Nonpoint Source Assessment Report FY 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 CLIMATE PLAN for the QUILEUTE TRIBE of the QUILEUTE RESERVATION La Push, Washington, 9/30/2016 Prepared by Katherine Krueger
1 CLIMATE PLAN FOR THE QUILEUTE TRIBE OF THE QUILEUTE RESERVATION La Push, Washington, 9/30/2016 Prepared by Katherine Krueger, Quileute Natural Resources, B.S., M.S., J.D. in Performance of US EPA Grant Funds FYs 2015‐2016 TABLE of CONTENTS Preface 2 Executive Summary 4 Introduction to Geography and Governance 6 Risk Assessment 8 Scope of the Plan 10 Assessment of Resources and Threats, with Recommendations 14 Metadata and Tools 14 Sea Level Change 15 Terrestrial (Land) Environment 19 Fresh Water (Lakes, Rivers, Wetlands) 21 Marine Environment 32 Impact on Infrastructure/Facilities 46 Cultural Impacts 49 Appendix 50 Recommendations Summarized 50 Maps 52 Research to Correct the Planet 56 Hazard Work Sheets 57 Resources and Acknowledgements 59 2 Preface: It is important to understand the difference between weather and climate. Weather forecasts cover perhaps two weeks, and if extending into a season, a few months, or even a few years, but climate is weather over decades or even centuries. The National Academies of Sciences put on a slide show about this in March of 2016, in anticipation of their book to be published later this year entitled Next Generation Earth System Prediction. Researchers want to extend weather forecasting capacity, based on modeling, using vast accumulations of prior data, because weather affects so many aspects of our economy. So when we have a summer of unusual drought or a year of constant rain that extends all summer long, it is premature to call this climate change. But when we measure increases of global temperature averages over decades, or see planet‐wide loss of continental ice over decades, we can make statements about climate. -
Gold and Fish Pamphlet: Rules for Mineral Prospecting and Placer Mining
WASHINGTON DEPARTMENT OF FISH AND WILDLIFE Gold and Fish Rules for Mineral Prospecting and Placer Mining May 2021 WDFW | 2020 GOLD and FISH - 2nd Edition Table of Contents Mineral Prospecting and Placer Mining Rules 1 Agencies with an Interest in Mineral Prospecting 1 Definitions of Terms 8 Mineral Prospecting in Freshwater Without Timing Restrictions 12 Mineral Prospecting in Freshwaters With Timing Restrictions 14 Mineral Prospecting on Ocean Beaches 16 Authorized Work Times 17 Penalties 42 List of Figures Figure 1. High-banker 9 Figure 2. Mini high-banker 9 Figure 3. Mini rocker box (top view and bottom view) 9 Figure 4. Pan 10 Figure 5. Power sluice/suction dredge combination 10 Figure 6. Cross section of a typical redd 10 Fig u re 7. Rocker box (top view and bottom view) 10 Figure 8. Sluice 11 Figure 9. Spiral wheel 11 Figure 10. Suction dredge . 11 Figure 11. Cross section of a typical body of water, showing areas where excavation is not permitted under rules for mineral prospecting without timing restrictions Dashed lines indicate areas where excavation is not permitted 12 Figure 12. Permitted and prohibited excavation sites in a typical body of water under rules for mineral prospecting without timing restrictions Dashed lines indicate areas where excavation is not permitted 12 Figure 13. Limits on excavating, collecting, and removing aggregate on stream banks 14 Figure 14. Excavating, collecting, and removing aggregate within the wetted perimeter is not permitted 1 4 Figure 15. Cross section of a typical body of water showing unstable slopes, stable areas, and permissible or prohibited excavation sites under rules for mineral prospecting with timing restrictions Dashed lines indicates areas where excavation is not permitted 15 Figure 16. -
Case Studies of Three Salmon and Steelhead Stocks in Oregon and Washington, Including Population Status, Threats, and Monitoring Recommendations
