Geographical Distribution Patterns of Carcharocles Megalodon Over Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isthminia Panamensis, a New Fossil Inioid (Mammalia, Cetacea) from the Chagres Formation of Panama and the Evolution of ‘River Dolphins’ in the Americas
Isthminia panamensis, a new fossil inioid (Mammalia, Cetacea) from the Chagres Formation of Panama and the evolution of ‘river dolphins’ in the Americas Nicholas D. Pyenson1,2, Jorge Velez-Juarbe´ 3,4, Carolina S. Gutstein1,5, Holly Little1, Dioselina Vigil6 and Aaron O’Dea6 1 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA, USA 3 Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA, USA 4 Florida Museum of Natural History, University of Florida, Gainesville, FL, USA 5 Comision´ de Patrimonio Natural, Consejo de Monumentos Nacionales, Santiago, Chile 6 Smithsonian Tropical Research Institute, Balboa, Republic of Panama ABSTRACT In contrast to dominant mode of ecological transition in the evolution of marine mammals, different lineages of toothed whales (Odontoceti) have repeatedly invaded freshwater ecosystems during the Cenozoic era. The so-called ‘river dolphins’ are now recognized as independent lineages that converged on similar morphological specializations (e.g., longirostry). In South America, the two endemic ‘river dolphin’ lineages form a clade (Inioidea), with closely related fossil inioids from marine rock units in the South Pacific and North Atlantic oceans. Here we describe a new genus and species of fossil inioid, Isthminia panamensis, gen. et sp. nov. from the late Miocene of Panama. The type and only known specimen consists of a partial skull, mandibles, isolated teeth, a right scapula, and carpal elements recovered from Submitted 27 April 2015 the Pina˜ Facies of the Chagres Formation, along the Caribbean coast of Panama. -
1 Published in Journal of South American Earth Sciences, 31:414
Published in Journal of South American Earth Sciences, 31:414-425, 2011 (This is a prepublication version, with larger illustrations) A high resolution stratigraphic framework for the remarkable fossil cetacean assemblage of the Miocene/Pliocene Pisco Formation, Peru Leonard Brand a,*, Mario Urbina b, Arthur Chadwick c, Thomas J. DeVries d, Raul Esperante e, a Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350 b Museo de Historia Natural, Lima 14, Peru c Southwestern Adventist University, Keene, TX 76059 d Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195 e Geoscience Research Institute, Loma Linda, CA 92350 Abstract The Miocene/Pliocene Pisco Formation of Peru contains a rich marine vertebrate fossil record, providing a unique opportunity for the study of paleoecology and evolution, along with the sedimentological context of the fossils. The lack of a high-resolution stratigraphic framework has hampered such study. In this paper we develop the needed stratigraphy for the areas in the Pisco Formation where most of the vertebrate paleontological research is occurring. In the Ica Valley and in the vicinity of Lomas, series of lithologically or paleontologically unique marker beds were identified. These were walked out and documented with GPS technology. Measured sections connecting these marker beds provide a stratigraphic framework for the areas studied. GPS locations, maps of the marker beds on aerial photographs, and outcrop photographs allow field determination of the stratigraphic positions of study areas. Keywords: Stratigraphy, Miocene, Pliocene, Pisco, Peru * Corresponding author. FAX 909-558-0259 E-mail address: [email protected] (Leonard Brand) 1. -
Record of Carcharocles Megalodon in the Eastern
Estudios Geológicos julio-diciembre 2015, 71(2), e032 ISSN-L: 0367-0449 doi: http://dx.doi.org/10.3989/egeol.41828.342 Record of Carcharocles megalodon in the Eastern Guadalquivir Basin (Upper Miocene, South Spain) Registro de Carcharocles megalodon en el sector oriental de la Cuenca del Guadalquivir (Mioceno superior, Sur de España) M. Reolid, J.M. Molina Departamento de Geología, Universidad de Jaén, Campus Las Lagunillas sn, 23071 Jaén, Spain. Email: [email protected] / [email protected] ABSTRACT Tortonian diatomites of the San Felix Quarry (Porcuna), in the Eastern Guadalquivir Basin, have given isolated marine vertebrate remains that include a large