EARTH SYSTEM MONITOR MONITOR 1 NOAA’S Offi Ce of Oceanic and Atmospheric Research: a Vehicle for Improving NOAA Services a Guide to NOAA’S Data and Richard W

Total Page:16

File Type:pdf, Size:1020Kb

EARTH SYSTEM MONITOR MONITOR 1 NOAA’S Offi Ce of Oceanic and Atmospheric Research: a Vehicle for Improving NOAA Services a Guide to NOAA’S Data and Richard W Vol. 17, No. 2 · November 2008 E NovemberARTH 2008 SYSTEMEARTH SYSTEM MONITOR MONITOR 1 NOAA’s Offi ce of Oceanic and Atmospheric Research: A Vehicle for Improving NOAA Services A guide to NOAA’s data and Richard W. Spinrad, Ph.D., CMarSci, Assistant hicles to explore the ocean and conduct research, information Administrator for Oceanic and Atmospheric including ships, buoys, high-tech remotely oper- services Research ated vehicles (ROVs), fl oats, gliders, and autono- mous underwater vehicles (AUVs). INSIDE In the decades and century to come, In August, NOAA launched the world’s only mankind will experience—and thus benefi t and vessel dedicated to ocean exploration and re- 2 potentially suffer from—extraordinary changes search, the NOAA Ship Okeanos Explorer. This Letter from the ship will allow scientists and students real-time NODC Director in our world’s climate, atmosphere, and oceans. These changes will impact our lives. NOAA’s access to ocean exploration through the Internet. This technology will allow a “scientists on call” 4 research to understand the interactions between Ocean Acidifi cation the ocean, atmosphere, and land is critical for approach to ocean exploration and will bring the reducing uncertainty in ocean into the classroom, allowing 5 climate forecasts, predicting students to participate in undersea The NOAA severe weather, and sustain- exploration. Okeanos Explorer is CoastWatch ably managing ecosystems. equipped with a variety of sensors Program Research conducted and systems, including modern through the Offi ce of Oceanic hull-mounted multibeam sonar for 6 seafl oor mapping. These maps will NOOSS Optimization and Atmospheric Research (OAR) will continue reduc- identify features for further investi- gation using tether-attached ROVs 7 ing the human costs—in both Unmanned Aircraft lives and dollars—of hazard- that can venture up to 6,000 meters Systems for ous weather and other ex- below the surface. Hurricane Research treme events. OAR conducts NOAA uses buoys and satellites research at seven laborato- simultaneously to obtain a more 8 ries around the country and complete picture of the ocean and News Briefs with our partners (mostly gain faster access to data. OAR in academia, at Coopera- ▲ Richard W. Spinrad, Ph.D. researchers designed, built, and 10 deployed Deep-ocean Assessment and Reporting Live from Seafl oor to tive/Joint Institutes and individual universities) ® Scientists Ashore through our sponsored research programs (e.g., of Tsunamis (DART ) buoys, a vital component the Climate Program Offi ce, National Sea Grant of the recently-completed warning network for ® 12 College Program, and Ocean Exploration and the United States. DART buoys will dramati- Sant Ocean Hall Research Program). Through tools that observe, cally increase warning times and decrease the track, and predict the concentrations and move- loss of life. In October 2008, Dr. Eddie Bernard, ment of carbon, we are shrinking the probabili- Director of NOAA’s Pacifi c Marine Environ- ties of error in climate models. Ultimately, our mental Laboratory, was honored with a Service preeminent research is a vehicle for improving to America Medal in Homeland Security for his ® products and services used by decision makers leading work on DART . to prevent the loss of human life, manage natural In 2003, just a month after the system was resources, gain a greater understanding of the transferred from research to operational mode, ® Earth-system, and maintain a strong economy. the value of DART was demonstrated when Hawaii cancelled a tsunami warning because ® Ocean Exploration, Observation, and Monitoring real-time DART data showed that the tsunami The ocean covers more than 70 percent of would not be damaging. This saved the state an U.S. Department the Earth’s surface, yet more than 90 percent estimated $68 million. The latest generation of of Commerce ® remains unexplored. NOAA uses different ve- DART has two-way satellite communications National Oceanic (continued on page 3) and Atmospheric Administration 2 EARTH SYSTEM MONITOR November 2008 EARTH SYSTEM MONITOR Letter from the NODC Director The Earth System Monitor (ISSN 1068-2678) is published quarterly by the NOAA National Environmen- considerable improvement over the previous tal Satellite, Data, and Information multi-year updates. Service. Past issues are available Also, we acquired and archived over online and are syndicated by an 11,600 datasets from over 70 oceanographic RSS feed. See: organizations and offi ces. We increased the www.nodc.noaa.gov/ESM number of users of the Global Ocean Data Assimilation Experiment High Resolution Comments should be directed to Sea Surface Temperature product by 20 Andrew Allegra, Managing Editor. percent, which translates to over a 300 per- Email: [email protected] cent increase in data distributed. NODC in- Phone: 301-713-3277 x152 creased the amount of historical