NOAA's National Weather Service: Evolving to Build a Weather Ready Nation

Total Page:16

File Type:pdf, Size:1020Kb

NOAA's National Weather Service: Evolving to Build a Weather Ready Nation NOAA’s National Weather Service: Evolving to Build a Weather Ready Nation Dr. Louis W. Uccellini Director, National Weather Service NOAA Assistant Administrator for Weather Services March 6, 2017 1 Outline • Prologue • Building a Weather-Ready Nation • Recent Successes • NWS Infrastructure • FY17 Budget/High Priority Items • Summary 2 Prologue • Sustaining the development of the Weather and Water Enterprise • Building a Weather-Ready Nation – partnerships with the federal/state/local/tribal emergency managers and other decision-makers. [NWS support] has revolutionized the emergency management community – from a reactive posture to proactive mitigation of impending extreme events. 3 National Weather Service Overview The average person only sees the tip of the iceberg $7 Billion Industry * * Source: McKinsey and Company 4 The US Weather Enterprise (Industry, Gov, Academia) is the most successful and strongest in the world “The NWS’s key role has been to serve as the foundation for the tremendous growth that the enterprise has experienced and will continue to experience.” …..Enabling a thriving industry…. $7B growing weather industry supported by the NWS ~350 companies depend on the NWS to some extent2 “The weather enterprise is a unique group. Almost none of us could exist without the NWS and NOAA.” ….that unlocks economic value... …to save lives… total value US households estimated potential place on the weather $32B $13B value of weather information they receive3 data to US industry4 1 NWS 2016 budget only (e.g., excludes NESDIS); 2 Wharton 2013 report “Today’s Forecast for the Weather Business” 3 Lazo et al. (2008) “300 Billion Served – Sources, Perceptions, 5 Uses, and Values of Weather Forecasts” 4 Estimated from US variability of US GDP to weather and value of weather data to select industries – see appendix for details Building a Weather-Ready Nation 6 What We Do MISSION of Today VISION for Tomorrow Provide weather, water, and A Weather-Ready Nation where seasonal data, forecasts and society is prepared for and warnings for the protection of responds to weather and water life and property and the events; where communities are enhancement of the national “Ready, Responsive and economy Resilient” 7 Framework for Change • 2012 National Academies of Science (NAS) Reports NAS highlighted the need for continuous change in the NWS and the need to evaluate our function and structure • 2013 National Academy for Public Administration (NAPA) Report NAPA’s extensive stakeholder research revealed widespread consensus that NWS needs to change in order to meet society’s rapidly changing demands for impact-based weather information. NAPA also found no stakeholder consensus for what to change, how to change, or how fast to change. Basis for Evolve NAPA recommended NWS establish a transparent process to govern significant change, including extensive stakeholder engagement, to build stakeholder trust, participation, and support in guiding change. • Why now? What is motivating a need for change? 8 Increasing Societal Vulnerability to Environmental Hazards Average Year Loss Events in the US (1980-2015) 26,000 6 Atlantic Severe Storms Hurricanes 650 Deaths and $15B in 1,300 5,000 Losses Tornadoes Floods Factors contributing to increased vulnerabilities ✓ Increasing population in vulnerable areas 4 out of 5 Americans live in counties that have ✓ More infrastructure at risk to extreme events been declared weather-related disaster areas ✓ Signs of a changing climate in the past six years* • Sea-Level Rise Meanwhile we are now predicting extreme events out to a week in advance! 9 *Source: Environment America NWS Strategic Outcome: A Weather- and Water-Ready Nation “Ready, Responsive, Resilient” Becoming a Weather-Ready Nation is about building community resiliency in the face of increasing vulnerability to extreme weather, water and climate events Better forecasts and warnings Actionable environmental intelligence Consistent products and services Connecting forecasts to decisions Involves the entire US Weather, Water and Climate Enterprise WORKING TOGETHER We have 4600+ WRN Ambassadors 10 10 Realizing the Full Value of Forecasts: Connecting Forecasts to Critical Decisions * Completing the Forecast, National Academies of Science, 2006 Generating Connecting those forecasts & Realizing Intrinsic forecasts warnings with impacts (IDSS) = Value and and warnings “Impact-based Decision Support Services” Mission Success Develop