shark tooth (123.96 mm from apex to the baseline of the root). The large size of the crown height (92.2 mm), the triangular shape, the broad serrated crown, the convex lingual face and flat labial face, and the robust, thick angled root determine that this specimen corresponds to Carcharocles megalodon. The symmetry with low slant shows it to be an upper anterior tooth. The total length estimated from the tooth crown height is calculated by means of different methods, and comparison is made with Carcharodon carcharias. The final inferred total length of around 11 m classifies this specimen in the upper size range of the known C. megalodon specimens. The palaeogeography of the Guadalquivir Basin close to the North Betic Strait, which connected the Atlantic Ocean to the Mediterranean Sea, favoured the interaction of the cold nutrient-rich Atlantic waters with warmer Mediterranean waters. The presence of diatomites indicates potential upwelling currents in this context, as well as high productivity favouring the presence of large vertebrates such as mysticetid whales, pinnipeds and small sharks (Isurus). -
Thomas Jefferson Meg Tooth
The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 30 Number 3 September 2015 Thomas Jefferson Meg Tooth Features Thomas Jefferson Meg The catalogue number Review; Walking is: ANSP 959 Whales Inside The tooth came from Ricehope Estate, Snaggletooth Shark Cooper River, Exhibit South Carolina. Tiktaalik Clavatulidae In 1806, it was Juvenile Bald Eagle originally collected or Sculpting Whale Shark owned by Dr. William Moroccan Fossils Reid. Prints in the Sahara Volunteer Outing to Miocene-Pliocene National Geographic coastal plain sediments. Dolphins in the Chesapeake Sloth Tooth Found SharkFest Shark Iconography in Pre-Columbian Panama Hippo Skulls CT- Scanned Squalus sp. Teeth Sperm Whale Teeth On a recent trip to the Academy of Natural Sciences of Drexel University (Philadelphia), Collections Manager Ned Gilmore gave John Nance and me a behind -the-scenes highlights tour. Among the fossils that belonged to Thomas☼ Jefferson (left; American Founding Father, principal author of the Declaration of Independence, and third President of the United States) was this Carcharocles megalodon tooth. Jefferson’s interests and knowledge were encyclopedic; a delight to know that they included paleontology. Hand by J. Nance. Photo by S. Godfrey. Jefferson portrait from: http://www.biography.com/people/thomas-jefferson-9353715 ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora September 2015 Book Review: The Walking 41 million years ago and has worldwide distribution. It was fully aquatic, although it did have residual Whales hind limbs. In later chapters, Professor Thewissen George F. Klein discusses limb development and various genetic factors that make whales, whales. This is a The full title of this book is The Walking complicated topic, but I found these chapters very Whales — From Land to Water in Eight Million clear and readable. -
First Description of a Tooth of the Extinct Giant Shark Carcharocles
First description of a tooth of the extinct giant shark Carcharocles megalodon (Agassiz, 1835) found in the province of Seville (SW Iberian Peninsula) (Otodontidae) Primera descripción de un diente del extinto tiburón gigante Carcharocles megalodon (Agassiz, 1835) encontrado en la provincia de Sevilla (SO de la Península Ibérica) (Otodontidae) José Luis Medina-Gavilán 1, Antonio Toscano 2, Fernando Muñiz 3, Francisco Javier Delgado 4 1. Sociedad de Estudios Ambientales (SOCEAMB) − Perú 4, 41100 Coria del Río, Sevilla (Spain) − [email protected] 2. Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Universidad de Huelva − Campus El Carmen, 21071 Huelva (Spain) − [email protected] 3. Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Universidad de Huelva − Campus El Carmen, 21071 Huelva (Spain) − [email protected] 4. Usuario de BiodiversidadVirtual.org − Álvarez Quintero 13, 41220 Burguillos, Sevilla (Spain) − [email protected] ABSTRACT: Fossil remains of the extinct giant shark Carcharocles megalodon (Agassiz, 1835) are rare in interior Andalusia (Southern Spain). For the first time, a fossil tooth belonging to this paleospecies is described from material found in the province of Seville (Burguillos). KEY WORDS: Carcharocles megalodon (Agassiz, 1835), megalodon, Otodontidae, fossil, paleontology, Burguillos, Seville, Tortonian. RESUMEN: Los restos del extinto tiburón gigante Carcharocles megalodon (Agassiz, 1835) son raros en el interior de Andalucía (sur de España). Por primera vez, se describe un diente fósil de esta paleoespecie a partir de material hallado en Sevilla (Burguillos). PALABRAS CLAVE: Carcharocles megalodon (Agassiz, 1835), megalodón, Otodontidae, fósil, paleontología, Burguillos, Sevilla, Tortoniense. Introduction Carcharocles megalodon (Agassiz, 1835), the megalodon, is widely recognised as the largest shark that ever lived. -