data as well Fax: 301-713-3302 as modern profi le data in the World Ocean Database. Data from approximately 200,000 Editing and Layout ▲ Margarita Conkright Gregg, Ph.D. Ocean Station Data casts and approximately Mindy Gaines, Tara Mairs, 200,000 Conductivity-Temperature-Depth Marc Pulliam, Kelly Logan As we start a new fi scal year at casts were processed for inclusion into the upcoming World Ocean Database 2009. The The mailing address for the NOAA, it is exciting to look back and see Earth System Monitor is: what the National Oceanographic Data Cen- number of visitors accessing the online Photo National Oceanographic ter (NODC) accomplished in the past year. Library, Climate Data Modernization web- Data Center This was an active, productive, and exciting sites and collections, and our online legacy NOAA/NESDIS E/OC year at the center. We initiated a series of databases surpassed all previous records. SSMC3, 4th Floor activities to communicate to our customers During 2009, we will continue to com- 1315 East-West Highway the multitude of NODC products and servic- municate NODC’s mission and vision that Silver Spring, MD 20910-3282 es, at the same time receiving input on what refl ects the core capabilities of the center Disclaimer ocean data and information are required by and deals with the growing requirements for ocean data and information. We will also Mention in the Earth System Monitor the community we serve. We also developed of commercial companies or com- tools and services that will facilitate the ex- continue to plan for products and services mercial products does not constitute change of ocean data and information. This our customers will require in the future. Our an endorsement or recommenda- is essential since understanding the oceans success relies on national and international tion by the National Oceanic and and coasts in a changing climate requires partnerships, and we judge our accomplish- Atmospheric Administration or the historical as well as real-time ocean data and ments by the usefulness of our data and in- U.S. Department of Commerce. Use information. NODC, in its role as the nation- formation products. for publicity or advertising purposes al steward for ocean data and information, is In 2008, the Earth System Monitor fo- of information published in the Earth System Monitor concerning propi- working with the national and international cused on the NOAA mission goals “Weather and Water” and “Commerce and Trans- etary products or the tests of such communities to provide products essential to products is not authorized. addressing these issues. portation” and on the “Satellite” subgoal. In meeting our goal to provide access to This issue focuses on “Ships, Satellites, the Nation’s coastal and ocean data and infor- and Buoys.” Dr. Richard Spinrad, Assis- mation, NODC integrated disparate datasets tant Administrator of NOAA in the Offi ce of through its Regional Ecosystem Data Manage- Oceanic and Atmospheric Research (OAR), ment (REDM) portal; implemented the Coral leads the issue with a description of how the Reef Information System (CoRIS) Regional research conducted at OAR is critical for Portal, which enables a broad audience of us- “reducing uncertainty in climate forecasts, predicting severe weather, and sustainably ers to discover NOAA-funded coral ecosys- U.S. DEPARTMENT OF tems data and information products; and en- managing ecosystems.” Other articles in COMMERCE hanced NODC’s Coastal Water Temperature this issue support his views on the transition Carlos M. Gutierrez, Secretary Guide to include an interactive Google MapsTM of research-to-operations, and the key role interface. An internal application known as OAR plays in exploration and discovery that National Oceanic and World Ocean Database Select was enhanced lay the foundation for NOAA’s services of Atmospheric Administration by scientists at NODC to provide public ac- the future. ■ William J. Brennan, Ph.D., cess to ocean profi les every three months, a Acting Under Secretary Margarita and Administrator November 2008 EARTH SYSTEM MONITOR 3 (Oceanic and Atmospheric Research continued from page 1) saving $640,000 per coastal mile when evacuations and other between the anchored seafl oor bottom pressure recorder, Tsu- preparedness measures are not necessary. nami Warning Centers (TWC), and the National Data Buoy Center. This allows TWCs to set stations in event mode in Changing Climate anticipation of possible tsunamis or retrieve the high-resolution Climate change is one of the most pressing issues of our (15-s intervals) data in one-hour blocks for detailed analysis. time. NOAA researchers are working to improve our under- NOAA researchers are also improving ocean observa- standing and prediction of natural climate variability, as well tions through an innovative use of ocean “robots” called the as to identify and predict human-caused, or anthropogenic, Argo array. NOAA helped lead the international Argo effort climate change. Scores of NOAA scientists contributed to in the year 2000 to deploy 3,000 free-drifting fl oats around the Intergovernmental Panel on Climate Change (IPCC) the globe. There are now nearly 3,200 drifters throughout Fourth Assessment Report, which shared the 2007 Nobel the world’s oceans.