HOW HEALTHY ARE HEALTHY STOCKS? Case Studies of Three Salmon and Steelhead Stocks in Oregon and Washington, including Population Status, Threats, and Monitoring Recommendations Prepared for the Native Fish Society April 2001 How Healthy Are Healthy Stocks? Case Studies of Three Salmon and Steelhead Stocks in Oregon and Washington, including Population Status, Threats, and Monitoring Recommendations Prepared for: Bill Bakke, Director Native Fish Society P.O. Box 19570 Portland, Oregon 97280 Prepared by: Peter Bahls, Senior Fish Biologist David Evans and Associates, Inc. 2828 S.W. Corbett Avenue Portland, Oregon 97201 Sponsored by the Native Fish Society and the U.S. Environmental Protection Agency. April 2001 Please cite this document as follows: Bahls, P. 2001. How healthy are healthy stocks? Case studies of three salmon and steelhead stocks in Oregon and Washington, including population status, threats, and monitoring recommendations. David Evans and Associates, Inc. Report. Portland, Oregon, USA. EXECUTIVE SUMMARY Three salmon stocks were chosen for case studies in Oregon and Washington that were previously identified as “healthy” in a coast-wide assessment of stock status (Huntington et al. 1996): fall chinook salmon (Oncorhynchus tshawytscha) of the Wilson River, summer steelhead (O. mykiss) of the Middle Fork John Day (MFJD) River, and winter steelhead (O. mykiss) of the Sol Duc River. The purpose of the study was to examine with a finer focus the status of these three stocks and the array of human influences that affect them. The best available information was used, some of which has become available since the 1996 assessment of healthy stocks was conducted. Recommendations for monitoring were developed to address priority data gaps and most pressing threats to the species. -
QIN Shoreline Inventory and Characterization Report
Quinault Indian Nation Shoreline Inventory and Characterization Report Quinault Indian Nation Taholah, Washington March 2017 Quinault Indian Nation Shoreline Inventory and Characterization Report Project Information Project: QIN Shoreline Inventory and Characterization Report Prepared for: Quinault Indian Community Development and Planning Department Charles Warsinske, Planning Manager Carl Smith, Environmental Planner Jesse Cardenas, Project Manager American Community Enrichment Reviewing Agency Jurisdiction: Quinault Indian Nation, made possible by a grant from Administration for Native Americans (ANA) Project Representative Prepared by: SCJ Alliance 8730 Tallon Lane NE, Suite 200 SCJ Alliance teaming with AECOM Lacey, Washington 98516 360.352.1465 scjalliance.com Contact: Lisa Palazzi, PWS, CPSS Project Reference: SCJ #2328.01 QIN Shoreline Inventory and Characterization Report 03062107 March 2017 TABLE OF CONTENTS 1. Introduction ............................................................................................................... 1 1.1 Background and Purpose ........................................................................................... 1 1.2 Shoreline Analysis Areas (SAAs) Overview ................................................................. 3 1.3 Opportunities for Restoration .................................................................................... 4 2. Methodology .............................................................................................................. 5 2.1 Baseline Data -
North Pacific Coast (WRIA 20) Salmon Restoration Strategy (2021 Edition)
North Pacific Coast (WRIA 20) Salmon Restoration Strategy (2021 Edition) North Pacific Coast Lead Entity University of Washington, Olympic Natural Resources Center 1455 South Forks Avenue, P.O. Box 1628, Forks, WA 98331 Approved by the North Pacific Coast Lead Entity Public Review Draft - Pending April 2021 final approval 2021 North Pacific Coast (WRIA 20) Salmon Restoration Strategy Table of Contents Page - Table of Contents i - List of Figures ii - List of Tables ii - Acronyms iii - Glossary iv - Executive Summary xi - Acknowledgements xii Section 1: Project Prioritization and Application Processes 1.1 Goals and Objectives. 1 1.1.1 Incorporating Climate Change 2 1.1.2 Education and Outreach 3 1.2 Project Prioritization Method. 4 1.2.1 Descriptions of Prioritization Categories: 7 1.3 Review Process (Project application procedure, explanation of evaluation process). 