Xenarthra: Megatheriidae) Were in Chile?: New Evidences from the Bahía Inglesa Formation, with a Reappraisal of Their Biochronological Affinities
Andean Geology ISSN: 0718-7092 ISSN: 0718-7106 [email protected] Servicio Nacional de Geología y Minería Chile How many species of the aquatic sloth Thalassocnus (Xenarthra: Megatheriidae) were in Chile?: new evidences from the Bahía Inglesa Formation, with a reappraisal of their biochronological affinities Peralta-Prat, Javiera; Solórzano, Andrés How many species of the aquatic sloth Thalassocnus (Xenarthra: Megatheriidae) were in Chile?: new evidences from the Bahía Inglesa Formation, with a reappraisal of their biochronological affinities Andean Geology, vol. 46, no. 3, 2019 Servicio Nacional de Geología y Minería, Chile Available in: https://www.redalyc.org/articulo.oa?id=173961656010 This work is licensed under Creative Commons Attribution 3.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Javiera Peralta-Prat, et al. How many species of the aquatic sloth Thalassocnus (Xenarthra: Megath... Paleontological Note How many species of the aquatic sloth alassocnus (Xenarthra: Megatheriidae) were in Chile?: new evidences from the Bahía Inglesa Formation, with a reappraisal of their biochronological affinities ¿Cuántas especies del perezoso acuático alassocnus (Xenarthra: Megatheriidae) existieron en Chile?: nuevas evidencias de la Formación Bahía Inglesa, con una revisión de sus afinidades biocronológicas. Javiera Peralta-Prat 1 Redalyc: https://www.redalyc.org/articulo.oa? Universidad de Concepción, Chile id=173961656010 [email protected] Andrés Solórzano *2 Universidad de Concepción, Chile [email protected] Received: 13 July 2018 Accepted: 27 November 2018 Published: 04 February 2019 Abstract: e aquatic sloth, alassocnus, is one of the most intriguing lineage of mammal known from the southern pacific coast of South America during the late Neogene. -
Ancient Carpet Shark Discovered with 'Spaceship-Shaped' Teeth 21 January 2019
Ancient carpet shark discovered with 'spaceship-shaped' teeth 21 January 2019 ago, what is now South Dakota was covered in forests, swamps and winding rivers," Gates says. "Galagadon was not swooping in to prey on T. rex, Triceratops, or any other dinosaurs that happened into its streams. This shark had teeth that were good for catching small fish or crushing snails and crawdads." Galagadon. Credit: Velizar Simeonovski, Field Museum The world of the dinosaurs just got a bit more bizarre with a newly discovered species of freshwater shark whose tiny teeth resemble the alien ships from the popular 1980s video game Galaga. Unlike its gargantuan cousin the megalodon, Galagadon nordquistae was a small shark (approximately 12 to 18 inches long), related to modern-day carpet sharks such as the "whiskered" wobbegong. Galagadon once swam in the Cretaceous rivers of what is now South Dakota, and its remains were uncovered beside "Sue," the world's most famous T. rex fossil. Galagadon teeth. Credit: Terry Gates, NC State University "The more we discover about the Cretaceous period just before the non-bird dinosaurs went extinct, the more fantastic that world becomes," says Terry Gates, lecturer at North Carolina State The tiny teeth – each one measuring less than a University and research affiliate with the North millimeter across – were discovered in the sediment Carolina Museum of Natural Sciences. Gates is left behind when paleontologists at the Field lead author of a paper describing the new species Museum uncovered the bones of "Sue," currently along with colleagues Eric Gorscak and Peter J. the most complete T. -
A Partial Rostrum of the Porbeagle Shark
