The Island Syndrome and Population Dynamics of Introduced Rats

Total Page:16

File Type:pdf, Size:1020Kb

The Island Syndrome and Population Dynamics of Introduced Rats Oecologia (2011) 167:667–676 DOI 10.1007/s00442-011-2031-z POPULATION ECOLOGY - ORIGINAL PAPER The island syndrome and population dynamics of introduced rats James C. Russell • David Ringler • Aure´lien Trombini • Matthieu Le Corre Received: 20 October 2010 / Accepted: 13 May 2011 / Published online: 5 June 2011 Ó Springer-Verlag 2011 Abstract The island syndrome predicts directional Mozambique Channel and were consistent with predictions changes in the morphology and demography of insular from the island syndrome. The manifestation of an island vertebrates, due to changes in trophic complexity and syndrome in rodents depends upon the trophic composition migration rates caused by island size and isolation. How- of a community, and may not relate to island size alone ever, the high rate of human-mediated species introduc- when many species additions, such as invasions, have tions to some islands also increases trophic complexity, and occurred. The differing patterns of rodent population this will reduce the perceived insularity on any such island. dynamics on each island provide information for future We test four hypotheses on the role of increased trophic rodent eradication operations. complexity on the island syndrome, using introduced black rats (Rattus rattus) on two isolated coral atolls in the Keywords Body-size Á Demography Á Density Á Mozambique Channel. Europa Island has remained rela- Rattus rattus Á Spatially explicit capture–recapture tively pristine and insular, with few species introductions, whereas Juan de Nova Island has had many species intro- ductions, including predators and competitors of rats, an- Introduction thropogenically increasing its trophic complexity. In the most insular environments, the island syndrome is expected Changes in the ecological and evolutionary processes to generate increases in body size and densities of rodents within insular populations following colonisation are col- but decreases in the rates of reproduction and population lectively referred to as the island syndrome (Adler and cycling. Morphology and reproduction were compared Levins 1994; Blondel 2000). The island syndrome is driven using linear regression and canonical discriminant analysis, by differences in island size and isolation, relative to other while density and population cycling were compared using islands or continental mainlands, which occur through spatially explicit capture–recapture analysis. Results were island size determining the level of habitat and trophic compared to other insular black rat populations in the complexity, while isolation controls the rate of migration to and from islands. Changes that take place as part of the syndrome occur in morphology, demography and behav- Communicated by Jo¨rg Ganzhorn. iour (Blondel 2000). Changes in body size and morpho- logical traits, the ‘island rule’, have received particular J. C. Russell Á D. Ringler Á A. Trombini Á M. Le Corre attention (e.g. Pergams and Ashley 2001; Palkovacs 2003; ECOMAR, Universite´ de la Re´union, Millien and Damuth 2004; Lomolino 2005; Meiri et al. 15 avenue Rene´ Cassin, 97715 Saint Denis, France 2008), and for mammals can depend on whether the species Present Address: is a carnivore (Meiri et al. 2005) or herbivore (Raia and J. C. Russell (&) Meiri 2006), and how it interacts with its predators, prey or School of Biological Sciences, Department of Statistics, competitors. University of Auckland, Private Bag 92019, Auckland, New Zealand Understanding what drives the island syndrome allows e-mail: [email protected] the impacts of future community and environmental 123 668 Oecologia (2011) 167:667–676 changes on islands to be more robustly predicted. This a result of a high rate of species introductions to one atoll. especially has application in the face of adaptation to We compare Europa Island, which has remained relatively widespread human-driven global change (Vitousek et al. natural, with Juan de Nova Island, which has had its trophic 1997; Gillespie et al. 2008), and particularly the increase in complexity anthropogenically increased by the introduc- species richness on islands due to biological invasions (Sax tion of novel species including mammals, land birds and et al. 2002). The net increase in species richness that occurs plants. For introduced mammals, any distance effect is on islands as a result of species introductions can be factored out due to complete oceanic isolation, such that expected to increase the number of trophic interactions on non-volant mammals cannot naturally disperse (Russell an island (Zavaleta et al. 2000; Tylianakis et al. 2008). et al. 2004), while the sizes of both islands lie within a Ultimately, this might mean that, even when an island similar order of magnitude. We expect rats on the pristine is completely isolated, insularity is not solely defined by island (Europa) to behave more like an insular population, area but also depends upon the species richness and iden- and on the island with anthropogenically increased species