Typha Domingensis(Typhaceae) Affects Macroinvertebrate Assemblages in the Palo Verde Wetland

Total Page:16

File Type:pdf, Size:1020Kb

Typha Domingensis(Typhaceae) Affects Macroinvertebrate Assemblages in the Palo Verde Wetland See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/314208034 The Management of Typha domingensis(Typhaceae) Affects Macroinvertebrate Assemblages in the Palo Verde Wetland... Article in Ecological Restoration · January 2017 DOI: 10.3368/er.35.2.175 CITATIONS READS 0 33 5 authors, including: Florencia Trama Anjali Kumar cneh-peru American Association for the Advancement of S… 9 PUBLICATIONS 35 CITATIONS 19 PUBLICATIONS 155 CITATIONS SEE PROFILE SEE PROFILE Monika Springer University of Costa Rica 52 PUBLICATIONS 223 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Freshwater Macroinvertebrates of Mesoamerica and the Caribbean View project Chironomidae (Diptera) of Costa Rica View project All content following this page was uploaded by Monika Springer on 24 May 2017. The user has requested enhancement of the downloaded file. The Management of Typha domingensis (Typhaceae) affects Macroinvertebrate Assemblages in the Palo Verde Wetland, Guanacaste, Costa Rica Florencia A. Trama, Federico L.S. Rizo Patron Viale, Anjali S. Kumar, Jennifer L. Stynoski, Michael B. McCoy Colton, Monika C Springer Ecological Restoration, Volume 35, Number 2, June 2017, pp. 175-189 (Article) Published by University of Wisconsin Press For additional information about this article https://muse.jhu.edu/article/658558 Access provided by Cornell University (22 May 2017 16:26 GMT) RESEARCH ARTICLE The Management of Typha domingensis (Typhaceae) affects Macroinvertebrate Assemblages in the Palo Verde Wetland, Guanacaste, Costa Rica Florencia A. Trama, Federico L.S. Rizo Patron Viale, Anjali S. Kumar, Jennifer L. Stynoski, Michael B. McCoy Colton and Monika C. Springer ABSTRACT The Palo Verde wetland, one of the most important places for aquatic organisms in Costa Rica, is currently recovering from an invasive expansion of Typha domingensis (cattail). A monitoring program was designed to understand the potential impacts of different management plans on aquatic fauna and flora. Macroinvertebrates were sampled monthly for one year (Aug 2003–Aug 2004) using an artificial substrate method in three plots: Plot A,T. domingensis has been managed since 1987 by manual and mechanical underwater cutting and posterior grazing; Plot B, T. domingensis has been mechanically crushed since 2002; and Plot C, a homogeneous T. domingensis stand without active management. We identified 112 macroinvertebrate taxa from 53 families and 18 orders. Typha domingensis removal in plots under active management did not increase family or taxa richness. Instead, a greater number of rare taxa persisted in the unmanaged plot, and macroinvertebrate communities differed among plots with less than 60% of taxa shared among them. Furthermore, mean taxa richness was higher in T. domingensis cover (X̅ = 8.56) than in the other vegetation covers (X̅ = 4.6 to 5.54). Macroinvertebrate richness was affected by vegetation cover, sampling date, and depth while abundance was affected by depth and dissolved oxygen. Typha domingensis management is necessary to open areas that allow the development of other vegetation types, a variety of communities of macroinvertebrates, and habitat for birds. However, in order to promote a high macroinvertebrates biodiversity and ensure food sources for waterfowl, the Palo Verde wetland should retain some patches of T. domingensis distributed throughout. Keywords: aquatic diversity, cattail, seasonal wetland, tropical, wetland restoration Restoration Recap • • Seasonally variable habitat conditions influence macroin- management activities to reduce invasive species stands, vertebrate communities. In this study, water depth was the importance of the invasive species as a habitat source one of the most important habitat factors aside from should be investigated. management activity. It is important to evaluate a range • Remnant cattail stands should be at least 15 m in diameter of both temporal and physical conditions in a system in to ensure a low electric conductivity