relationships and know partner Embed needs when needed Provide the best hydrological and Support partner meteorological decision making Build trust forecasting in the before, during, and after events world Explain uncertainty 11 ▪ Every NWS office Increasing Need for Local IDSS serves partners 1 with additional Preliminary estimate of IDSS need vs current IDSS capacity by WFO IDSS needs Montana state EM could benefit from co- Port Authority of ▪ OWA Analysis located fire expert NYC expressed shows 94% of need for partners are additional support local1 – must leverage current infrastructure ▪ Must maintain local presence through the current WFO infrastructure - No Additional office closures opportunity to work with ▪ The level of need Flood Control varies across & Water CDC in Atlanta Districts interested in offices additional support ▪ Partners will be better served by enhancing IDSS at all locations and levels of the organization Additional need for IDSS beyond what is provided today 1 NWS IDSS core and deep partners identified through national training, data call, and review May – July 2016 12 SOURCE: OWA Strategic staffing team Low additional IDSS need Extreme additional IDSS need Ready, Responsive, Resilient Saving Lives and Property 4600+ WRN Ambassadors Pulling it all Multi-faceted Communication Strategy together to build Deep Relationships a Weather-Ready Core Partners Nation and to NWS Employees Providing Impact-Based accomplish Decision Support Services (IDSS) Accurate & Consistent our mission to Forecasts/Warnings save lives and Social Science Fully-Integrated Field Structure property through a Collaborative Forecast Process National Blend of Models: Forecast starting point One NWS, One Dissemination Network Observations and Numerical Weather Prediction 13 13 Recent Successes 14 Recent Success Stories Predicting extreme events 7-8 days in advance • October 2015 South Carolina 20” Rain • Central U.S. Post Christmas 2015 Storm • January 2016 East Coast Blizzard • March 2016 Flooding • June 2016 Southwest Heat Wave • Hurricane Matthew • West Coast Storms and Flooding Winter 2016/2017 • New Orleans Tornadoes in February 2017 • February 2017 Northeast Blizzard • Texas Wildfires in February 2017 Successful Weather, Water and Seasonal IDSS Provided to Local, State, Federal, and Tribal Partners Before, During and After Events 15 January 2016 Blizzard & Costal Storm: Connecting All of the Pieces Jan 15 - 18 Jan 19 Jan 20 Jan 21 Jan 22 Medium Confidence Partner Fed./state/local Snow begins in range increasing Coordination/ govts make critical the Mid-Atlantic decisions before the products Partner Briefings Snow forecast begin snow begins Coordination/ Blizzard adjusted to identifying Briefings Watches include NYC in snowstorm Issued Blizzard Warning threat for the end of next week Media NWS offices interviews Blizzard Warnings begin briefing Issued Schools/Govt Close partners on Media Flights Canceled 1 pm: Press Briefing Roads Closed potential interviews storm 16 January 2016 IDSS Example: Long Island Expressway comparison to 2013 2013 Snowstorm 2016 Snowstorm The Past With NWS Impact-Based Decision Support Services (IDSS) 17 Comparing the 1974 and 2011 Severe Weather Outbreaks April 3-4, 1974 Super Outbreak • 150 tornadoes across 13 states • 6 F-5 tornadoes, 24 F-4 • Tornado Track Length: 2500 mi • Tornado Time: 50 hours • “Indications” provided night before • Fatalities: 310-319 April 27-28, 2011 Super Outbreak • ~200 tornadoes across 16 states • 4 EF-5 tornadoes; 11 EF-4 • Tornado Track Length: 2500 mi • Tornado Time: 50 hours • Outbreak forecast 4-6 days prior • Warning lead time ~ 24mins • Fatalities: 316 18 Building a Weather Ready Nation: “A Vital Conversation” December 2011 Workshop in Norman, OK Focus on the “last mile” – connecting forecasts & warnings to decision-making: • Assess and update warning dissemination strategy • Integrate social and physical science to address: – Is the message delivered equal to the message received? – Impact-based forecast & warnings for wide range of decision makers • Improved outreach and education 19 2017 East New Orleans Tornado February 7, 2017 EF-3 strength 33 injuries, 0 fatalities Track ~10 miles long ~1/3 mile wide Warning Lead time of ~33 mins • NWS Local Outreach and Preparedness activities over a 4-year period IDSS training (practice, practice, practice!), weather safety events, WRN Ambassadors, public training, media, school drills • Deep relationships with Emergency Managers/WRN Ambassadors • Dissemination of forecasts and warnings Wireless Emergency Alerts, Twitter, NWSChat, local media coverage • Public awareness Daytime event, visual confirmation, schools sheltered • Collaborative forecast preparations within NWS and the larger enterprise a success • IDSS provided days in advance of the tornado. 20 NWS Infrastructure 21 Establishing the Budget Structure Based on: The Forecast Process Science & Technology Integration Observations Dissemination Central Analyze, Forecast, & Processing Support Central Local Guidance Forecasts 22 Today’s Weather Forecast Everything you
