. Smut diseases of corn are, in general, more destructive to sweet corn than to field corn. The term smut is derived from the powdery, dark brown to black, soot-like mass of spores produced in galls. These galls can form on various plant parts. Three types of smut infect corn—common smut, caused by Ustilago maydis (= Ustilago zeae); head smut, caused by Sphacelotheca reiliana; and false smut, caused by Ustilaginoidea virens. False smut is not a concern in the PNW, so this publication deals University S. Krishna by State Mohan,Photo © Oregon only with common and head smuts. Figure 1. Common smut galls on an ear of sweet corn. Each gall represents a single kernel infected by the common Common smut smut fungus. Common smut is caused by the fungal pathogen U. maydis and is also known as boil smut or blister smut (Figure 1). Common smut occurs throughout PNW corn production areas, although it is less common in western Oregon and western Washington than east of the Cascade Mountains. Infection in commercial plantings may result in considerable damage and yield loss in some older sweet corn cultivars, but yield loss in some of the newer, less susceptible cultivars is rarely significant.
    [Show full text]
  • Ascomycota, Leotiomycetes): a New Bambusicolous Fungal Species from North-East India
    Taiwania 62(3): 261-264, 2017 DOI: 10.6165/tai.2017.62.261 Gelatinomyces conus sp. nov. (Ascomycota, Leotiomycetes): a new bambusicolous fungal species from North-East India Vipin PARKASH* Rain Forest Research Institute, Soil Microbiology Research Lab., AT Road, Sotai, Post Box No. 136, Jorhat-785001, Assam, India. *Corresponding author's email: [email protected] (Manuscript received 21 July 2016; accepted 14 June 2017; online published 17 July 2017) ABSTRACT: This study represents a newly discovered and described macro-fungal species under family Leotiomycetes (Ascomycota) named as Gelatinomyces conus sp. nov. The fungal species was collected from decayed bamboo material (leaves, culms and branches) during the survey in Upper Assam, India. It looks like a pine-cone with gelatinous ascostroma. The asci are thin-walled and arise in scattered discoid apothecia which are aggregated and clustered to form round gelatinous structure on decayed bamboo material. The study also brings the first record of fungal species from north east region of India. A taxonomic description, illustrations and isolation and culture of Gelatinomyces conus sp. nov. are provided in this study. KEY WORDS: Apothecium, Bambusicolous fungus, Gelatinous ascostroma, India, New fungal species. INTRODUCTION mounted in the DPX fixative (a mixture of distyrene (a polystyrene), a plasticizer (tricresyl phosphate), and Bamboo is like a life line in north-east India. In xylene), on the slides. Spore dimensions were obtained India, north-east states harbours bamboo in the form of under BIOXL (Labovision trinocular microscope) and homestead stands, bamboo groves (public/ private the basidiospores were microphotographed (Gogoi & domain) and natural bamboo brakes. But the knowledge Parkash 2015).
    [Show full text]
  • A Review on Rice False Smut, It's Distribution, Identification And
    Acta Scientific AGRICULTURE (ISSN: 2581-365X) Volume 4 Issue 12 December 2020 Review Article A Review on Rice False Smut, it’s Distribution, Identification and Management Practices Bhanu Dangi1*, Saugat Khanal2 and Shubekshya Shah3 Received: October 27, 2020 1Sahara Multipurpose Agriculture Farm, Tulsipur, Dang, Nepal Published: 2Faculty of Agriculture, Agriculture and Forestry University, Rampur, Chitwan, Bhanu Dangi., Nepal November 21, 2020 et al. 3Institute of Agriculture and Animal Science, Tribhuvan University, Nepal © All rights are reserved by *Corresponding Author: Bhanu Dangi, Sahara Multipurpose Agriculture Farm, Tulsipur, Dang, Nepal. Abstract Rice (Oryza sativa Villosiclava virens is the ) is the major source of food security for most of the population in the world. False smut is recently emerging as a major Rice disease which was previously considered to have a negligible impact. An ascomycetes fungus, pathogen that causes the False Smut disease of rice. It is found in two different stages sexual and asexual and both spores can infect the spikelet and lead to the formation of smut ball of rice grain. The disease has been reported from all across the world after being reported for the first time in Tamil Nadu by Cooke in 1878. Rice False Smut has been reported to cause 40% of the yield losses and this disease can be controlled with the proper management practices and the control approaches. The disease is found to have linked with the higher nitrogen usages and the occurrence of heavy rainfall during Reproductive stage. Preventive approaches include crop rotation, optimum nitrogen usages, selection of the resistant variety, scheduling of the crop plantation to avoid raining during in vitro and in vivo sensitive stages and field preparation.