needed to sustain a order to achieve restoration goals. diverse macroinvertebrate community. • Macroinvertebrates can adapt to live on invasive plants that have been established for a long time. Before starting reshwater wetlands are the most threatened ecosystems (Bufford and Gonzalez 2012). These threats are mainly Fin the world and provide critical habitat for a variety of due to direct activities (drainage, dredging, and dam- organisms, including birds, fish, amphibians, and reptiles ming) that modify the land for agriculture, ranching and aquaculture among others. Additionally, water pollutants, Ecological Restoration Vol. 35, No. 2, 2017 excess of nutrients, and the introduction of non-native ISSN 1522-4740 E-ISSN 1543-4079 species by natural dispersal mechanisms or human trans- ©2017 by the Board of Regents of the University of Wisconsin System. portation have changed community structure and wetland June 2017 ECOLOGICAL RESTORATION 35:2 • 175 functionality (Roggeri 1995, Cronk and Fennessy 2001, was developed by the Ministry of Environment, Energy Ramsar 2014). and Telecommunications (MINAET; Castillo and Guzmán Non-native invasive plants can be successful due to 2004) and the Organization for Tropical Studies (OTS). their ability to rapidly adapt and spread with both sexual The project included a component for monitoring the reproduction and vegetative regeneration. Invasive plants responses of wetland fauna and flora to various methods often have wide ecological tolerances to fire, flooding and of controlling T. domingensis (Organization for Tropical drought conditions, and often do not have pests or herbi- Studies 2002, Trama and Rizo-Patron 2007, Trama et al. vores in the new, invaded habitats (Cronk and Fennessy 2009a, Trama et al. 2009b). 2001). These invasions not only affect the associated bio- Macroinvertebrates play an important role in the food diversity but also the functionality of the ecosystems and web and recycling of organic matter. These organisms human interests (Zedler and Kercher 2004). Some of the are an important source of protein for many aquatic changes that can be observed when an invasive plant arrives species, including birds that forage and nest in wetland to a new wetland are: 1) changes in community structure areas (Fredrickson and Reed 1988). Generally, there are a by competition and habitat disturbance; 2) changes in greater number of macroinvertebrates found in wetlands aquatic plant composition by shading the water column; with aquatic vegetation than in those without vegetation 3) producing more invasive hybrids that change the genetic (Kostecke et al. 2005). Moreover, areas with a greater makeup of the community; and 4) changes in animal com- diversity of wetland vegetation structures support a more munities by modifying the physicochemical factors or diverse assemblage of macroinvertebrates than areas with biotic conditions (Cronk and Fennessy 2001). one or few plant species (De Szalay and Resch 2000, Kratzer Palo Verde National Park (PVNP; Guanacaste, Costa and Batzer 2007). Rica) includes a 1247-hectare (ha) seasonal, freshwater Traditionally, wetland managers have manipulated wetland (Palo Verde wetland, PVW), considered one of the hydrology and vegetation to benefit waterfowl populations, most important wetlands in the Pacific region of Central especially migratory birds. However, some management America (Vaughan et al. 1996). This wetland provides vital activities have shifted to also benefit macroinvertebrates habitat for over 60 species of migratory and resident water because they act as a food source for waterfowl (De Szalay birds (Boza 1981, Boza and Mendoza 1981, McCoy and et al. 1996, De Szalay and Resh 1997, Kostecke 2005). Cur- Rodríguez 1994), including endangered species and those rently, no information is available regarding the impacts with small population sizes (Vaughan et al. 1996). Since of T. domingensis management on macroinvertebrates in the 1980s, when PVNP was created and grazing cattle were the PVW. Here, we investigated the responses of mac- removed, the aggressive advance of Typha domingensis roinvertebrate communities to T. domingensis manage- (cattail) and other grasses