tity of constituent community members, both native and richness (Juan de Nova) more like a continental population, introduced. regardless of original island size. We test four hypotheses Rodent populations have been a valuable model for of the island syndrome which we expect to differ predict- generating and testing theories of population dynamics ably between the two islands; (1) morphology, (2) repro- (Krebs 1999; Hanski et al. 2001), but most studies come duction, (3) density and (4) cycling. The island syndrome from continental systems (e.g. Singleton et al. 1999; but predicts that on more trophically complex islands the see Foster 1964; Gliwicz 1980) in temperate environments number of inter- and intra-trophic interactions (e.g. pre- (Krebs 1999). For rodents, the island syndrome predicts dation and competition) will be greater. These interactions that traits such as body size and density are expected to are expected to generate feedbacks limiting body-size and increase, whereas rates of reproduction and population density in small rodent populations, while elongating cycling are expected to decrease (Adler and Levins 1994). breeding seasons and de-stabilising (fluctuating) population Introduced rats (Rattus rattus, R. norvegicus and R. exu- cycles (see Adler and Levins 1994). Following the island lans) are distributed on over 80% of the world’s archipel- syndrome, we therefore expect rat morphology (1) and agos (Atkinson 1985) and have made important density (3) to be greater on Europa, whereas we expect contributions to testing ecological hypotheses (Tamarin reproduction (2) and population cycling (4) to be greater on and Malecha 1971; Clark 1980; Cheylan et al. 1998; Harris Juan de Nova. and Macdonald 2007). Hypotheses from the island syn- drome could be widely tested using introduced rats. Introduced rats are able to be compared, as a natural Materials and methods experiment, on a great variety of island areas, habitats, climates and trophic regimes, all factors known to affect Sites their distributions and population dynamics (Russell and Clout 2004). Rat introductions have been relatively recent Europa (2,223 ha; 22°210S, 40°210E) and Juan de Nova (usually within the past few centuries) and so comparisons (561 ha; 17°030S, 42°450E) are two low-lying (\10 m can be made knowing that adaptations have occurred elevation) coralline atolls in the Mozambique Channel within ecological time-scales. Additionally, the genus (Fig. 1). Both islands are French overseas territories, part Rattus is morphologically conservative (Rowe et al. 2011), of the Iˆles E´ parses (‘scattered islands’) managed by the and so differences in body morphology and condition are Terres Australes et Antractiques Franc¸aises (TAAF). The likely to reflect ecological adaptations to local environ- islands are subject to a productive cyclonic season in the ments. Studies of the ecological and evolutionary processes Austral summer [November–April, mean 6-monthly in introduced rat populations can also provide important cumulative rainfall 480.9 mm (2000–2008)] and a dry data for conservation management, where factors such as season in the Austral winter [May–October, mean predator size affect impacts on the recipient community 6-monthly cumulative rainfall 72.1 mm (2000–2008)]. (Jones et al. 2008) or where control programmes favour Temperature is relatively constant [monthly mean 26.6°C, targeting rats during non-breeding periods at lowest den- range 22.2–29.5 (2000–2008)], and monthly rainfall and sities (Innes et al. 2001). temperature are strongly correlated between the islands We consider two coral atolls in the Mozambique (r = 0.88 and 0.95, respectively). On Europa, black rats Channel which, despite their biogeographic similarities, are are the only introduced mammalian predator, although they notable for their differing rodent population dynamics. co-exist with goats (Capra hircus) and a small population Given both islands are fully isolated, we explore the effect (approx. 30 pairs) of barn owls (Tyto alba), all present of increased trophic complexity on the island syndrome, as since at least 1860. On Juan de Nova, cats (Felis catus), 123 Oecologia (2011) 167:667–676 669 Fig. 1 Western Indian Ocean Islands with Juan de Nova and Europa inset. Buildings and airstrips are indicated black rats and mice (Mus musculus) have all been present macrostachyum and 1.50-m-high Tournefortia argentea. since at least the middle of the twentieth century. Both Cats are present across the island at a density of approxi- islands are classified as uninhabited, but since 1973, French mately 10 ha-1 and mice are widespread and abundant. military patrols (15 people) have been regularly stationed Many other species of land birds, invertebrates and plants on each. have been introduced during the course of twentieth cen- On Europa, the north-western area of the island about tury inhabitation. Overall, the vegetation of the island has the airstrip is dominated by 850 ha of 5-m-high canopy dry been almost completely modified by human activities and indigenous forest composed of Euphorbia stenoclada and less than 20% of the plant species are native (V. Boulet, Ficus marmorata.