    [Show full text]
  • Fungal Pathogens Occurring on <I>Orthopterida</I> in Thailand
    Persoonia 44, 2020: 140–160 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.06 Fungal pathogens occurring on Orthopterida in Thailand D. Thanakitpipattana1, K. Tasanathai1, S. Mongkolsamrit1, A. Khonsanit1, S. Lamlertthon2, J.J. Luangsa-ard1 Key words Abstract Two new fungal genera and six species occurring on insects in the orders Orthoptera and Phasmatodea (superorder Orthopterida) were discovered that are distributed across three families in the Hypocreales. Sixty-seven Clavicipitaceae sequences generated in this study were used in a multi-locus phylogenetic study comprising SSU, LSU, TEF, RPB1 Cordycipitaceae and RPB2 together with the nuclear intergenic region (IGR). These new taxa are introduced as Metarhizium grylli­ entomopathogenic fungi dicola, M. phasmatodeae, Neotorrubiella chinghridicola, Ophiocordyceps kobayasii, O. krachonicola and Petchia new taxa siamensis. Petchia siamensis shows resemblance to Cordyceps mantidicola by infecting egg cases (ootheca) of Ophiocordycipitaceae praying mantis (Mantidae) and having obovoid perithecial heads but differs in the size of its perithecia and ascospore taxonomy shape. Two new species in the Metarhizium cluster belonging to the M. anisopliae complex are described that differ from known species with respect to phialide size, conidia and host. Neotorrubiella chinghridicola resembles Tor­ rubiella in the absence of a stipe and can be distinguished by the production of whole ascospores, which are not commonly found in Torrubiella (except in Torrubiella hemipterigena, which produces multiseptate, whole ascospores). Ophiocordyceps krachonicola is pathogenic to mole crickets and shows resemblance to O. nigrella, O. ravenelii and O. barnesii in having darkly pigmented stromata. Ophiocordyceps kobayasii occurs on small crickets, and is the phylogenetic sister species of taxa in the ‘sphecocephala’ clade.
    [Show full text]
  • Research on Advance of Rice False Smut Ustilaginoidea Virens (Cooke) Takah Worldwide: Part I
    Journal of Agricultural Science; Vol. 11, No. 15; 2019 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Research on Advance of Rice False Smut Ustilaginoidea virens (Cooke) Takah Worldwide: Part I. Research Status of Rice False Smut Shiwen Huang1,2, Lianmeng Liu1,3, Ling Wang1 & Yuxuan Hou1 1 State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China 2 Agricultural College, Guangxi University, Nanning, China 3 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China Correspondence: Shiwen Huang, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311401, Zhejiang, China. Tel: 86-133-8860-8130. E-mail: [email protected] Received: July 6, 2019 Accepted: August 9, 2019 Online Published: September 15, 2019 doi:10.5539/jas.v11n15p240 URL: https://doi.org/10.5539/jas.v11n15p240 The research is financed by The key R & D project of Zhejiang province (2019C02018); The National Key R & D Projects of China (2018YFD0200304, 2016YFD0200801); Innovation project of CAAS (CAAS-ASTIP-2013-CNRRI); China-Norway international cooperation project: “CHN-2152, 14-0039 SINOGRAIN project II”; Shanghai municipality project “Agriculture through science and technology” (2019-02-08-00-08-F01127). Abstract Since hybrid rice was planted, rice false smut (RFS) caused by Ustilaginoidea virens (Cooke) Takah has risen from a sporadic secondary disease to a major devastating and common disease, due to the changes in climatic conditions, cultivation system, fertilization and water management and cultivar replacement, and has become one of the new three major rice diseases in China. In addition to cause rice yield decrease and economic losses, RFS also causes toxic effects on humans and animals, due to the fact that the pathogen has color, produces toxins, affects rice appearance, and reduces rice quality.
