UC San Francisco Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC San Francisco Electronic Theses and Dissertations UCSF UC San Francisco Electronic Theses and Dissertations Title Resolving the Conflict between BCS and BDDCS for the Advancement of the Drug Discovery, Development, and Regulatory Processes Permalink https://escholarship.org/uc/item/9wc7754r Author Larregieu, Caroline A. Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California ii I dedicate this to my parents, Joyce and Habeeb Zayne, who pushed me to strive to be the most independent, self-sufficient, and intellectual version of myself, and my husband, Vibs, without whom I simply could not do this. iii ACKNOWLEDGMENTS I feel extremely honored and privileged to be the 52nd doctoral student to have graduated under Dr. Leslie Z. Benet. For someone as accomplished as Les, it never ceases to amaze me how humble, approachable, and open-minded he is. I admire his ability to recognize raw talents and polish them to their full potential. Even though he can be extremely busy with his sea of commitments, he has always happily made himself available whenever I needed his guidance. I cannot express enough my deepest gratitude to Les for his nurturing mentorship, his unflailing support, and his unshakable confidence in me. I am grateful to have worked with numerous current and past students and fellows of the Benet lab, including Dr. Sarah B. Shugarts and Dr. Maribel Reyes for easing my transition into the lab; Dr. Hideaki Okochi for his tremendous breadth of knowledge, guidance, and help; Dr. Fabio Broccatelli for his brilliant collaborative work and stimulating discussions; Dr. Jason Baik for his insightful, intellectual, and philosophical balance; Alan R. Wolfe for voluntarily helping to keep lab operations smooth and in compliance; and Frances M. Peterson for being a fantastic support system and confidante. I would like to express my sincere appreciation to the entire Pharmaceutical Sciences and Pharmacogenomics (PSPG) family, including Dr. Kathleen M. Giacomini and Dr. Xin Chen for serving on my Thesis and Oral Qualifying Examination Committees; Dr. Deanna L. Kroetz and Dr. Laura Bull for serving on my Oral Qualifying Examination Committee; Dr. Kareen Riviere for being my senior mentor when I first joined the program; Dr. Lindsay M. Reynolds for being my favorite classmate and iv kindred spirit; and Debbie Acoba-Idlebi for always being available to counsel on graduate school and personal issues. A special mention must be made of my “sisters” of over 20 years – Sanola A. Daley, Rebekah L. Francis, Conniel A. Malek, Shushanna C. Mignott, and Dr. Cheryl S. Stewart – who never ceased to inspire and motivate me during this endeavor. It has meant the world to me to have the unconditional love and support of my family throughout this journey. I am indebted to my parents, Joyce and Habeeb Zayne, who have sacrificed beyond words can describe to provide me the best opportunities in life. I must also express my heartfelt love and appreciation for the rest of my family – notably my aunt, Jasmine Burke; my mother-in-law, Dr. Ranjna Jindal; my father-in-law, Dr. Vinod K. Jindal; my aunt-in-law, Asha Mansinghka; and my uncle-in-law, Dr. Surendra K. Mansinghka. Finally, I simply could not have arrived at this milestone without the unwavering support and relentless cheerleading of my anchor, my rock, my sanity, my best friend, my soul mate, and my husband – Vibhav “Vibs” Jindal – who I proudly share this achievement with. v ABSTRACT Drug permeability is accepted as a screening tool for determining intestinal absorption via the Biopharmaceutics Classification System (BCS) during the drug development and regulatory approval processes. Currently, predicting clinically significant drug interactions during drug development is a known challenge for the pharmaceutical industry and regulatory agencies. The Biopharmaceutics Drug Disposition Classification System (BDDCS), a modification of BCS utilizing drug metabolism instead of intestinal permeability, predicts drug disposition and potential drug-drug interactions in the intestine, the liver, and most recently the brain. While correlations between BCS and BDDCS have been observed with drug permeability, discrepancies in drug classification between the two systems using different permeability models, accepted as surrogate models for demonstrating human intestinal permeability by the FDA, have been noted. This project examines the role of drug permeability in drug absorption and drug metabolism and recommends the suitability of these models for predicting BDDCS and BCS classifications. This project evaluates methodologies that can lead to recommendations for facilitating the drug discovery, development, and regulatory approval processes. vi TABLE OF CONTENTS ACKNOWLEDGMENTS................................................................................................iv ABSTRACT.......................................................................................................................vi LIST OF TABLES............................................................................................................xi LIST OF FIGURES.........................................................................................................xii CHAPTER 1: UNDERSTANDING THE DIFFERENCES BETWEEN BCS AND BDDCS................................................................................................................................1 1.1 THE BIOPHARMACEUTICS CLASSIFICATION SYSTEM (BCS)...............................1 1.2 METHODS FOR ASSESSING BCS CLASSIFICATION................................................3 1.3 THE BIOPHARMACEUTICS DRUG DISPOSITION CLASSIFICATION SYSTEM (BDDCS)......................................................................................................................4 1.4 DISCREPANCIES BETWEEN CLASSIFYING DRUGS UNDER BCS AND BDDCS...8 1.5 GOALS AND HYPOTHESES.......................................................................................9 1.6 REFERENCES.............................................................................................................11 CHAPTER 2: INVESTIGATING AND IMPROVING IN SILICO AND IN VITRO PREDICTION MODELS THAT USE CACO-2 AS A SURROGATE FOR HUMAN INTESTINAL PERMEABILITY..................................................................................14 2.1 INTRODUCTION........................................................................................................14 2.2 IDENTIFYING COMPOUNDS FOR WHICH CACO-2 MAY POORLY PREDICT HUMAN