Recommended publications
  • (SCOOP) the Weather Buoy
    Poster 18, AMS 27th WAF/23rd NWP The Results of the Field Evaluation of NDBC's Prototype Self-Contained Ocean Observations Payload (SCOOP) Richard H. Bouchard1, Rex V. Hervey1, Walt McCall2, Ryan Beets3, Michael D. Robbie3, Chris Wills3, John Tancredi3, Michael Vasquez4, Steven DiNapoli4 1NOAA’s National Data Buoy Center (NDBC), Stennis Space Center, MS 39529 USA 2University of Southern Mississippi, Stennis Space Center, MS 39529 USA 3PAE at NDBC, 4NVision Solutions, Inc. at NDBC Abstract: The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) is undertaking a fundamental and broad transformation Table 1: Evaluation Locations Prototype Location Evaluation Start Evaluation End of its ocean observing systems on moored buoys. This transformation is necessary to gain efficiencies in maintaining operational ocean observation networks and to Comment Payload (See Figure 1) Date Date increase their reliability. The Self-Contained Ocean Observations Payload (SCOOP) takes advantage of the advances in communications and small, efficient, multi- SCP01 11 km West of 42003 11/7/2014 5/5/2015 *Vaisala misaligned purpose sensors to reduce the size and costs of systems and expand the suite of available real-time ocean observations. NDBC has successfully completed a 180-day Waves Failed SCP03 6 km North of 42003 11/7/2014 5/5/2015 11/20/2014 field evaluation of three prototype systems in the Gulf of Mexico (Table 1). The field evaluations indicate that SCOOP generally meets or exceeds NDBC's established 12 km South-Southwest SCP02 11/9/2014 5/7/2015 criteria for the accuracy of its marine measurements and the detailed results will be presented.
    [Show full text]
  • Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans in Action Stennis Space Center August 17, 2016
    Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans In Action Stennis Space Center August 17, 2016 Helmut H. Portmann Director, National Data Buoy Center National Weather Service August 17, 2016 1 2016 Atlantic Hurricane Season Near to above-normal Atlantic hurricane season is most likely this year 70 percent likelihood of 12 to 17 named storms Hurricane Alex January TS Bonnie May TS Colin June TS Danielle June Hurricane Earl August Fiona Gaston Hermine Ian Julia Karl Lisa Matthew Nicole Otto Paula Richard Shary Tobias Virginie Walter NationalNational Weather Data Buoy Service Center 2 Influence of La Nina Typical influence of La Niña on Pacific and Atlantic seasonal hurricane activity. Map by NOAA Climate.gov, based on originals by Gerry Bell NationalNational Weather Data Buoy Service Center 3 NOAA’s National Data Buoy Center NationalNational Weather Data Buoy Service Center 4 www. ndbc.noaa.gov www. ndbc.noaa.gov NationalNational Weather Data Buoy Service Center NDBC Observing Platforms Tsunami Weather Buoys in Place for > 30 Years Wx TAO 106 met/ocean WX buoys 47 C-MAN stations 55 TAO Climate Monitoring buoys + 4 current profiler moorings 39 DART Tsunami Monitoring stations NationalNational Weather Data BuoyService Center 6 National Data Buoy Center Electronics Labs Facilities at SSC, MS MCC Operates 24/7/365 Sensor Testing & Cal High Bay Fabrication Paint & Sandblasting Wind Tunnel & Environmental Chambers In-Water Testing Machine Shops El Nino - La Nina Detection NDBC maintains an
    [Show full text]
  • Addressing Sensing Capability Gaps Using Economical Profiling Technology
    | FEATURE | ADDRESSING SENSING CAPABILITY GAPS USING ECONOMICAL PROFILING TECHNOLOGY By Michael Rufo, director of Boston Engineering’s Advanced Systems Group, and David Shane, project manager and business development lead at Boston Engineering’s Advanced Systems Group Figure 1 - NOAA Testing MASED in Alaska. The ability to collect oceanic data quickly, accurately, and economically sensor family of platforms to support a range of applications across has a significant impact on the success of commercial, military, and multiple industries. The platform’s “plug-and-play” capabilities enable maritime research operations. Requirements and applications for the rapid integration and use of a myriad of commercial sensors. oceanic sensing vary significantly based