Recommended publications
  • The Island Rule Explains Consistent Patterns of Body Size 2 Evolution Across Terrestrial Vertebrates 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The island rule explains consistent patterns of body size 2 evolution across terrestrial vertebrates 3 4 Ana Benítez-López1,2*, Luca Santini1,3, Juan Gallego-Zamorano1, Borja Milá4, Patrick 5 Walkden5, Mark A.J. Huijbregts1,†, Joseph A. Tobias5,† 6 7 1Department of Environmental Science, Institute for Wetland and Water Research, Radboud 8 University, P.O. Box 9010, NL-6500 GL, Nijmegen, the Netherlands. 9 2Integrative Ecology Group, Estación Biológica de Doñana, CSIC, 41092, Sevilla, Spain 10 3National Research Council, Institute of Research on Terrestrial Ecosystems (CNR-IRET), Via 11 Salaria km 29.300, 00015, Monterotondo (Rome), Italy 12 4Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (CSIC), 13 Madrid 28006, Spain 14 5Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, 15 Berkshire SL5 7PY, United Kingdom 16 *Correspondence to: [email protected]; [email protected] 17 †These two authors contributed equally 18 19 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.114835; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • An Updated Account of the Vascular Flora of the Iles Eparses (Southwest Indian Ocean)
    AN UPDATED ACCOUNT OF THE VASCULAR FLORA OF THE ILES EPARSES (SOUTHWEST INDIAN OCEAN) Vincent Boullet, Jean Hivert, and Luc D. B. Gigord Atoll Research Bulletin No. 614 31 January 2018 Washington, D.C. All statements made in papers published in the Atoll Research Bulletin are the sole responsibility of the authors and do not necessarily represent the views of the Smithsonian Institution or of the editors of the bulletin. Articles submitted for publication in the Atoll Research Bulletin should be original papers and must be made available by authors for open access publication. Manuscripts should be consistent with the “Author Formatting Guidelines for Publication in the Atoll Research Bulletin.” All submissions to the bulletin are peer reviewed and, after revision, are evaluated prior to acceptance and publication through the publisher’s open access portal, Open SI (http://opensi.si.edu). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 https://scholarlypress.si.edu/ The rights to all text and images in this publication are owned either by the contributing authors or by third parties. Fair use of materials is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify the content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. ISSN: 0077-5630 (online) AN UPDATED ACCOUNT OF THE VASCULAR FLORA OF THE ILES EPARSES (SOUTHWEST INDIAN OCEAN) VINCENT BOULLET1, JEAN HIVERT2 and LUC D.
    [Show full text]
  • Rethinking Easter Island's Ecological Catastrophe
    ARTICLE IN PRESS + MODEL Journal of Archaeological Science xx (2006) 1e18 http://www.elsevier.com/locate/jas Rethinking Easter Island’s ecological catastrophe Terry L. Hunt Department of Anthropology, University of Hawai’i-Manoa, 2424 Maile Way Honolulu, HI 96822, USA Received 25 June 2006; received in revised form 1 October 2006; accepted 2 October 2006 Abstract Rapa Nui (Easter Island) has become a paragon for prehistoric human induced ecological catastrophe and cultural collapse. A popular nar- rative recounts an obsession for monumental statuary that led to the island’s ecological devastation and the collapse of the ancient civilization. Scholars offer this story as a parable of today’s global environmental problems. In this paper, I review new and emerging Rapa Nui evidence, compare ecological and recently acquired palaeo-environmental data from the Hawaiian and other Pacific Islands, and offer some perspectives for the island’s prehistoric ecological transformation and its consequences. The evidence points to a complex historical ecology for the island; one best explained by a synergy of impacts, particularly the devastating effects of introduced rats (Rattus exulans). This perspective questions the simplistic notion of reckless over-exploitation by prehistoric Polynesians and points to the need for additional research. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Easter Island; Rapa Nui; Deforestation; Ecocide; Collapse; Rats; Rattus exulans; Invasive species ‘‘It ain’t what you don’t know that gets you into trouble. It’s archaeological records also reveals a more complex historical what you know for sure that just ain’t so.’’ Mark Twain ecology for the island; one best explained by a synergy of impacts, rather than simply the reckless over-exploitation by Easter Island (Rapa Nui) has become the paragon for pre- prehistoric Polynesians.