    [Show full text]
  • Specific Adaptation of Ustilaginoidea Virens in Occupying Host
    ARTICLE Received 27 Jan 2014 | Accepted 10 Apr 2014 | Published 20 May 2014 DOI: 10.1038/ncomms4849 OPEN Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics Yong Zhang1,*, Kang Zhang1,*, Anfei Fang1,*, Yanqing Han1, Jun Yang1,2, Minfeng Xue1,2, Jiandong Bao3, Dongwei Hu4, Bo Zhou3,5, Xianyun Sun6, Shaojie Li6, Ming Wen7, Nan Yao7, Li-Jun Ma8, Yongfeng Liu9, Min Zhang10, Fu Huang11, Chaoxi Luo12, Ligang Zhou1, Jianqiang Li1, Zhiyi Chen9, Jiankun Miao13, Shu Wang13, Jinsheng Lai14, Jin-Rong Xu15, Tom Hsiang16, You-Liang Peng1,2 & Wenxian Sun1 Ustilaginoidea virens (Cooke) Takah is an ascomycetous fungus that causes rice false smut, a devastating emerging disease worldwide. Here we report a 39.4 Mb draft genome sequence of U. virens that encodes 8,426 predicted genes. The genome has B25% repetitive sequences that have been affected by repeat-induced point mutations. Evolutionarily, U. virens is close to the entomopathogenic Metarhizium spp., suggesting potential host jumping across kingdoms. U. virens possesses reduced gene inventories for polysaccharide degradation, nutrient uptake and secondary metabolism, which may result from adaptations to the specific floret infection and biotrophic lifestyles. Consistent with their potential roles in pathogenicity, genes for secreted proteins and secondary metabolism and the pathogen–host interaction database genes are highly enriched in the transcriptome during early infection. We further show that 18 candidate effectors can suppress plant hypersensitive responses. Together, our analyses offer new insights into molecular mechanisms of evolution, biotrophy and pathogenesis of U. virens. 1 Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China.
    [Show full text]
  • False Smut of Rice Ustilaginoidea Virens (Cooke) Takah
    False Smut of Rice Ustilaginoidea virens (Cooke) Takah False smut, caused by the fungus Ustilaginoidea virens, The disease is more likely with high nitrogen rates is a minor grain disease of rice in Louisiana – although it and is more common on later planted rice. Most occasionally develops to epidemic levels in certain areas varieties appear to have high levels of resistance, and and is more common on rice grown in the northern disease-control measures generally are not required. parts of the state. Fungicides containing propiconazole and copper foliar The fungus overwinters as sclerotia in the soil. They sprays applied at the boot growth stage suppress disease germinate and produce spores that infect the grain. development. The disease first appears as a large gray to brownish- green fruiting structure covered by a thin membrane that replaces one or more grains of the mature panicle (Figure 1). The membrane ruptures, exposing orange spores (Figure 2). In the center of the ball is a hard structure called a sclerotium that replaced the grain. As the spore balls mature, they turn khaki green to black (Figure 3). Spores (Figure 4) contaminate adjacent grain. In general, yields are not reduced by this disease, but the spore balls can reduce grain quality. Figure 1. Early symptoms of false smut Figure 2. Typical false smut Figure 3. Late-season false smut Figure 4. False smut fungal spores Visit our website: www.lsuagcenter.com Authors Louisiana State University Agricultural Center, William B. Richardson, Chancellor Don Groth, Ph.D., Professor Louisiana Agricultural Experiment Station, David J. Boethel, Vice Chancellor and Director Louisiana Cooperative Extension Service, Paul D.