Recommended publications
  • (SCOOP) the Weather Buoy
    Poster 18, AMS 27th WAF/23rd NWP The Results of the Field Evaluation of NDBC's Prototype Self-Contained Ocean Observations Payload (SCOOP) Richard H. Bouchard1, Rex V. Hervey1, Walt McCall2, Ryan Beets3, Michael D. Robbie3, Chris Wills3, John Tancredi3, Michael Vasquez4, Steven DiNapoli4 1NOAA’s National Data Buoy Center (NDBC), Stennis Space Center, MS 39529 USA 2University of Southern Mississippi, Stennis Space Center, MS 39529 USA 3PAE at NDBC, 4NVision Solutions, Inc. at NDBC Abstract: The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) is undertaking a fundamental and broad transformation Table 1: Evaluation Locations Prototype Location Evaluation Start Evaluation End of its ocean observing systems on moored buoys. This transformation is necessary to gain efficiencies in maintaining operational ocean observation networks and to Comment Payload (See Figure 1) Date Date increase their reliability. The Self-Contained Ocean Observations Payload (SCOOP) takes advantage of the advances in communications and small, efficient, multi- SCP01 11 km West of 42003 11/7/2014 5/5/2015 *Vaisala misaligned purpose sensors to reduce the size and costs of systems and expand the suite of available real-time ocean observations. NDBC has successfully completed a 180-day Waves Failed SCP03 6 km North of 42003 11/7/2014 5/5/2015 11/20/2014 field evaluation of three prototype systems in the Gulf of Mexico (Table 1). The field evaluations indicate that SCOOP generally meets or exceeds NDBC's established 12 km South-Southwest SCP02 11/9/2014 5/7/2015 criteria for the accuracy of its marine measurements and the detailed results will be presented.
    [Show full text]
  • Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans in Action Stennis Space Center August 17, 2016
    Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans In Action Stennis Space Center August 17, 2016 Helmut H. Portmann Director, National Data Buoy Center National Weather Service August 17, 2016 1 2016 Atlantic Hurricane Season Near to above-normal Atlantic hurricane season is most likely this year 70 percent likelihood of 12 to 17 named storms Hurricane Alex January TS Bonnie May TS Colin June TS Danielle June Hurricane Earl August Fiona Gaston Hermine Ian Julia Karl Lisa Matthew Nicole Otto Paula Richard Shary Tobias Virginie Walter NationalNational Weather Data Buoy Service Center 2 Influence of La Nina Typical influence of La Niña on Pacific and Atlantic seasonal hurricane activity. Map by NOAA Climate.gov, based on originals by Gerry Bell NationalNational Weather Data Buoy Service Center 3 NOAA’s National Data Buoy Center NationalNational Weather Data Buoy Service Center 4 www. ndbc.noaa.gov www. ndbc.noaa.gov NationalNational Weather Data Buoy Service Center NDBC Observing Platforms Tsunami Weather Buoys in Place for > 30 Years Wx TAO 106 met/ocean WX buoys 47 C-MAN stations 55 TAO Climate Monitoring buoys + 4 current profiler moorings 39 DART Tsunami Monitoring stations NationalNational Weather Data BuoyService Center 6 National Data Buoy Center Electronics Labs Facilities at SSC, MS MCC Operates 24/7/365 Sensor Testing & Cal High Bay Fabrication Paint & Sandblasting Wind Tunnel & Environmental Chambers In-Water Testing Machine Shops El Nino - La Nina Detection NDBC maintains an
    [Show full text]
  • Addressing Sensing Capability Gaps Using Economical Profiling Technology
    | FEATURE | ADDRESSING SENSING CAPABILITY GAPS USING ECONOMICAL PROFILING TECHNOLOGY By Michael Rufo, director of Boston Engineering’s Advanced Systems Group, and David Shane, project manager and business development lead at Boston Engineering’s Advanced Systems Group Figure 1 - NOAA Testing MASED in Alaska. The ability to collect oceanic data quickly, accurately, and economically sensor family of platforms to support a range of applications across has a significant impact on the success of commercial, military, and multiple industries. The platform’s “plug-and-play” capabilities enable maritime research operations. Requirements and applications for the rapid integration and use of a myriad of commercial sensors. oceanic sensing vary significantly based on the type of information Boston Engineering’s platforms are capable of being widely distributed targeted in specific weather patterns, climate regions, and oceanic at reduced cost. zones. Boston Engineering’s new sensing