    [Show full text]
  • On Christmas Island. the Presence of Trypanosoma in Cats and Rats (From All Three Locations) and Leishmania
    Invasive animals and the Island Syndrome: parasites of feral cats and black rats from Western Australia and its offshore islands Narelle Dybing BSc Conservation Biology, BSc Biomedical Science (Hons) A thesis submitted to Murdoch University to fulfil the requirements for the degree of Doctor of Philosophy in the discipline of Biomedical Science 2017 Author’s Declaration I declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree at any tertiary education institution. Narelle Dybing i Statement of Contribution The five experimental chapters in this thesis have been submitted and/or published as peer reviewed publications with multiple co-authors. Narelle Dybing was the first and corresponding author of these publications, and substantially involved in conceiving ideas and project design, sample collection and laboratory work, data analysis, and preparation and submission of manuscripts. All publication co-authors have consented to their work being included in this thesis and have accepted this statement of contribution. ii Abstract Introduced animals impact ecosystems due to predation, competition and disease transmission. The effect of introduced infectious disease on wildlife populations is particularly pronounced on islands where parasite populations are characterised by increased intensity, infra-community richness and prevalence (the “Island Syndrome”). This thesis studied parasite and bacterial pathogens of conservation and zoonotic importance in feral cats from two islands (Christmas Island, Dirk Hartog Island) and one mainland location (southwest Western Australia), and in black rats from Christmas Island. The general hypothesis tested was that Island Syndrome increases the risk of transmission of parasitic and bacterial diseases introduced/harboured by cats and rats to wildlife and human communities.
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • The Biogeography of Large Islands, Or How Does the Size of the Ecological Theater Affect the Evolutionary Play
    The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly To cite this version: Egbert Giles Leigh, Annette Hladik, Claude Marcel Hladik, Alison Jolly. The biogeography of large islands, or how does the size of the ecological theater affect the evolutionary play. Revue d’Ecologie, Terre et Vie, Société nationale de protection de la nature, 2007, 62, pp.105-168. hal-00283373 HAL Id: hal-00283373 https://hal.archives-ouvertes.fr/hal-00283373 Submitted on 14 Dec 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE BIOGEOGRAPHY OF LARGE ISLANDS, OR HOW DOES THE SIZE OF THE ECOLOGICAL THEATER AFFECT THE EVOLUTIONARY PLAY? Egbert Giles LEIGH, Jr.1, Annette HLADIK2, Claude Marcel HLADIK2 & Alison JOLLY3 RÉSUMÉ. — La biogéographie des grandes îles, ou comment la taille de la scène écologique infl uence- t-elle le jeu de l’évolution ? — Nous présentons une approche comparative des particularités de l’évolution dans des milieux insulaires de différentes surfaces, allant de la taille de l’île de La Réunion à celle de l’Amé- rique du Sud au Pliocène.
    [Show full text]
  • S LA RÉUNION and ILES EPARSES
    Important Bird Areas in Africa and associated islands – La Réunion and Iles Eparses ■ LA RÉUNION AND ILES EPARSES MATTHIEU LE CORRE AND ROGER J. SAFFORD Réunion Cuckoo-shrike Coracina newtoni. (ILLUSTRATION: DAVE SHOWLER) GENERAL INTRODUCTION Mauritius is 824 m) and secondly, around the 201 km of coastline, reefs (20 km long) and islets are almost absent. Two very distinct territories, Ile de la Réunion, usually (and The climate is dominated by the south-east trade winds and by henceforth) known as La Réunion, and Iles Eparses, are considered tropical depressions. The mountains, especially in the east, are in this chapter, because they are both French dependencies in the extremely humid, most receiving 2,000–5,000 mm (but locally up Malagasy faunal region, and the latter is administered primarily to 9,000 mm) of rainfall annually; mean annual temperatures are from the former. However, general information is provided below below 16°C over a wide area, with frosts frequent in winter above separately. 2,000 m. For at least part of most days the slopes from around 1,500–2,500 m are shrouded in cloud. The leeward (western) ■ La Réunion lowlands are drier and hotter (less than 2,000 mm rainfall, annual La Réunion is a mountainous island covering 2,512 km² in the mean temperature 23–25°C). The wettest, hottest months are from tropical south-west Indian Ocean. It is the westernmost of the December to April, while September to November are driest, and Mascarene island chain, a volcanic archipelago which includes two June to August are coolest.