have made the maintenance ment methods to determine how richness and abundance of aquatic habitat for organisms difficult (McCoy and of food for resident and migratory birds may be altered Rodriguez 1994). (Gray et al. 1999, Camburn et al. 2001, Kostecke et al. Typha domingensis is a cosmopolitan plant distributed 2005). Our objectives were to compare throughout the in the Americas, Africa, and Australia (Sojda and Solberg year: 1) diversity of aquatic macroinvertebrates in differ- 1993). In Costa Rica, this species has shown very aggres- ent T. domingensis management treatments; 2) variation sive growth in many wetlands, including those found in of physicochemical measures between treatments; and the lower reaches of the Tempisque River (Organization 3) the relationship between biodiversity (biotic) variables for Tropical Studies 2002, Jiménez et al. 2003, Organiza- and physicochemical (abiotic) variables. tion for Tropical Studies 2003, Castillo and Guzmán 2004, Pucci 2012). Several methods have been employed and Methods tested in an effort to control the growth of this plant and restore natural wetlands (McCoy 1994, McCoy and Rodrí- Study Area guez 1994, McCoy 1996, Vaughan et al. 1996). However, The Palo Verde wetland is situated within the Palo
Recommended publications
  • (BCF), Translocation Factor (TF) and Metal Enrichment Factor (MEF) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 8, Issue 1, January 2019 Evaluation of Bioaccumulation Factor (BAF), Bioconcentration Factor (BCF), Translocation Factor (TF) and Metal Enrichment Factor (MEF) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater S. S. Shingadgaon1, B.L. Chavan2 Research Scholar, Department of Environmental Science, School of Earth Sciences, Solapur University, Solapur, MS, India1 Former Professor and Head, Department of Environmental Science, Solapur University Solapur and presently working at Department of Environmental Science, Dr.Babasaheb Ambedkar Marathwada University, Aurangabad, MS, India 2 ABSTRACT: Wastewaters receiving aquatic bodies are quiet complex in terms of pollutants, the transport and interactions with heavy metals. This complexity is primarily due to high variability of pollutants, contaminants and related parameters. The macrophytes are plausible bio-indicators of the pollution load and level of metals within the aquatic systems than the wastewater or sediment analyses. The potential ability of aquatic macrophytes in natural water bodies receiving municipal sewage from Solapur city was assessed. Data from the studies on macrophytes exposed to a mixed test bath of metals and examined to know their potentialities to accumulate heavy metals for judging their suitability for phytoremediation technology
    [Show full text]
  • (A) Journals with the Largest Number of Papers Reporting Estimates Of
    Supplementary Materials Figure S1. (a) Journals with the largest number of papers reporting estimates of genetic diversity derived from cpDNA markers; (b) Variation in the diversity (Shannon-Wiener index) of the journals publishing studies on cpDNA markers over time. Figure S2. (a) The number of publications containing estimates of genetic diversity obtained using cpDNA markers, in relation to the nationality of the corresponding author; (b) The number of publications on genetic diversity based on cpDNA markers, according to the geographic region focused on by the study. Figure S3. Classification of the angiosperm species investigated in the papers that analyzed genetic diversity using cpDNA markers: (a) Life mode; (b) Habitat specialization; (c) Geographic distribution; (d) Reproductive cycle; (e) Type of flower, and (f) Type of pollinator. Table S1. Plant species identified in the publications containing estimates of genetic diversity obtained from the use of cpDNA sequences as molecular markers. Group Family Species Algae Gigartinaceae Mazzaella laminarioides Angiospermae Typhaceae Typha laxmannii Angiospermae Typhaceae Typha orientalis Angiospermae Typhaceae Typha angustifolia Angiospermae Typhaceae Typha latifolia Angiospermae Araliaceae Eleutherococcus sessiliflowerus Angiospermae Polygonaceae Atraphaxis bracteata Angiospermae Plumbaginaceae Armeria pungens Angiospermae Aristolochiaceae Aristolochia kaempferi Angiospermae Polygonaceae Atraphaxis compacta Angiospermae Apocynaceae Lagochilus macrodontus Angiospermae Polygonaceae Atraphaxis