GEOLOGICA BELGICA (2010) 13/1-2: 61-76 A PARTIAL ROSTRUM OF THE PORBEAGLE SHARK LAMNA NASUS (LAMNIFORMES, LAMNIDAE) FROM THE MIOCENE OF THE NORTH SEA BASIN AND THE TAXONOMIC IMPORTANCE OF ROSTRAL MORPHOLOGY IN EXTINCT SHARKS Frederik H. MOLLEN (4 figures, 3 plates) Elasmobranch Research, Meistraat 16, B-2590 Berlaar, Belgium; E-mail: [email protected] ABSTRACT. A fragmentary rostrum of a lamnid shark is recorded from the upper Miocene Breda Formation at Liessel (Noord-Brabant, The Netherlands); it constitutes the first elasmobranch rostral process to be described from Neogene strata in the North Sea Basin. Based on key features of extant lamniform rostra and CT scans of chondrocrania of modern Lamnidae, the Liessel specimen is assigned to the porbeagle shark, Lamna nasus (Bonnaterre, 1788). In addition, the taxonomic significance of rostral morphology in extinct sharks is discussed and a preliminary list of elasmobranch taxa from Liessel is presented. KEYWORDS. Lamniformes, Lamnidae, Lamna, rostrum, shark, rostral node, rostral cartilages, CT scans. 1. Introduction Pliocene) of North Carolina (USA), detailed descriptions and discussions were not presented, unfortunately. Only In general, chondrichthyan fish fossilise only under recently has Jerve (2006) reported on an ongoing study of exceptional conditions and (partial) skeletons of especially two Miocene otic capsules from the Calvert Formation large species are extremely rare (Cappetta, 1987). (lower-middle Miocene) of Maryland (USA); this will Therefore, the fossil record of Lamniformes primarily yield additional data to the often ambiguous dental studies. comprises only teeth (see e.g. Agassiz, 1833-1844; These well-preserved cranial structures were stated to be Leriche, 1902, 1905, 1910, 1926), which occasionally are homologous to those seen in extant lamnids and thus available as artificial, associated or natural tooth sets useful for future phylogenetic studies of this group. -
Influence of Tertiary Paleoenvironmental Changes On
BMC Evolutionary Biology BioMed Central Research article Open Access Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans Frédéric Delsuc*1,2, Sergio F Vizcaíno3 and Emmanuel JP Douzery1 Address: 1Laboratoire de Paléontologie, Paléobiologie et Phylogénie, Institut des Sciences de l'Evolution, Université Montpellier II, Montpellier, France, 2The Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand and 3Departamento Científico Paleontología de Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina Email: Frédéric Delsuc* - [email protected]; Sergio F Vizcaíno - [email protected]; Emmanuel JP Douzery - [email protected] * Corresponding author Published: 28 April 2004 Received: 25 December 2003 Accepted: 28 April 2004 BMC Evolutionary Biology 2004, 4:11 This article is available from: http://www.biomedcentral.com/1471-2148/4/11 © 2004 Delsuc et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. MammalsXenarthransEvolutionPalaeontologyPhylogenyRelaxed molecular clockBayesian datingGlobal changeTertiarySouth America Abstract Background: Comparative genomic data among organisms allow the reconstruction of their phylogenies and evolutionary time scales. Molecular -
Reading Handout: How Megalodon Worked
Reading Handout: How Megalodon Worked Carcharodon megalodon, the megatooth shark, isn't just a favorite topic among science fiction fans and cryptozoologists (who study evidence of the existence of unverified species) -- it was a real, living shark that roamed the oceans around 1.5 to 20 million years ago. Carcharodon megalodon was discovered in the 1600s when naturalist Nicolaus Steno identified large fossils -- previously thought to be tongues of dragons or snakes -- as giant shark teeth. Since then, biologists and scientists have unearthed hundreds of fossilized megalodon teeth and centra (boney, vertebrae-like spinal segments), allowing us to learn more about this mysterious creature of the ancient seas. Mega Anatomy Since the skeleton of a shark is primarily made up of cartilage, which decomposes over time, the only megalodon remains we've discovered are serrated teeth and vertebrae- like centra. This has left experts with the arduous task of reconstructing megalodon's anatomy based on limited knowledge. But, just as human dental records can be