    [Show full text]
  • Changing Invaders: Trends of Gigantism in Insular Introduced Rats
    Environmental Conservation (2018) 45 (3): 203–211 C Foundation for Environmental Conservation 2018 doi:10.1017/S0376892918000085 Changing invaders: trends of gigantism in insular THEMATIC SECTION Humans and Island introduced rats Environments ALEXANDRA A.E. VAN DER GEER∗ Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Date submitted: 7 November 2017; Date accepted: 20 January 2018; First published online 14 March 2018 SUMMARY within short historical periods (Rowe-Rowe & Crafford 1992; Michaux et al. 2007;Renaudet al. 2013; Lister & Hall 2014). The degree and direction of morphological change in Additionally, invasive species may also alter the evolutionary invasive species with a long history of introduction pathway of native species by mechanisms such as niche are insufficiently known for a larger scale than the displacement, hybridization, introgression and predation (e.g. archipelago or island group. Here, I analyse data for 105 Mooney & Cleland 2001; Stuart 2014; van der Geer et al. island populations of Polynesian rats, Rattus exulans, 2013). The timescale and direction of evolution of invasive covering the entirety of Oceania and Wallacea to test rodents are, however, insufficiently known. Data on how whether body size differs in insular populations and, they evolve in interaction with native species are urgently if so, what biotic and abiotic features are correlated needed with the increasing pace of introductions today due to with it. All insular populations of this rat, except globalized transport: invasive rodent species are estimated to one, exhibit body sizes up to twice the size of their have already colonized more than 80% of the world’s island mainland conspecifics.
    [Show full text]
  • A Molecular Phylogeny and Classification of the Eleusininae with a New Genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271851457 A molecular phylogeny and classification of the Eleusininae with a new genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae) Article in Taxon · June 2015 DOI: 10.12705/643.5 CITATIONS READS 17 379 3 authors, including: Paul M. Peterson Konstantin Romaschenko Smithsonian Institution M.G. Kholodny Institute of Botany 446 PUBLICATIONS 2,908 CITATIONS 94 PUBLICATIONS 1,057 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: TRINIUS: Trinius, Carl Bernhard (1778-1844) Literature & Herbarium View project Revisions of Leptochloa (Poaceae) sensu lato View project All content following this page was uploaded by Konstantin Romaschenko on 16 July 2015. The user has requested enhancement of the downloaded file. TAXON 64 (3) • June 2015: 445–467 Peterson & al. • Phylogeny and classification of the Eleusininae A molecular phylogeny and classification of the Eleusininae with a new genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae) Paul M. Peterson,1 Konstantin Romaschenko1,2 & Yolanda Herrera Arrieta3 1 Smithsonian Institution, Department of Botany, National Museum of Natural History, Washington D.C. 20013-7012, U.S.A. 2 M.G. Kholodny Institute of Botany, National Academy of Sciences, Kiev 01601, Ukraine 3 Instituto Politécnico Nacional, CIIDIR Unidad Durango-COFAA, Durango, C.P. 34220, Mexico Author for correspondence: Paul M. Peterson, [email protected] ORCID: PMP, http://orcid.org/0000­0001­9405­5528; KR, http://orcid.org/0000­0002­7248­4193 DOI http://dx.doi.org/10.12705/643.5 Abstract The subtribe Eleusininae (Poaceae: Chloridoideae: Cynodonteae) is a diverse group containing about 212 species in 31 genera found primarily in low latitudes in Africa, Asia, Australia, and the Americas, and the classification among these genera and species is poorly understood.