    [Show full text]
  • Hybridization Dynamics of Invasive Cattail (Typhaceae) Stands at Pierce Cedar Creek Institute: a Molecular Analysis
    HYBRIDIZATION DYNAMICS OF INVASIVE CATTAIL (TYPHACEAE) STANDS AT PIERCE CEDAR CREEK INSTITUTE: A MOLECULAR ANALYSIS Alex Graeff, Kelsey Huisman, and Dr. Pamela J. Laureto Department of Biological Sciences Grand Rapids Community College 143 Bostwick NE Grand Rapids, Michigan 49503 ABSTRACT Three cattail taxa are recognized in Michigan USA: native Typha latifolia (broad-leaf cattail), the invasive Typha angustifolia (narrow-leaf cattail), and the hybrid of these two species Typha × glauca. Typha angustifolia and T. × glauca are of special interest because of their ability to aggressively spread and out-compete the native cattail T. latifolia. Typha × glauca has been shown to out-compete both its parental taxa and produce monospecific stands. We surveyed the Pierce Cedar Creek Institute (PCCI) property for cattails and located 25 distinct cattail marshes. We determined the total area of cattail marsh at PCCI to be roughly 10% of the 267 ha property. Cattail individuals were sampled from each of the 25 stands and random amplified polymorphic DNA markers were used to identify the individuals to species. We found that 20 of the 25 stands were monospecific for the native cattail, T. latifolia. Five of the stands were mixtures of the native T. latifolia and the introduced T. angustifolia, and T. × glauca was found in two of the mixed stands. We recommend removal of the invasive T. angustifolia and T. × glauca individuals and the establishment of a monitoring plan in order to maintain the long-term health of the cattail marshes at PCCI. Keywords: Typha spp., RAPD markers, invasive species 1 INTRODUCTION Species of Typha L. (Typhaceae), commonly known as cattails, are highly productive emergent plants that grow in a variety of wetland habitats throughout the world (McManus et al.
    [Show full text]
  • Federico Selvi a Critical Checklist of the Vascular Flora of Tuscan Maremma
    Federico Selvi A critical checklist of the vascular flora of Tuscan Maremma (Grosseto province, Italy) Abstract Selvi, F.: A critical checklist of the vascular flora of Tuscan Maremma (Grosseto province, Italy). — Fl. Medit. 20: 47-139. 2010. — ISSN 1120-4052. The Tuscan Maremma is a historical region of central western Italy of remarkable ecological and landscape value, with a surface of about 4.420 km2 largely corresponding to the province of Grosseto. A critical inventory of the native and naturalized vascular plant species growing in this territory is here presented, based on over twenty years of author's collections and study of relevant herbarium materials and literature. The checklist includes 2.056 species and subspecies (excluding orchid hybrids), of which, however, 49 should be excluded, 67 need confirmation and 15 have most probably desappeared during the last century. Considering the 1.925 con- firmed taxa only, this area is home of about 25% of the Italian flora though representing only 1.5% of the national surface. The main phytogeographical features in terms of life-form distri- bution, chorological types, endemic species and taxa of particular conservation relevance are presented. Species not previously recorded from Tuscany are: Anthoxanthum ovatum Lag., Cardamine amporitana Sennen & Pau, Hieracium glaucinum Jord., H. maranzae (Murr & Zahn) Prain (H. neoplatyphyllum Gottschl.), H. murorum subsp. tenuiflorum (A.-T.) Schinz & R. Keller, H. vasconicum Martrin-Donos, Onobrychis arenaria (Kit.) DC., Typha domingensis (Pers.) Steud., Vicia loiseleurii (M. Bieb) Litv. and the exotic Oenothera speciosa Nutt. Key words: Flora, Phytogeography, Taxonomy, Tuscan Maremma. Introduction Inhabited by man since millennia and cradle of the Etruscan civilization, Maremma is a historical region of central-western Italy that stretches, in its broadest sense, from south- ern Tuscany to northern Latium in the provinces of Pisa, Livorno, Grosseto and Viterbo.