on the type of information Boston Engineering’s platforms are capable of being widely distributed targeted in specific weather patterns, climate regions, and oceanic at reduced cost. zones. Boston Engineering’s new sensing technology platform is addressing a breadth of maritime data collection needs by reducing MASED Overview barriers created by high costs and harsh environments. The following MASED overview highlights how Boston Engineering MARITIME SENSING TECHNOLOGY SNAPSHOT is applying its maritime sensor platform to address specific needs. MASED—a Multipurpose Above/Below Surface Expendable Buoys, unmanned vehicles (UxVs), and sondes each have their Dropsonde—is the first product to collect ocean data during advantages, but high costs and data collection limitations can make developing hurricanes via multiple submerge-and-surface cycles. The it prohibitive to deploy these technologies. As an example, the data collected by MASED will allow researchers to better understand, average price tag of a tethered weather buoy can reach $375,000.
    [Show full text]
  • National Data Buoy Center Command Briefing for Marine Technology Society Oceans in Action
    National Data Buoy Center Command Briefing For Marine Technology Society Oceans in Action August 21, 2014 Helmut H. Portmann, Director National Data Buoy Center To provide• a real-time, end-to-end capability beginning with the collection of marine atmospheric and oceanographic data and ending with its transmission, quality control and distribution. NDBC Weather Forecast Offices/ IOOS Partners Tsunami Warning & other NOAA River Forecast Centers Platforms Centers observations MADIS NWS Global NDBC Telecommunication Mission Control System (GTS) Center NWS/NCEP Emergency Managers Oil & Gas Platforms HF Radars Public NOAA NESDIS (NCDC, NODC, NGDC) DATA COLLECTION DATA DELIVERY NDBC Organization National Weather Service Office of Operational Systems NDBC Director SRQA Office 40 Full-time Civilians (NWS) Mission Control Operations Engineering Support Services Mission Mission Information Field Production Technology Logistics and Business Control Support Technology Operations Engineering Development Facilities Services Center Engineering 1 NOAA Corps Officer U.S. Coast Guard Liaison Office – 1 Lt & 4 CWO Bos’ns NDBC Technical Support Contract –90 Contractors Pacific Architects and Engineers (PAE) National Data Buoy Center NDBC is a cradle to grave operation - It begins with requirements and engineering design, then continues through purchasing, fabrication, integration, testing, logistics, deployment and maintenance, and then with observations ingest, processing, analysis, distribution in real time NDBC’s Ocean Observing Networks Wx DART Weather
    [Show full text]
  • Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area
    PREPARED FOR: Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area October 16, 2015 CLASSIFICATION CLIENT’S DISCRETION 463 NEW KARNER RD. | ALBANY, NY 12205 |www.awstruepower.com |[email protected] M etocean Data Needs Assessment and Data Collection Strategy Development i DISCLAIMER Acceptance of this document by the client is on the basis that AWS Truepower is not in any way to be held responsible for the application or use made of the findings and that such responsibility remains with the client. KEY TO DOCUMENT CLASSIFICATION STRICTLY CONFIDENTIAL For recipients only CONFIDENTIAL May be shared within client’s organization AWS TRUEPOWER ONLY Not to be distributed outside AWS Truepower CLIENT’S DISCRETION Distribution at the client’s discretion FOR PUBLIC RELEASE No restriction DOCUMENT AUTHORS AND CONTRIBUTORS Matthew V. Filippelli Mike Markus Matt Eberhard Bruce H. Bailey Lesley Dubois AWS TRUEPOWER LLC 463 New Karner Road Albany, New York 12205 www.awstruepower.com Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development ii TABLE OF CONTENTS 1. INTRODUCTION 2 2. SOURCES OF METOCEAN DATA 5 3. METOCEAN DATA NEEDS FOR OFFSHORE WIND DEVELOPMENT 13 4. METOCEAN DATA COLLECTION STRATEGIES TO ADDRESS GAPS 33 5. STAKEHOLDERS AND PARTNERSHIP OPPORTUNITIES 61 6. CONCLUSIONS AND RECOMMENDATIONS 70 APPENDIX: METOCEAN DATA INVENTORY 73 Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development Page 1 of 98 Executive Summary The objective of this report is to provide the Massachusetts Clean Energy Center (MassCEC) with an assessment of information sources regarding the meteorological and oceanographic (metocean) conditions within the Bureau of Ocean Energy Management’s (BOEM) designated Massachusetts Wind Energy Area (MAWEA) and the Rhode Island/Massachusetts (RI/MA) Wind Energy Area, collectively, the WEAs.