10 1.4 Annual Project List. 10 1.5 Eligibility for the Annual Project Round 11 Section 2: Priority Projects by Geographic Section 2.0 All WRIA 20 Basins System-wide 12 2.1 Hoh River Basin: 2.1.1 Hoh Watershed Background. 13 2.1.2 Hoh River Watershed Priority Projects. 18 2.2 Quillayute River Complex: 2.2.1 Quillayute Basin Background. 21 2.1.1.1 Climate Change Forecasts 23 2.2.2 Quillayute Basin Prioritized Projects: 24 2.2.2.0 Quillayute Basin-Wide Priority Projects. 24 2.2.2.1 Quillayute Main Stem Priority Projects. 25 2.2.2.2 Dickey River Watershed Priority Projects. 27 2.2.2.3 Bogachiel River Watershed Priority Projects. 28 2.2.2.4 Calawah River Watershed Priority Projects. -
2016 State of Our Watersheds Report Quillayute River Basin Quileute Tribe
2016 State of Our Watersheds Report Quillayute River Basin abitat projects are vital to restoring the Hsalmon fishery. We have successfully partnered on projects in the past but we need many more into the future. - MEL MOON, NATURAL RESOURCES DIRECTOR QUILEUTE TRIBE Quileute Tribe The Quileute Tribe is located in La Push, on the shores of the Pacific Ocean, where tribal members have lived and hunted for thousands of years. Although their reservation is only about 2 square miles, the Tribe’s original territory stretched along the shores of the Pacific from the glaciers of Mount Olympus to the rivers of rain forests. Much has changed since those times, but Quileute elders remember the time when the Seattle people challenged Kwalla, the mighty whale. They also tell the story of how the bayak, or ra- ven, placed the sun in the sky. 178 Quileute Tribe Large Watershed Has Significant Subbasins The Quileute Tribe’s Area of Concern co-managed with the state of Washington, includes the northern portion of WRIA 20, and the Quileute Tribe has a shared Usual from Lake Ozette to the Goodman Creek and Accustomed area with the Makah Tribe Watershed. The largest basin in the area in the Lake Ozette basin. The Lake Ozette is the Quillayute, with four major sub-ba- sockeye is listed as threatened under the sins: the Dickey, Sol Duc, Calawah and Endangered Species Act. Bogachiel rivers. This part of the coastal The area is heavily forested with rela- region is a temperate rainforest with abun- tively infrequent impervious cover caused dant waterfall and an annual rainfall that by development and small population cen- can reach 140 inches. -
Quinault, Queets, Hoh, and Quillayute River Basins
95 124°30’ 124° 123°30’ STRAIT OF JUAN DE FUCA British Columbia 48° 15' CANADA Ozette Lake . k F t s k e River r W o r, t F e as , North Fork v E r i e k iv R uc h R y d alawa ke le C ic So D 12043000 South Fork Forks er Quillayute Bogachiel Riv River r CLALLAM ve Mount Ri Olympus JEFFERSON So. oh Fork H H 12041200 oh River 47° r 45' ive R River r ate rw ts a ee e Qu Cl 12040500 r Quinault Rive Queets Lake GRAYS HARBOR 12039500 Quinault nault Qui PACIFIC OCEAN MASON Taholah GRAYS HARBOR 47° 15' EXPLANATION REAL-TIME SURFACE-WATER STATION WASHINGTON 010515 20 MILES 01015520 25 30 KILOMETERS Figure 12. Location of surface-water stations in the Quinault, Queets, Hoh, and Quillayute River Basins. 96 Dickey River Soleduck River Quillayute RM 6.51 RM River RM 6.5 1.3 RM RM Calawah River 10.2 North Fork 8.2 12043000 Calawah River RM 6.6 South Fork Calawah River Bogachiel River EXPLANATION Real-time surface-water station 12041200 RM RM 15.4 Hoh30.6 River 12041200 Station number RM 17.4 River mile Stream—Arrow shows direction of flow South Fork Hoh River PACIFIC OCEAN 12040500 Clearwater River RM 4.6 QueetsRM River 7.0 12039500 Quinault Quinault River RM 33.4 Lake Figure 13. Schematic diagram showing surface-water stations in the Quinault, Queets, Hoh, and Quillayute River Basins. QUINAULT RIVER BASIN 97 12039500 QUINAULT RIVER AT QUINAULT LAKE, WA ° ° 1⁄ 1⁄ LOCATION.--Lat 47 27'28", long 123 53'17", in SW 4NE 4 sec.25, T.23 N., R.10 W., Grays Harbor County, Hydrologic Unit 17100102, Quinault Indian Reservation, on left bank at outlet of Quinault Lake, 50 ft downstream from Olympic Highway bridge on U.S. -
The Quillayute River