    [Show full text]
  • Seabird Recovery and Vegetation Dynamics After Norway Rat Eradication at Tromelin Island, Western Indian Ocean Matthieu Le Corre, D
    Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean Matthieu Le Corre, D. K. Danckwerts, David Ringler, Matthieu Bastien, S. Orlowski, C. Morey Rubio, David Pinaud, Thierry Micol To cite this version: Matthieu Le Corre, D. K. Danckwerts, David Ringler, Matthieu Bastien, S. Orlowski, et al.. Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean. Biological Conservation, Elsevier, 2015, 185, pp.85-94. 10.1016/j.biocon.2014.12.015. hal- 01207081 HAL Id: hal-01207081 https://hal.archives-ouvertes.fr/hal-01207081 Submitted on 26 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean ⇑ M. Le Corre a, , D.K. Danckwerts a,b, D. Ringler a,d, M. Bastien a, S. Orlowski a, C. Morey Rubio a, D. Pinaud c, T. Micol d,e a Laboratoire ECOMAR, FRE3560, Université de La Réunion, INEE-CNRS, 97715 Saint Denis messag cedex 9, France b Department of Zoology and Entomology. Rhodes University, Grahamstown 6140, South Africa c CEBC, UMR7372, CNRS/Université de La Rochelle, 79360 Villiers en Bois, France d TAAF, Rue Gabriel Dejean, 97410 Saint-Pierre, Reunion e LPO, Fonderies Royales, 10 rue du Dr Pujos, 17305 Rochefort, France abstract Seabirds are notoriously sensitive to introduced mammalian predators and eradication programs have benefitted seabird populations and their habitats on numerous islands throughout the world.
    [Show full text]
  • Lizards on Newly Created Islands Independently and Rapidly Adapt in Morphology and Diet
    Lizards on newly created islands independently and rapidly adapt in morphology and diet Mariana Eloy de Amorima,b,1, Thomas W. Schoenerb,1, Guilherme Ramalho Chagas Cataldi Santoroc, Anna Carolina Ramalho Linsa, Jonah Piovia-Scottd, and Reuber Albuquerque Brandãoa aLaboratório de Fauna e Unidades de Conservação, Departamento de Engenharia Florestal, Universidade de Brasília, Brasilia DF, Brazil CEP 70910-900; bEvolution and Ecology Department, University of California, Davis, CA 95616; cDepartamento de Pós-Graduação em Zoologia, Instituto de Biologia, Universidade de Brasília, Brasilia DF, Brazil CEP 70910-900; and dSchool of Biological Sciences, Washington State University, Vancouver, WA 98686-9600 Contributed by Thomas W. Schoener, June 21, 2017 (sent for review December 31, 2016; reviewed by Raymond B. Huey and Dolph Schluter) Rapid adaptive changes can result from the drastic alterations study, because it was the most common lizard species in the area at humans impose on ecosystems. For example, flooding large areas the time of the field study. for hydroelectric dams converts mountaintops into islands and We evaluated the effects of isolation (actually, insularization) leaves surviving populations in a new environment. We report on diet and morphology of G. amarali populations on islands differences in morphology and diet of the termite-eating gecko formed by the Serra da Mesa reservoir. We collected data on Gymnodactylus amarali between five such newly created islands lizard diet and morphology on five islands, as well as five nearby and five nearby mainland sites located in the Brazilian Cerrado, a mainland areas, to evaluate the changes that occurred as a result biodiversity hotspot. Mean prey size and dietary prey-size breadth of insularization.
    [Show full text]
  • The Specific Vulnerability of Plant Biodiversity and Vegetation on Mediterranean Islands in the Face of Global Change Frederic Medail
    The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Frederic Medail To cite this version: Frederic Medail. The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change. Regional Environmental Change, Springer Verlag, 2017, 17 (6), pp.1775-1790. 10.1007/s10113-017-1123-7. hal-01681626 HAL Id: hal-01681626 https://hal.archives-ouvertes.fr/hal-01681626 Submitted on 7 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reg Environ Change (2017) 17:1775–1790 DOI 10.1007/s10113-017-1123-7 REVIEW ARTICLE The specific vulnerability of plant biodiversity and vegetation on Mediterranean islands in the face of global change Fre´de´ric Me´dail1 Received: 5 October 2016 / Accepted: 3 February 2017 / Published online: 23 March 2017 Ó Springer-Verlag Berlin Heidelberg 2017 Abstract The numerous Mediterranean islands ([10,000) refugia’ to ensure the long-term preservation of coastal are very important from a biodiversity point of view, both plant biodiversity. They also represent fascinating ecolog- in term of plant species (numerous endemics, presence of ical systems to disentangle the role of environmental versus ‘climate relicts’) and of ecosystems’ assemblage.
    [Show full text]