    [Show full text]
  • Field Manual of Diseases on Fruits and Vegetables Field Manual of Diseases on Fruits and Vegetables
    R. Kenneth Horst Field Manual of Diseases on Fruits and Vegetables Field Manual of Diseases on Fruits and Vegetables R. Kenneth Horst Field Manual of Diseases on Fruits and Vegetables R. Kenneth Horst Plant Pathology and Plant Microbe Biology Cornell University Ithaca, NY, USA ISBN 978-94-007-5973-2 ISBN 978-94-007-5974-9 (eBook) DOI 10.1007/978-94-007-5974-9 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013935123 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Ar Ticle 2Yhuorrnhg Frpshwlqj Dvh[Xdo Dqg Vh
    IMA FUNGUS · 7(2): 289–308 (2016) P'=++*9Q#"/='U=>=/=* * [ [ [ ARTICLE Ascomycota G j1 \ G2 O3 q G \2 \4,5 \U>9 5 q &*'=''{5&12K13qqU"j"14jGJU{GJ#15, K##{J15"2KM'U 15#O"<"J\<j*>;;'JGZ"P¨ 2J""qJ5GLGjJO5/=>=+JG 3q_#O"5#]O]&D/'=U=**&!J$ ] 45#JqG#\"5/=>?/JG 5XO"\jJJK \j U\OJL{DGM"O\<OE9+'U>;+=9G57D >5#""MG"O"_!MGO_$#===/ JG# 9"5#O"9;+9?\&7D *5O""__MM\j\6Q/9=?=J 105#q#J7D&\jqJ>+O5{ 11\M"O"jO]{J7*;5J{ 12\#XEM"jJ#JMq"\"j+>'==7 13qjO"*/'>=G''?/D´ 14J5GLG&_JD_JO5/=>=+JG 15<j5\O!""$G"G"LM\*U=\"G <<{'G=\U\ 'U5#O" "j"+*5jDODK=9*='JG Abstract: " [ # #" Key words: ##""6" Diaporthales #G"""##"#" Dothideomycetes "7#"" \#"]#_\7M Eurotiales #G#"[ Hypocreales Amarenographium Amarenomyces, Amniculicola Anguillospora, Balansia Ephelis, Leotiomycetes Claviceps Sphacelia, Drepanopeziza Gloeosporidiella Gloeosporium, Golovinomyces Euoidium, HolwayaCrinium, HypocrellaAschersonia, Labridella Griphosphaerioma, #" MetacapnodiumAntennulariaNeonectriaCylindrocarponHeliscus. 7#" # PAmniculicola longissima, Atichia maunauluana, Diaporthe columnaris, D. E liquidambaris, D. longiparaphysata, D. palmicola, D. tersa, Elsinoë bucidae, E.caricae, E. choisyae, E. paeoniae, E. psidii, E. zorniae, Eupelte shoemakeri, Godronia myrtilli, G. raduloides, Sarcinella mirabilis, S. pulchra, Schizothyrium jamaicense, Trichothallus nigerM Diaporthe azadirachte#Discula with a D. destructiva JP'*</='UZGP'+D/='UZP/*D/='U INTRODUCTION # # " " # 7 " [ # #" !D " 6 " # Sordariomycetes et al /='/$ # as Diaporthales !j et al. 2015a), Hypocreales © 2016 International Mycological Association You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: !""#$ Non-commercial: # No derivative works: # For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
    [Show full text]
  • Multigene Phylogeny and Morphology Reveal a New Species, Ophiocordyceps Tettigonia, from Guizhou Province, China
    Phytotaxa 280 (2): 141–151 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.280.2.4 Multigene phylogeny and morphology reveal a new species, Ophiocordyceps tettigonia, from Guizhou Province, China TING-CHI WEN1, YUAN-PIN XIAO1,2, LING-SHENG ZHA1,2, KEVIN D. HYDE2 & JI-CHUAN KANG1* 1Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China * email: [email protected] 2Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand Abstract A species of Cordyceps sensu lato associated with an adult of Tettigonia was collected in Chishui Danxia natural world heritage site, Guizhou Province, China. Following morpho-phylogenetic studies it was found to be a new species and is de- scribed as Ophiocordyceps tettigonia sp. nov. It differs from similar Ophiocordyceps species in having a unique host insect, and wide secondary ascospores. Combined sequence data from the ITS, SSU, TEF, and RPB1 gene loci also confirmed the distinctiveness of this new species. Key words: Cordyceps sensu lato, new species, phylogenetic analyses, Tettigonia Introduction Cordyceps sensu lato is one of the most important genera of invertebrate pathogens (Hywel-Jones 2001) with more than 540 epithets (Index Fungorum, 2016). The genus Cordyceps Fr. (Clavicipitaceae, Hypocreales, Ascomycota) has been recently divided and placed into three families and more than six genera—Polycephalomyces Kobayasi (Ophiocordycipitaceae G.H. Sung et al.) (Kepler et al. 2013), Tyrannicordyceps Kepler & Spatafora (Clavicipitaceae Earle) (Kepler et al.
    [Show full text]