    [Show full text]
  • Aquatic Vascular Plants of New England, Station Bulletin, No.517
    University of New Hampshire University of New Hampshire Scholars' Repository NHAES Bulletin New Hampshire Agricultural Experiment Station 2-1-1981 Aquatic vascular plants of New England, Station Bulletin, no.517 Crow, G. E. Hellquist, C. B. New Hampshire Agricultural Experiment Station Follow this and additional works at: https://scholars.unh.edu/agbulletin Recommended Citation Crow, G. E.; Hellquist, C. B.; and New Hampshire Agricultural Experiment Station, "Aquatic vascular plants of New England, Station Bulletin, no.517" (1981). NHAES Bulletin. 478. https://scholars.unh.edu/agbulletin/478 This Text is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NHAES Bulletin by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. S ON BULLETIN 517 February, 1981 oo-5n Aquatic Vascular Plants of Ne^v England: Part 2. Typhaceae and Sparganiaceae by G. E. Crow and C. B. Hellquist NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE ON BULLETIN 517 February, 1981 Aquatic Vascular Plants of New England: Part 2. Typhaceae and Sparganiaceae by G. E. Crow and C. B. Hellquist NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE •' Nst; Hrirr-poliire Y •'_v--r-r 5 %^ ACKNOWLEDGEMENTS ^^ 5/:^ We wish to thank Drs. Ernest O. Beal, Vernon L. Harms, Arthur C. Mathieson, and Eugene C. Ogden for their helpful comments on the manuscript. We are also grateful to the curators of the following her- baria for use of their collections: BOSC, BRU, CONN, CUW, GH, HNH, KIRI, MASS, MAINE, NCBS, NHA, NEBC, VT, YU.
    [Show full text]
  • Taxonomy Monocots
    Taxonomy Monocots- 1. Typhaceae - commonly called the Cattail Family (aceae ending means family). These are emergent, rhizomatons, found in fresh or brackish waters. • Typha (genus) domingensis (species): This is the species found in AZ. • Typha latifolia 2. Potamogetonaceae - the Pondweed Family. This family is rooted and submerged. • Potamogeton: commonly known as Pondweeds; many species are found. • Ruppia: commonly known as Widgeon grass; found in fresh or brackish waters. • Zannichelia: commonly known as Horned Pondweed; found in fresh or brackish waters. • Zoestra: marine seagrass. • Halodule: marine seagrass. • Cymodocea: marine seagrass. • Phyllospadix: marine seagrass. 3. Najadaceae - the Niad Family. This family is also rooted and submerged; there is only one genus. • Najas marina: commonly known as the spiny niad; found in brackish waters. Typically known as a problem plant because it grows course and very quickly. 4. Hydrocharitaceae - the Frogbit Family. This family is rooted and submerged, and is found in fresh and marine waters. • Anacharis densa: commonly known as Waterweed, also called Elodea. A very common aquarium plant, considered a problem plant in freshwater lakes. • Halophila: found in marine habitats. • Thalassia: commonly known as Turtlegrass (another type of seagrass); found in marine habitats. • Vallisneria: commonly known as Wild Celery, a common food for ducks and other water fowl; found in freshwater. 5. Graminaceae (Poaceae)- the Grass Family. Grasses can be identified by the swollen base of each leaf where it meets the stem. This is called a ligule. There are 22 genera, important ones are listed. Most of these are emergent and rooted. • Phragmites australis: commonly known as the Giant Reed, similar to Arundo; found in freshwater.
    [Show full text]
  • ELEMENT STEWARDSHIP ABSTRACT for Typha Spp. North
    ELEMENT STEWARDSHIP ABSTRACT for Typha spp. North American Cattails To the User: Element Stewardship Abstracts (ESAs) are prepared to provide The Nature Conservancy's Stewardship staff and other land managers with current management-related information on those species and communities that are most important to protect, or most important to control. The abstracts organize and summarize data from numerous sources including literature and researchers and managers actively working with the species or community. We hope, by providing this abstract free of charge, to encourage users to contribute their information to the abstract. This sharing of information will benefit all land managers by ensuring the availability of an abstract that contains up-to-date information on management techniques and knowledgeable contacts. Contributors of information will be acknowledged within the abstract and receive updated editions. To contribute information, contact the editor whose address is listed at the end of the document. For ease of update and retrievability, the abstracts are stored on computer at the national office of The Nature Conservancy. This abstract is a compilation of available information and is not an endorsement of particular practices or products. Please do not remove this cover statement from the attached abstract. Authors of this Abstract: K. Motivans, S. Apfelbaum Applied Ecological Services, Inc © THE NATURE CONSERVANCY 1815 North Lynn Street, Arlington, Virginia 22209 (703) 841 5300 The Nature Conservancy Element Stewardship Abstract Typha spp North American cattails I. IDENTIFIERS Scientific-Name: Typha spp. Common-Name: cattail Description: The cattail genus (Typha spp.) is an erect, perennial freshwater aquatic herb which can grow 3 or more meters in height.