technology platform is addressing a breadth of maritime data collection needs by reducing MASED Overview barriers created by high costs and harsh environments. The following MASED overview highlights how Boston Engineering MARITIME SENSING TECHNOLOGY SNAPSHOT is applying its maritime sensor platform to address specific needs. MASED—a Multipurpose Above/Below Surface Expendable Buoys, unmanned vehicles (UxVs), and sondes each have their Dropsonde—is the first product to collect ocean data during advantages, but high costs and data collection limitations can make developing hurricanes via multiple submerge-and-surface cycles. The it prohibitive to deploy these technologies. As an example, the data collected by MASED will allow researchers to better understand, average price tag of a tethered weather buoy can reach $375,000.
    [Show full text]
  • National Data Buoy Center Command Briefing for Marine Technology Society Oceans in Action
    National Data Buoy Center Command Briefing For Marine Technology Society Oceans in Action August 21, 2014 Helmut H. Portmann, Director National Data Buoy Center To provide• a real-time, end-to-end capability beginning with the collection of marine atmospheric and oceanographic data and ending with its transmission, quality control and distribution. NDBC Weather Forecast Offices/ IOOS Partners Tsunami Warning & other NOAA River Forecast Centers Platforms Centers observations MADIS NWS Global NDBC Telecommunication Mission Control System (GTS) Center NWS/NCEP Emergency Managers Oil & Gas Platforms HF Radars Public NOAA NESDIS (NCDC, NODC, NGDC) DATA COLLECTION DATA DELIVERY NDBC Organization National Weather Service Office of Operational Systems NDBC Director SRQA Office 40 Full-time Civilians (NWS) Mission Control Operations Engineering Support Services Mission Mission Information Field Production Technology Logistics and Business Control Support Technology Operations Engineering Development Facilities Services Center Engineering 1 NOAA Corps Officer U.S. Coast Guard Liaison Office – 1 Lt & 4 CWO Bos’ns NDBC Technical Support Contract –90 Contractors Pacific Architects and Engineers (PAE) National Data Buoy Center NDBC is a cradle to grave operation - It begins with requirements and engineering design, then continues through purchasing, fabrication, integration, testing, logistics, deployment and maintenance, and then with observations ingest, processing, analysis, distribution in real time NDBC’s Ocean Observing Networks Wx DART Weather
    [Show full text]
  • Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area
    PREPARED FOR: Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area October 16, 2015 CLASSIFICATION CLIENT’S DISCRETION 463 NEW KARNER RD. | ALBANY, NY 12205 |www.awstruepower.com |[email protected] M etocean Data Needs Assessment and Data Collection Strategy Development i DISCLAIMER Acceptance of this document by the client is on the basis that AWS Truepower is not in any way to be held responsible for the application or use made of the findings and that such responsibility remains with the client. KEY TO DOCUMENT CLASSIFICATION STRICTLY CONFIDENTIAL For recipients only CONFIDENTIAL May be shared within client’s organization AWS TRUEPOWER ONLY Not to be distributed outside AWS Truepower CLIENT’S DISCRETION Distribution at the client’s discretion FOR PUBLIC RELEASE No restriction DOCUMENT AUTHORS AND CONTRIBUTORS Matthew V. Filippelli Mike Markus Matt Eberhard Bruce H. Bailey Lesley Dubois AWS TRUEPOWER LLC 463 New Karner Road Albany, New York 12205 www.awstruepower.com Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development ii TABLE OF CONTENTS 1. INTRODUCTION 2 2. SOURCES OF METOCEAN DATA 5 3. METOCEAN DATA NEEDS FOR OFFSHORE WIND DEVELOPMENT 13 4. METOCEAN DATA COLLECTION STRATEGIES TO ADDRESS GAPS 33 5. STAKEHOLDERS AND PARTNERSHIP OPPORTUNITIES 61 6. CONCLUSIONS AND RECOMMENDATIONS 70 APPENDIX: METOCEAN DATA INVENTORY 73 Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development Page 1 of 98 Executive Summary The objective of this report is to provide the Massachusetts Clean Energy Center (MassCEC) with an assessment of information sources regarding the meteorological and oceanographic (metocean) conditions within the Bureau of Ocean Energy Management’s (BOEM) designated Massachusetts Wind Energy Area (MAWEA) and the Rhode Island/Massachusetts (RI/MA) Wind Energy Area, collectively, the WEAs.