The Quillayute River The Quillayute River is divided into two stream reaches. The downstream reach, QUILLAYUTE 10, flows entirely outside the planning unit from the Olympic National Park boundary to the river mouth within the Quileute Reservation. QUILLAYUTE 20 (RM 2.9‐5.3) is within the study area and extends from the Park Boundary at to the confluence of the Bogachiel and Sol Duc Rivers. Physical Environment The Quillayute River is the terminal mainstem of one of the largest and most productive river system networks on the Washington coast. The Quillayute River drainage encompasses over 800,000 acres and experiences some 120‐140 inches of rainfall per year. All of the contributing rivers have extensive tributary systems. The Quillayute mainstem is a low gradient and low velocity river, lacking in sinuosity and composed of long gravel bars. The flood plain for the mainstem is very wide throughout its length. Critical acquifer recharge areas occur throughout the mainstem channel, with one extensive recharge area located to the south of the channel between RM 3.6‐ 4. The mainstem channel is reported to flow over a landslide hazard area, portions of which extend out onto the north shoreline. Because the grade is gentle in this lowland portion of WRIA 20, tidal influence and measurable salinity can extend over five miles up to the confluence of the Sol Duc WRIA 20 Draft ICR June 30, 2011 55 | Page and Bogachiel Rivers at Three Rivers. This region is often exposed to high wind and heavy rainstorms resulting in peak flow events that cause sedimentation and velocity impacts in the Quillayute mainstem . -
The Quillayute River
The Quillayute River The Quillayute River is divided into two stream reaches. The downstream reach, QUILLAYUTE 10, flows entirely outside the planning unit from the Olympic National Park boundary to the river mouth within the Quileute Reservation. QUILLAYUTE 20 (RM 2.9-5.3) is within the study area and extends from the Park Boundary at to the confluence of the Bogachiel and Sol Duc Rivers. Physical Environment The Quillayute River is the terminal mainstem of one of the largest and most productive river system networks on the Washington coast. Four major rivers--the Bogachiel, Calawah, Sol Duc and Dickey-- combine to form the Quillayute River. The Quillayute River drainage encompasses over 800,000 acres and experiences some 120-140 inches of rainfall per year. All of the contributing rivers have extensive tributary systems. The Quillayute mainstem is a low gradient river, low velocity river, lacking in sinuosity and composed of long gravel bars. The flood plain for the mainstem is very wide throughout its length. Critical acquifer recharge areas occur throughout the mainstem channel, with one extensive recharge area located to the south of the channel between RM 3.6- 4. The mainstem channel is reported to flow over a landslide hazard area, portions of which extend out onto the north shoreline. Because the grade is gentle in this lowland portion of WRIA 20, tidal influence and measurable salinity can extend over five miles up to the confluence of the Sol Duc and Bogachiel Rivers at Three Rivers. This region is often exposed to high wind and heavy rainstorms resulting in peak flow events that cause sedimentation and velocity impacts in the Quillayute mainstem . -
Quillayute River Zone Disconnected Tributary CMZ Alluvial Fan
Ü 1 2 Ü E River Mile Marker CL_##_## Reach_ID Segment Boundaries 3 Geotechnical Buffer Recommended Channel CMZ Migration Quillayute River Zone Disconnected Tributary CMZ Alluvial Fan 0 50 100 150 Meters 5 Flow Direction CL_QL_01 0 250 500 Feet End of Delineation 2010 aerial from Microsoft via ESRI World Imagery 1:24,000 USGS DRG River miles calculated from NHD stream alignment (USGS) Roads from TIGER (US Census Bureau) Coordinate System: NAD83 State Plane Washington North Analyzed by: Minda Troost, LG (GeoEngineers) Reviewed by: Mary Ann Reinhart, LG, LEG (GeoEngineers) and/or Patricia Olson, PhD, LHG, (WA Dept. of Ecology) 4 Channel Migration Assessment Prepared for the Shoreline Master Program Update Clallam County, Washington Quillayute River Map 1 Source File: P:\0\0504064\GIS\MXD\Finals\Clallam_Final_Aerial.mxd: Modified: 4/11/2013 mtroost Ü CL_SD_01 1 2 Ü Sol Duc River 0 E River Mile Marker CL_##_## Reach_ID Segment Boundaries Geotechnical Buffer Recommended Bogachiel River 6 Channel CMZ Migration Quillayute River Zone Disconnected Tributary CMZ Alluvial Fan CL_QL_01 0 50 100 150 Meters 5 Flow Direction CL_BO_01 0 250 500 Feet 2010 aerial from Microsoft via ESRI World Imagery 1:24,000 USGS DRG River miles calculated from NHD stream alignment (USGS) Roads from TIGER (US Census Bureau) Coordinate System: NAD83 State Plane Washington North Analyzed by: Minda Troost, LG (GeoEngineers) Reviewed by: Mary Ann Reinhart, LG, LEG (GeoEngineers) and/or Patricia Olson, PhD, LHG, (WA Dept. of Ecology) Channel Migration Assessment Prepared for -
By Leonard M. Nelson Prepared in Cooperation with the Quileute Tribal Council and the U.S. Army Corps of Engineers, Pacific Nort
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY STREAMFLOW AND SEDIMENT TRANSPORT IN THE QUILLAYUTE RIVER BASIN, WASHINGTON By Leonard M. Nelson U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 82-627 Prepared in cooperation with the Quileute Tribal Council and the U.S. Army Corps of Engineers, Pacific Northwest Division, Seattle District Tacoma, Washington 1982 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information write to: U.S. Geological Survey, WRD 1201 Pacific Avenue - Suite 600 Tacoma, Washington 98402-4384 CONTENTS Page Abstract 1 Introduction 2 Description of the basin 3 Streamflow 6 Low flows 11 Flood discharges 15 Sediment 16 Suspended-sediment transport 17 Bedload transport 23 References cited 28 ILLUSTRATIONS FIGURE 1. Map showing mean annual precipitation in the Quillayute River basin, during period 1930-57 4 2. Profiles of Quillayute River and selected tributaries 5 3. Graph showing mean monthly precipitaton at Forks 6 4. Map showing data-collection sites in the Quillayute River basin 8 5. Graph showing annual mean discharges at two gaging stations in the Quillayute River basin 9 6. Graph showing flow-duration curves for five gaging stations in the Quillayute River basin 13 7-10. Graphs showing relation of instantaneous suspended- sediment concentration to concurrent water discharge for: 7. Bogachiel River near LaPush 19 8. Calawah River near Forks 20 9. Soleduck River near Quillayute 21 10. Dickey River near LaPush 22 11. Graph showing relation of suspended-sediment discharge to bedload for White River below Clearwater River, near Buckley, during 1974-76. -
Case 2:70-Cv-09213-RSM Document 21063 Filed 07/09/15 Page 1 of 83
Case 2:70-cv-09213-RSM Document 21063 Filed 07/09/15 Page 1 of 83 1 2 3 4 5 6 7 UNITED STATES DISTRICT COURT 8 WESTERN DISTRICT OF WASHINGTON AT SEATTLE 9 UNITED STATES OF AMERICA, et al, No. C70-9213 10 Plaintiffs, Subproceeding No. 09-01 11 v. 12 FINDINGS OF FACT AND CONCLUSIONS OF LAW STATE OF WASHINGTON, et al., AND MEMORANDUM ORDER 13 Defendants. 14 15 I. INTRODUCTION 16 This subproceeding is before the Court pursuant to the request of the Makah Indian Tribe (the 17 “Makah”) to determine the usual and accustomed fishing grounds (“U&A”) of the Quileute Indian 18 Tribe (the “Quileute”) and the Quinault Indian Nation (the “Quinault”), to the extent not specifically 19 determined by Judge Hugo Boldt in Final Decision # 1 of this case. The Court is specifically asked to 20 determine the western boundaries of the U&As of the Quileute and Quinault in the Pacific Ocean, as 21 22 well as the northern boundary of the Quileute’s U&A. A 23-day bench trial was held to adjudicate 23 these boundaries, after which the Court received extensive supplemental briefing by the Makah, 24 Quileute, Quinault, and numerous Interested Parties and took the matter under advisement. The Court 25 has considered the vast evidence presented at trial, the exhibits admitted into evidence, trial, post-trial, 26 FINDINGS OF FACT AND CONCLUSIONS OF LAW - 1 Case 2:70-cv-09213-RSM Document 21063 Filed 07/09/15 Page 2 of 83 1 and supplemental briefs, proposed Findings of Fact and Conclusions of Law, and the arguments of 2 counsel at trial and attendant hearings.