    [Show full text]
  • Flora-Lab-Manual.Pdf
    LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae
    [Show full text]
  • Typha × Glauca Godr., 香蒲属(香蒲科) 中国新记录杂种及其形态特征
    第37卷 第1期 水生生物学报 Vol. 37, No.1 2013 年 1 月 ACTA HYDROBIOLOGICA SINICA Jan., 2 0 1 3 doi: 10.7541/2013.29 Typha × glauca Godr., 香蒲属(香蒲科) 中国新记录杂种及其形态特征 朱秀玉 王 东 (华中师范大学生命科学学院, 武汉 430079) 摘要: 香蒲属(Typha L.)为多年生水生或沼生草本植物, 种间存在十分普遍的杂交现象, 其中一些杂种在湿 地生态系统中有重要的作用。在查阅大量腊叶标本基础上, 结合野外居群生物学工作, 作者发现中国一新记 录杂种, 即 T. × glauca Godr. (T. angustifolia L. × T. latifolia L.), 并新拟“粉绿香蒲”作该杂种的中文名。对粉 绿香蒲的形态特征进行了研究, 讨论了其与亲本水烛和宽叶香蒲的区别, 并给出检索表。 关键词: 香蒲属; 水烛; 宽叶香蒲; 粉绿香蒲; 新记录 中图分类号: Q949.7 文献标识码: A 文章编号: 1000-3207(2013)01-0029-05 香蒲属(Typha L.)隶属香蒲科(Typhaceae), 世界 中国科学院成都生物研究所植物标本馆(CDBI)、中 约 24 种[1—4], 分布于南北两半球的温带和热带地 国科学院武汉植物园植物标本馆(HIB)、武汉大学植 区。我国约有 12 种, 南北广泛分布[5, 6]。该属种间 物标本馆(WH)、四川大学植物标本馆(SZ)等所有馆 存在十分普遍的杂交现象, 欧洲、美洲等地已经报 藏香蒲标本以及我们野外采集的香蒲标本[存放华 道有 7 个杂种[7—13], 其中 T. angustifolia × T. latifolia 中师范大学植物标本馆(CCNU)], 尤其是馆藏标本 (= T. × glauca Godr.)、T. angustifolia × T. domingensis 中被鉴定为水烛(T. angustifolia L.)和宽叶香蒲(T. 和 T. domingensis × T. latifolia (= T. × provincialis latifolia L.)的标本。形态特征对比研究包括外部形 Camus)[8]等 3 个杂种经过细胞遗传学实验确认。在 态、花、果实、种子及花粉等。 欧洲和北美等地, 香蒲属杂种是湿地尤其是在严重 1.2 形态观察和测量 人为干扰或易受较大水位波动影响生境中的优势植 用直接观察法研究植物的营养器官和繁殖器官 物, 它们在湿地生态系统中的作用一直受到植物学 的形态特征。在 NIKON SMZ-1500 体视显微镜下观 家和生态学家的关注[9—11, 14—19]。 察花、果实和种子, 在 OLYMPUS BX51 型光学显微 我们在研究香蒲属标本过程中, 发现采自新疆 镜下观察花粉粒, 并分别测量大小和拍照。取腊叶 西部的 10 份标本, 其形态特征属于杂种 T. × glauca 标本的花药, 并经冰醋酸浸泡、醋酸酐处理、离心 Godr.的范畴。该杂种以前在国内未见报道, 属于中 沉淀淘洗后制作装片, 用于花粉粒的观察和大小测 国的一分布新记录, 本文予以报道。 量。选取 10 个以上样本用于各项数据在显微镜下性 状的测量, 求平均值。 1 材料与方法 2 分类与形态学描述 1.1 腊叶标本研究 研究存放中国科学院植物研究所植物标本馆 粉绿香蒲(杂种) 新拟 图版Ⅰ: 6—11, 20 (PE)、中国科学院华南植物园植物标本馆(IBSC)、 Typha × glauca Godr. (T. angustifolia L. ×T. 收稿日期: 2011-12-06; 修订日期: 2012-04-13 基金项目: 国家自然科学基金项目(30870151); 中国科学院植物研究所系统与进化植物学国家重点实验室开放课题(LSEB2011- 06); 国家自然科学基金委重大国际合作项目(31110103911); 中国科学院战略性先导科技专项—应对气候变化的碳收 支认证及相关问题(XDA05050206)项目资助 作者简介: 朱秀玉(1984—), 女, 山东临沂人; 硕士研究生; 主要从事植物分类学和生态学研究。E-mail: [email protected] 通信作者: 王东, E-mail: [email protected] 30 水生生物学报 37 卷 latifolia L.).