    [Show full text]
  • Cmems Requirements for the Evolution of the Copernicus in Situ Component
    1 Copernicus Marine Service requirements for the evolution of the Copernicus In Situ Component Mercator Ocean International, EUROGOOS, and CMEMS partners Version 2 - March 2021 MERCATOR OCEAN INTERNATIONAL Parc Technologique du Canal - 8-10 rue Hermès - 31520 Ramonville-Saint-Agne, FRANCE Tél : +33 5 61 39 38 02 - Fax : +33 5 61 39 38 99 marine.copernicus.eu Société civile de droit français au capital de 2 000 000 € - 522 911 577 RCS Toulouse - SIRET 522 911 577 00016 mercator-ocean.eu CMEMS REQUIREMENTS FOR IN SITU OBSERVATIONS 2 Table of content INTRODUCTION ........................................................................................................... 4 THE ROLE OF IN-SITU OBSERVATIONS AND ITS ORGANIZATION IN CMEMS ............ 5 CMEMS REQUIREMENTS FOR THE EVOLUTION OF THE COPERNICUS IN SITU COMPONENT ............................................................................................................... 8 Global Ocean ............................................................................................................. 9 Arctic Basin ............................................................................................................... 11 Baltic Basin ................................................................................................................ 12 Iberia-Biscay-Ireland Basin ..................................................................................... 12 Black Sea Basin .......................................................................................................
    [Show full text]
  • Meteorological Warnings Study Group (Metwsg)
    METWSG/1-SoD 22/11/07 METEOROLOGICAL WARNINGS STUDY GROUP (METWSG) FIRST MEETING Montréal, 20 to 22 November 2007 SUMMARY OF DISCUSSIONS 1. HISTORICAL 1.1 The first meeting of the Meteorological Warnings Study Group (METWSG/1) was held at the International Civil Aviation Organization (ICAO) Headquarters in Montréal, Canada, 20 to 22 November 2007. 1.2 The meeting was opened by Dr. Olli M. Turpeinen, Chief Meteorology. 1.3 The names and addresses of the participants are listed in Appendix A. Mr. Juan Ayon Alfonso was elected Chairman of the meeting. The meeting was served by the Secretary of the METWSG, Raul Romero, Technical Officer in the Meteorological (MET) Section of the Air Navigation Bureau (ANB). 1.4 The meeting considered the following agenda items. Agenda Item 1: Opening of the meeting Agenda Item 2: Election of Chairman Agenda Item 3: Adoption of working arrangements Agenda Item 4: Adoption of the agenda Agenda Item 5: Review of the tasks of the study group Agenda Item 6: Amendment to provisions related to the content and issuance of SIGMET to meet the evolving needs of flight operations 6.1 Methods to improve the implementation of the issuance of SIGMETs 6.2 Development of a set of quantitative criteria to be included in Annex 3 for the threshold intensity of the weather phenomena to prompt the issuance of SIGMET (13 pages) METWSG.1.SoD.en.doc METWSG/1-SoD - 2 - 6.3 Amend the template for SIGMET and AIRMET to allow only the use of a closed line of coordinates, location indicators of waypoints or aerodromes to describe the area
    [Show full text]
  • Surface Station Plots Decoding the S
    Surface and Upper-Air Observations Surface Observations Collect information for synoptic-scale weather Most surface observations are automated (e.g., Automated Surface Observing System) Also mesoscale networks (mesonet) such as Oklahoma and West TX Measurements taken at least hourly As early as the 1700s, human observations were taken in the U.S. Dr. Christopher M. Godfrey University of North Carolina at Asheville ATMS 103 ATMS 103 What’s Measured at the Surface? Surface Station Plots Temperature (°F) Information plotted on a map in compact Dewpoint temperature (°F) format Pressure (corrected and reported as MSLP in