    [Show full text]
  • Cmems Requirements for the Evolution of the Copernicus in Situ Component
    1 Copernicus Marine Service requirements for the evolution of the Copernicus In Situ Component Mercator Ocean International, EUROGOOS, and CMEMS partners Version 2 - March 2021 MERCATOR OCEAN INTERNATIONAL Parc Technologique du Canal - 8-10 rue Hermès - 31520 Ramonville-Saint-Agne, FRANCE Tél : +33 5 61 39 38 02 - Fax : +33 5 61 39 38 99 marine.copernicus.eu Société civile de droit français au capital de 2 000 000 € - 522 911 577 RCS Toulouse - SIRET 522 911 577 00016 mercator-ocean.eu CMEMS REQUIREMENTS FOR IN SITU OBSERVATIONS 2 Table of content INTRODUCTION ........................................................................................................... 4 THE ROLE OF IN-SITU OBSERVATIONS AND ITS ORGANIZATION IN CMEMS ............ 5 CMEMS REQUIREMENTS FOR THE EVOLUTION OF THE COPERNICUS IN SITU COMPONENT ............................................................................................................... 8 Global Ocean ............................................................................................................. 9 Arctic Basin ............................................................................................................... 11 Baltic Basin ................................................................................................................ 12 Iberia-Biscay-Ireland Basin ..................................................................................... 12 Black Sea Basin .......................................................................................................
    [Show full text]
  • Meteorological Warnings Study Group (Metwsg)
    METWSG/1-SoD 22/11/07 METEOROLOGICAL WARNINGS STUDY GROUP (METWSG) FIRST MEETING Montréal, 20 to 22 November 2007 SUMMARY OF DISCUSSIONS 1. HISTORICAL 1.1 The first meeting of the Meteorological Warnings Study Group (METWSG/1) was held at the International Civil Aviation Organization (ICAO) Headquarters in Montréal, Canada, 20 to 22 November 2007. 1.2 The meeting was opened by Dr. Olli M. Turpeinen, Chief Meteorology. 1.3 The names and addresses of the participants are listed in Appendix A. Mr. Juan Ayon Alfonso was elected Chairman of the meeting. The meeting was served by the Secretary of the METWSG, Raul Romero, Technical Officer in the Meteorological (MET) Section of the Air Navigation Bureau (ANB). 1.4 The meeting considered the following agenda items. Agenda Item 1: Opening of the meeting Agenda Item 2: Election of Chairman Agenda Item 3: Adoption of working arrangements Agenda Item 4: Adoption of the agenda Agenda Item 5: Review of the tasks of the study group Agenda Item 6: Amendment to provisions related to the content and issuance of SIGMET to meet the evolving needs of flight operations 6.1 Methods to improve the implementation of the issuance of SIGMETs 6.2 Development of a set of quantitative criteria to be included in Annex 3 for the threshold intensity of the weather phenomena to prompt the issuance of SIGMET (13 pages) METWSG.1.SoD.en.doc METWSG/1-SoD - 2 - 6.3 Amend the template for SIGMET and AIRMET to allow only the use of a closed line of coordinates, location indicators of waypoints or aerodromes to describe the area
    [Show full text]
  • EARTH SYSTEM MONITOR MONITOR 1 NOAA’S Offi Ce of Oceanic and Atmospheric Research: a Vehicle for Improving NOAA Services a Guide to NOAA’S Data and Richard W