examined postmortem to identify remains, shark teeth can also tell experts enough to identify the species and its size, possible prey, and prey size. Hundreds of megalodon tooth fossils have been found, and they average 6 inches in length -- about the size of a human hand. By comparison, great white sharks' teeth average around 2 inches long. Using fossilized teeth, scientists have reconstructed the jaws of the megalodon and discovered that this shark's mouth was a staggering 7 feet in diameter. Based on this reconstruction and additional research, experts believe that this ancient shark had a broad, domed head with a short snout and massive jaws. -
Body Length Estimation of Neogene Macrophagous Lamniform Sharks (Carcharodon and Otodus) Derived from Associated Fossil Dentitions
Palaeontologia Electronica palaeo-electronica.org Body length estimation of Neogene macrophagous lamniform sharks (Carcharodon and Otodus) derived from associated fossil dentitions Victor J. Perez, Ronny M. Leder, and Teddy Badaut ABSTRACT The megatooth shark, Otodus megalodon, is widely accepted as the largest mac- rophagous shark that ever lived; and yet, despite over a century of research, its size is still debated. The great white shark, Carcharodon carcharias, is regarded as the best living ecological analog to the extinct megatooth shark and has been the basis for all body length estimates to date. The most widely accepted and applied method for esti- mating body size of O. megalodon was based upon a linear relationship between tooth crown height and total body length in C. carcharias. However, when applying this method to an associated dentition of O. megalodon (UF-VP-311000), the estimates for this single individual ranged from 11.4 to 41.1 m. These widely variable estimates showed a distinct pattern, in which anterior teeth resulted in lower estimates than pos- terior teeth. Consequently, previous paleoecological analyses based on body size esti- mates of O. megalodon may be subject to misinterpretation. Herein, we describe a novel method based on the summed crown width of associated fossil dentitions, which mitigates the variability associated with different tooth positions. The method assumes direct proportionality between the ratio of summed crown width to body length in eco- logically and taxonomically related fossil and modern species. Total body lengths were estimated from 11 individuals, representing five lamniform species: Otodus megal- odon, Otodus chubutensis, Carcharodon carcharias, Carcharodon hubbelli, and Carcharodon hastalis. -
Paleontological Research, Vol
Paleontological Research, vol. 6. no. 1, pp. 67-72. April 30. 2002 Ç bj the Palaeontologica! Society of Japan Permian bivalves from the H. S. Lee Formation, Malaysia KEIJI NAKAZAWA 28-2 Koyama Shimouchikawara-cho, Kita-ku. Kyoto. 603-8132, Japan Received 2 July 2001: Revised manuscript accepted 7 December 2001 Abstract. Three bivalve species collected from the Permian H. S. Lee Formation at the H. S. Lee No. 8 Mine in Perak, Malaysia are described. They are identified as Sanguinolites ishii sp. nov., Megalodon (Megalodon) yanceyi sp. nov.. and Myalina (Myalina) cf. wyomingensis (Lea). The fossil locality is famous for the abundant occurrence of gastropods together with bivalves, cephalopods, calcareous algae and others, but is flooded and inaccessible now. The new species of Megalodon is considered to be the first record of the genus in the Permian. Key words: H. S. Lee Formation. Malaysia, Megalodon, Permian bivalves Introduction and previous research Grammatodon (Cosmetodon) obsoletiformis (Hayasaka) Grammatodon (Cosmetodon) sp. The bedrock of open-pit tin mines in the Kampar area, Shikamaia perakensis (Runnegar and Gobbett) Perak. Malaysia is mostly composed of carbonate rocks, Saikraconcha {Dereconcha) kamparensis Yancey and such as limestone, dolomitic limestone, and dolomite. The Boyd fossiliferous limestone beds occupying the uppermost inter- Saikraconcha (Dereconcha) sp. val of this sequence occur in the H. S. Lee and Nam Long Prospondylus chintongia Yancey Mines, and were named the H. S. Lee Beds by Sunthralin- Pernopecten malaysia Yancey gam (1968). The rich Permian fossils collected from the Palaeolima sp. H. S. Lee Mine (mostly No. 8 Mine, the type locality of the Lyroschizodus sp.