mb) Temperature, dewpoint, pressure, cloud Wind speed and direction (knots or m.p.h.) cover, wind speed and direction, visibility, Cloud cover at multiple levels current weather and pressure tendency Precipitation (amount and time of start/stop) Other current weather (distant thunder, towering cumulus, etc.) ATMS 103 ATMS 103 Decoding the Station Plot Cloud Cover No/very few clouds 1/8 coverage 2/8 coverage 3/8 coverage 4/8 coverage Temperature and dewpoint are in °F 5/8 coverage Wind speed is usually in knots (OK Mesonet uses m.p.h.) 6/8 coverage Pressure is reported in tenths of mb 7/8 coverage If first number >6, put a 9 in front of number reported Overcast If first number <4, put a 10 in front of number reported Sky obscured ATMS 103 ATMS 103 1 How to Read Wind Speed and Direction Surface Observation Example: Oklahoma Mesonet Meteorologists always describe where the wind is coming from!!
    [Show full text]
  • Status and Future Path of Evolving the NWS
    Status and Future Path of Evolving the NWS Dr. Louis W. Uccellini Director, National Weather Service NOAA Assistant Administrator for Weather Services January 26, 2017 – NWS Partners Meeting Seattle, WA January 15, 2017 GOES-16 Composite Color Full Disk Image 2 Outline • Transition • NWS HQ Organization • Budget • Portfolio Highlights • Weather-Ready Nation • NWS Evolve • Impact-based Decision Support Services 3 Transition 4 NWS HQ New HQ Office Field Office Existing HQ Office Organization CFO/CAO Office of the Chief of Staff John Potts George Jungbluth The Office of Enterprise Risk Management Assistant & Internal Audit Office International Affairs Administrator Madhouri Edwards AA Courtney Draggon DAA Assistant CIO Office of the Richard Varn (A) Chief Learning Officer Louis Uccellini Mary Erickson John Ogren (A) Office of Organizational Excellence Kevin Werner AR: Carven Scott Office of Planning & PR: Ray Tanabe Office of Chief Operating Programming for Service WR: Grant Cooper Officer Delivery CR: Chris Strager SR: Steven Cooper ER: Jason Tuell Kevin Cooley John Murphy Office of Analyze, National Office of Office of Office of Office of Office of Science & Forecast, & Centers for Regional Central Water Facilities Observations Dissemination Technology Support Env. Offices Processing Predict. Integration Office Prediction Deirdre Joe Pica Dave Michelle Ming Andy Bill Tom Graziano Jones Michaud Mainelli (A) Ji Stern Lapenta 5 FY 2017 Full Year Budget Target based on FY 2016 Enacted Level Composition by Portfolio Funds Breakdown Full Time
    [Show full text]
  • DBCP-TD-26.Pdf (4.3MB)
    ANNUAL REPORT FOR 2004 DBCP Technical Document No. 26 INTERGOVERNMENTAL OCEANOGRAPHIC WORLD METEOROLOGICAL COMMISSION (OF UNESCO) ORGANIZATION DATA BUOY COOPERATION PANEL ANNUAL REPORT FOR 2004 DBCP Technical Document No. 26 2005 N O T E The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of the Intergovernmental Oceanographic Commission (of UNESCO), and the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS FOREWORD i SUMMARY iii RÉSUMÉ v RESUMEN viii РЕЗЮМЕ xi REPORT 1. Current and planned programmes 1 2. Data flow 1 3. Data quality 3 4. Data archival 4 5. Technical developments 4 6. Communication system status 5 7. Administrative matters 8 ANNEXES I National reports on data buoy activities II Reports from the DBCP action groups III Reports from the data management centres IV Distribution of GTS and non-GTS platforms by country V Number of drifting buoy data on GTS by country and sensor VI Evolutions and distributions of RMS (Obs.-First Guess) (from ECMWF statistics) VII List of regional receiving stations VIII ARGOS receiving station network IX National focal points for the DBCP X Financial statements provided by IOC and WMO FOREWORD th I have pleasure in presenting the 18 Annual Report of the Data Buoy Cooperation Panel. Once again, as detailed in the report, the Panel has had a highly productive year, largely through the efforts of its Action Groups and its tireless Technical Coordinator.