    Vol. 17, No. 2 · November 2008 E NovemberARTH 2008 SYSTEMEARTH SYSTEM MONITOR MONITOR 1 NOAA’s Offi ce of Oceanic and Atmospheric Research: A Vehicle for Improving NOAA Services A guide to NOAA’s data and Richard W. Spinrad, Ph.D., CMarSci, Assistant hicles to explore the ocean and conduct research, information Administrator for Oceanic and Atmospheric including ships, buoys, high-tech remotely oper- services Research ated vehicles (ROVs), fl oats, gliders, and autono- mous underwater vehicles (AUVs). INSIDE In the decades and century to come, In August, NOAA launched the world’s only mankind will experience—and thus benefi t and vessel dedicated to ocean exploration and re- 2 potentially suffer from—extraordinary changes search, the NOAA Ship Okeanos Explorer. This Letter from the ship will allow scientists and students real-time NODC Director in our world’s climate, atmosphere, and oceans. These changes will impact our lives. NOAA’s access to ocean exploration through the Internet. This technology will allow a “scientists on call” 4 research to understand the interactions between Ocean Acidifi cation the ocean, atmosphere, and land is critical for approach to ocean exploration and will bring the reducing uncertainty in ocean into the classroom, allowing 5 climate forecasts, predicting students to participate in undersea The NOAA severe weather, and sustain- exploration. Okeanos Explorer is CoastWatch ably managing ecosystems. equipped with a variety of sensors Program Research conducted and systems, including modern through the Offi ce of Oceanic hull-mounted multibeam sonar for 6 seafl oor mapping. These maps will NOOSS Optimization and Atmospheric Research (OAR) will continue reduc- identify features for further investi- gation using tether-attached ROVs 7 ing the human costs—in both Unmanned Aircraft lives and dollars—of hazard- that can venture up to 6,000 meters Systems for ous weather and other ex- below the surface.
    [Show full text]
  • Surface Station Plots Decoding the S
    Surface and Upper-Air Observations Surface Observations Collect information for synoptic-scale weather Most surface observations are automated (e.g., Automated Surface Observing System) Also mesoscale networks (mesonet) such as Oklahoma and West TX Measurements taken at least hourly As early as the 1700s, human observations were taken in the U.S. Dr. Christopher M. Godfrey University of North Carolina at Asheville ATMS 103 ATMS 103 What’s Measured at the Surface? Surface Station Plots Temperature (°F) Information plotted on a map in compact Dewpoint temperature (°F) format Pressure (corrected and reported as MSLP in mb) Temperature, dewpoint, pressure, cloud Wind speed and direction (knots or m.p.h.) cover, wind speed and direction, visibility, Cloud cover at multiple levels current weather and pressure tendency Precipitation (amount and time of start/stop) Other current weather (distant thunder, towering cumulus, etc.) ATMS 103 ATMS 103 Decoding the Station Plot Cloud Cover No/very few clouds 1/8 coverage 2/8 coverage 3/8 coverage 4/8 coverage Temperature and dewpoint are in °F 5/8 coverage Wind speed is usually in knots (OK Mesonet uses m.p.h.) 6/8 coverage Pressure is reported in tenths of mb 7/8 coverage If first number >6, put a 9 in front of number reported Overcast If first number <4, put a 10 in front of number reported Sky obscured ATMS 103 ATMS 103 1 How to Read Wind Speed and Direction Surface Observation Example: Oklahoma Mesonet Meteorologists always describe where the wind is coming from!!