    [Show full text]
  • Fiber Cables in Leaf Blades of Typha Domingensis and Their Absence in Typha Elephantina: a Diagnostic Character for Phylogenetic Affinity
    Israel Journal of Plant Sciences ISSN: 0792-9978 (Print) 2223-8980 (Online) Journal homepage: http://www.tandfonline.com/loi/tips20 Fiber cables in leaf blades of Typha domingensis and their absence in Typha elephantina: a diagnostic character for phylogenetic affinity Allan Witztum & Randy Wayne To cite this article: Allan Witztum & Randy Wayne (2016) Fiber cables in leaf blades of Typha domingensis and their absence in Typha elephantina: a diagnostic character for phylogenetic affinity, Israel Journal of Plant Sciences, 63:2, 116-123, DOI: 10.1080/07929978.2015.1096626 To link to this article: http://dx.doi.org/10.1080/07929978.2015.1096626 Published online: 12 Jan 2016. Submit your article to this journal Article views: 16 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tips20 Download by: [Weill Cornell Medical College] Date: 01 June 2016, At: 10:53 Israel Journal of Plant Sciences, 2016 Vol. 63, No. 2, 116À123, http://dx.doi.org/10.1080/07929978.2015.1096626 Fiber cables in leaf blades of Typha domingensis and their absence in Typha elephantina:a diagnostic character for phylogenetic affinity Allan Witztuma and Randy Wayneb* aDepartment of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; bLaboratory of Natural Philosophy, Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA (Received 10 August 2015; accepted 15 September 2015) Vertical fiber cables anchored in horizontal diaphragms traverse the air-filled lacunae of the tall, upright, spiraling leaf blades of Typha domingensis, T.
    [Show full text]
  • Poales Poales 4 Main Groups: • Acorales - Sister to All Monocots • Alismatales – Inc
    Poales Poales 4 main groups: • Acorales - sister to all monocots • Alismatales – inc. Aroids - jack in the pulpit • “Lilioids” (lilies, orchids, yams) cattails, rushes, sedges – non-monophyletic – petaloid • Commelinids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Poales Poales • showy flowers, Evolutionary trends: • showy flowers, insect or bird insect or bird pollinated • nectar to pollen gathering to pollinated wind pollination • +/- reduced • reduced flowers - loss of • +/- reduced flowers, insect or perianth flowers, insect or wind pollinated wind pollinated • unisexuality sometimes • bracts become important • reduced • reduced flowers, wind • flowers to florets in spikelets flowers, wind pollinated pollinated 1 Poales II: wind pollinated families Xyridaceae - yellow eye grass Small family (5/260) of rush-like leaves with • “grade” centered in the terminal spike of small but showy yellow (or Guayana Shield and blue) petalled-flowers with no nectar. distinctive in tepui-top flora Inflorescence with spirally arranged bracts. • +/- reduced flowers, insect or wind pollinated Xyris difformis Xyris torta - yellow-eyed grass Xyridaceae - yellow eye grass Xyridaceae - yellow eye grass Subfamily with Xyris is widespread and includes Other subfamily is diverse only on Guayana northern hemisphere species. Shield and Brazilian cerrados Abolboideae distribution Xyridoideae (Xyris) distribution Orectanthe Xyris difformis Abolboda 2 Eriocaulaceae - pipewort Eriocaulaceae - pipewort
    [Show full text]
  • Nuclear Genes, Matk and the Phylogeny of the Poales
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations.
    [Show full text]