    [Show full text]
  • DBCP-28 Doc 7
    WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC ___________ COMMISSION (OF UNESCO) _____________ DATA BUOY COOPERATION PANEL DBCP-29/ Doc. 7 rev. 3 (16-Sep-13) _______ TWENTY-NINTH SESSION ITEM: 7 PARIS, FRANCE ENGLISH ONLY 23-27 SEPTEMBER 2013 REPORTS BY THE DBCP ACTION GROUPS 2013 (Submitted by the Action Groups) Summary and purpose of the document This documents includes in its appendices the reports from the DBCP Action Groups on their respective activities during the last intersessional period. ACTION PROPOSED The Panel will review the information contained in this report and comment and make decisions or recommendations as appropriate. See part A for the details of recommended actions. _______________ Appendices: A. Report by the Global Drifter Programme (GDP) B. Report by the Tropical Moored Buoy Implementation Panel (TIP) C. Report by the EUCOS Surface Marine Programme (E-SURFMAR) D. Report by the International Buoy Programme for the Indian Ocean (IBPIO) E. Report by the DBCP-PICES North Pacific Data Buoy Advisory Panel (NPDBAP) F. Report by the International Arctic Buoy Programme (IABP) G. Report by the WCRP-SCAR International Programme for Antarctic Buoys (IPAB) H. Report by the International South Atlantic Buoy Programme (ISABP) I. Report by the Ocean Sustained Interdisciplinary Timeseries Environment observation System (OceanSITES) J. Report by the International Tsunameter Partnership (ITP) DBCP-29/Doc. 7 rev. 3, p. 2 -A- DRAFT TEXT FOR INCLUSION IN THE FINAL REPORT 7.1 Under this agenda item, the Panel was presented with reports by the DBCP Action Groups. Each group maintains an observational buoy program that supplies data for operational and research purposes.
    [Show full text]
  • The Use of a Vortex Insertion Technique to Simulate the Extratropical Transition of Hurricane Michael (2000)
    480 WEATHER AND FORECASTING VOLUME 22 The Use of a Vortex Insertion Technique to Simulate the Extratropical Transition of Hurricane Michael (2000) CHRISTOPHER T. FOGARTY Canadian Hurricane Centre, Dartmouth, Nova Scotia, Canada RICHARD J. GREATBATCH AND HAROLD RITCHIE Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada (Manuscript received 27 May 2005, in final form 30 October 2006) ABSTRACT On 19 October 2000, Hurricane Michael merged with an approaching baroclinic trough over the western North Atlantic Ocean south of Nova Scotia. As the hurricane moved over cooler sea surface temperatures (SSTs; less than 25°C), it intensified to category-2 intensity on the Saffir–Simpson hurricane scale [maxi- mum sustained wind speeds of 44 m sϪ1 (85 kt)] while tapping energy from the baroclinic environment. The large “hybrid” storm made landfall on the south coast of Newfoundland with maximum sustained winds of 39 m sϪ1 (75 kt) causing moderate damage to coastal communities east of landfall. Hurricane Michael presented significant challenges to weather forecasters. The fundamental issue was determining which of two cyclones (a newly formed baroclinic low south of Nova Scotia or the hurricane) would become the dominant circulation center during the early stages of the extratropical transition (ET) process. Second, it was difficult to predict the intensity of the storm at landfall owing to competing factors: 1) decreasing SSTs conducive to weakening and 2) the approaching negatively tilted upper-level trough, favoring intensifica- tion. Numerical hindcast simulations using the limited-area Mesoscale Compressible Community model with synthetic vortex insertion (cyclone bogus) prior to the ET of Hurricane Michael led to a more realistic evolution of wind and pressure compared to running the model without vortex insertion.
    [Show full text]