    [Show full text]
  • Status and Future Path of Evolving the NWS
    Status and Future Path of Evolving the NWS Dr. Louis W. Uccellini Director, National Weather Service NOAA Assistant Administrator for Weather Services January 26, 2017 – NWS Partners Meeting Seattle, WA January 15, 2017 GOES-16 Composite Color Full Disk Image 2 Outline • Transition • NWS HQ Organization • Budget • Portfolio Highlights • Weather-Ready Nation • NWS Evolve • Impact-based Decision Support Services 3 Transition 4 NWS HQ New HQ Office Field Office Existing HQ Office Organization CFO/CAO Office of the Chief of Staff John Potts George Jungbluth The Office of Enterprise Risk Management Assistant & Internal Audit Office International Affairs Administrator Madhouri Edwards AA Courtney Draggon DAA Assistant CIO Office of the Richard Varn (A) Chief Learning Officer Louis Uccellini Mary Erickson John Ogren (A) Office of Organizational Excellence Kevin Werner AR: Carven Scott Office of Planning & PR: Ray Tanabe Office of Chief Operating Programming for Service WR: Grant Cooper Officer Delivery CR: Chris Strager SR: Steven Cooper ER: Jason Tuell Kevin Cooley John Murphy Office of Analyze, National Office of Office of Office of Office of Office of Science & Forecast, & Centers for Regional Central Water Facilities Observations Dissemination Technology Support Env. Offices Processing Predict. Integration Office Prediction Deirdre Joe Pica Dave Michelle Ming Andy Bill Tom Graziano Jones Michaud Mainelli (A) Ji Stern Lapenta 5 FY 2017 Full Year Budget Target based on FY 2016 Enacted Level Composition by Portfolio Funds Breakdown Full Time
    [Show full text]
  • DBCP-TD-26.Pdf (4.3MB)
    ANNUAL REPORT FOR 2004 DBCP Technical Document No. 26 INTERGOVERNMENTAL OCEANOGRAPHIC WORLD METEOROLOGICAL COMMISSION (OF UNESCO) ORGANIZATION DATA BUOY COOPERATION PANEL ANNUAL REPORT FOR 2004 DBCP Technical Document No. 26 2005 N O T E The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of the Intergovernmental Oceanographic Commission (of UNESCO), and the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS FOREWORD i SUMMARY iii RÉSUMÉ v RESUMEN viii РЕЗЮМЕ xi REPORT 1. Current and planned programmes 1 2. Data flow 1 3. Data quality 3 4. Data archival 4 5. Technical developments 4 6. Communication system status 5 7. Administrative matters 8 ANNEXES I National reports on data buoy activities II Reports from the DBCP action groups III Reports from the data management centres IV Distribution of GTS and non-GTS platforms by country V Number of drifting buoy data on GTS by country and sensor VI Evolutions and distributions of RMS (Obs.-First Guess) (from ECMWF statistics) VII List of regional receiving stations VIII ARGOS receiving station network IX National focal points for the DBCP X Financial statements provided by IOC and WMO FOREWORD th I have pleasure in presenting the 18 Annual Report of the Data Buoy Cooperation Panel. Once again, as detailed in the report, the Panel has had a highly productive year, largely through the efforts of its Action Groups and its tireless Technical Coordinator.
    [Show full text]
  • DBCP-28 Doc 7
    WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC ___________ COMMISSION (OF UNESCO) _____________ DATA BUOY COOPERATION PANEL DBCP-29/ Doc. 7 rev. 3 (16-Sep-13) _______ TWENTY-NINTH SESSION ITEM: 7 PARIS, FRANCE ENGLISH ONLY 23-27 SEPTEMBER 2013 REPORTS BY THE DBCP ACTION GROUPS 2013 (Submitted by the Action Groups) Summary and purpose of the document This documents includes in its appendices the reports from the DBCP Action Groups on their respective activities during the last intersessional period. ACTION PROPOSED The Panel will review the information contained in this report and comment and make decisions or recommendations as appropriate. See part A for the details of recommended actions. _______________ Appendices: A. Report by the Global Drifter Programme (GDP) B. Report by the Tropical Moored Buoy Implementation Panel (TIP) C. Report by the EUCOS Surface Marine Programme (E-SURFMAR) D. Report by the International Buoy Programme for the Indian Ocean (IBPIO) E. Report by the DBCP-PICES North Pacific Data Buoy Advisory Panel (NPDBAP) F. Report by the International Arctic Buoy Programme (IABP) G. Report by the WCRP-SCAR International Programme for Antarctic Buoys (IPAB) H. Report by the International South Atlantic Buoy Programme (ISABP) I. Report by the Ocean Sustained Interdisciplinary Timeseries Environment observation System (OceanSITES) J. Report by the International Tsunameter Partnership (ITP) DBCP-29/Doc. 7 rev. 3, p. 2 -A- DRAFT TEXT FOR INCLUSION IN THE FINAL REPORT 7.1 Under this agenda item, the Panel was presented with reports by the DBCP Action Groups. Each group maintains an observational buoy program that supplies data for operational and research purposes.
    [Show full text]