INTESTINAL PERMEABILITY RATE MEASUREMENTS.........................17 2.2.1 Substrates of Highly Expressed Human Small Intestinal Transporters: Peptide, Amino Acid, and Nucleoside Transporters......................................................17 vii TABLE OF CONTENTS (continued) 2.2.2 Differences in the Paracellular Junctions between Caco-2 and the Human Intestine do not Explain the Inaccurate In Vitro–In Vivo Permeability Predictions by Caco-2 for Hydrophilic Compounds........................................25 2.3 THE NEED FOR LARGER, SINGLE-SOURCE CACO-2 PERMEABILITY RATE DATASETS.................................................................................................................28 2.4 IN SILICO WORK CONSIDERATIONS......................................................................32 2.5 IN VITRO SCREENING CONSIDERATIONS..............................................................41 2.6 REGULATORY CONSIDERATIONS..........................................................................43 2.7 CONCLUSIONS..........................................................................................................45 2.8 ACKNOWLEDGMENT...............................................................................................47 2.9 REFERENCES.............................................................................................................48 CHAPTER 3: DISTINGUISHING BETWEEN THE PERMEABILITY RELATIONSHIPS WITH ABSORPTION AND METABOLISM TO IMPROVE BCS AND BDDCS PREDICTIONS...............................................................................67 3.1 INTRODUCTION........................................................................................................67 3.2 METHODS..................................................................................................................70 3.2.1 Compilation of Permeability Rate Datasets.....................................................70 3.2.2 Correlations of BCS and BDDCS with Drug Permeability Rate Measures..........................................................................................................74 3.3 RESULTS....................................................................................................................81 viii TABLE OF CONTENTS (continued) 3.3.1 Comparison of BCS and BDDCS Classifications Using Human Intestinal Permeability Rate Measures............................................................................81 3.3.2 Comparison of BCS and BDDCS Classifications Using Caco-2 Permeability Rate Measures..................................................................................................85 3.3.3 Comparison of BCS and BDDCS Classifications Using PAMPA Permeability Rate Measures..................................................................................................91 3.4 DISCUSSION..............................................................................................................98 3.4.1 Use of BDDCS in the BCS FDA Guidance
Recommended publications
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Ovid MEDLINE(R)
    Supplementary material BMJ Open Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to September 16, 2019> # Searches Results 1 exp Hypertension/ 247434 2 hypertens*.tw,kf. 420857 3 ((high* or elevat* or greater* or control*) adj4 (blood or systolic or diastolic) adj4 68657 pressure*).tw,kf. 4 1 or 2 or 3 501365 5 Sex Characteristics/ 52287 6 Sex/ 7632 7 Sex ratio/ 9049 8 Sex Factors/ 254781 9 ((sex* or gender* or man or men or male* or woman or women or female*) adj3 336361 (difference* or different or characteristic* or ratio* or factor* or imbalanc* or issue* or specific* or disparit* or dependen* or dimorphism* or gap or gaps or influenc* or discrepan* or distribut* or composition*)).tw,kf. 10 or/5-9 559186 11 4 and 10 24653 12 exp Antihypertensive Agents/ 254343 13 (antihypertensiv* or anti-hypertensiv* or ((anti?hyperten* or anti-hyperten*) adj5 52111 (therap* or treat* or effective*))).tw,kf. 14 Calcium Channel Blockers/ 36287 15 (calcium adj2 (channel* or exogenous*) adj2 (block* or inhibitor* or 20534 antagonist*)).tw,kf. 16 (agatoxin or amlodipine or anipamil or aranidipine or atagabalin or azelnidipine or 86627 azidodiltiazem or azidopamil or azidopine or belfosdil or benidipine or bepridil or brinazarone or calciseptine or caroverine or cilnidipine or clentiazem or clevidipine or columbianadin or conotoxin or cronidipine or darodipine or deacetyl n nordiltiazem or deacetyl n o dinordiltiazem or deacetyl o nordiltiazem or deacetyldiltiazem or dealkylnorverapamil or dealkylverapamil
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]
  • Drugs for Primary Prevention of Atherosclerotic Cardiovascular Disease: an Overview of Systematic Reviews
    Supplementary Online Content Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. Published online April 27, 2016. doi:10.1001/jamacardio.2016.0218. eAppendix 1. Search Documentation Details eAppendix 2. Background, Methods, and Results of Systematic Review of Combination Drug Therapy to Evaluate for Potential Interaction of Effects eAppendix 3. PRISMA Flow Charts for Each Drug Class and Detailed Systematic Review Characteristics and Summary of Included Systematic Reviews and Meta-analyses eAppendix 4. List of Excluded Studies and Reasons for Exclusion This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 09/28/2021 eAppendix 1. Search Documentation Details. Database Organizing body Purpose Pros Cons Cochrane Cochrane Library in Database of all available -Curated by the Cochrane -Content is limited to Database of the United Kingdom systematic reviews and Collaboration reviews completed Systematic (UK) protocols published by by the Cochrane Reviews the Cochrane -Only systematic reviews Collaboration Collaboration and systematic review protocols Database of National Health Collection of structured -Curated by Centre for -Only provides Abstracts of Services (NHS) abstracts and Reviews and Dissemination structured abstracts Reviews of Centre for Reviews bibliographic
    [Show full text]
  • Interactions Between Antihypertensive Drugs and Food B
    11. INTERACTIONS:01. Interacción 29/11/12 14:38 Página 1866 Nutr Hosp. 2012;27(5):1866-1875 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318 Revisión Interactions between antihypertensive drugs and food B. Jáuregui-Garrido1 and I. Jáuregui-Lobera2 1Department of Cardiology. University Hospital Virgen del Rocío. Seville. Spain. 2Bromatology and Nutrition. Pablo de Olavide University. Seville. Spain. Abstract INTERACCIONES ENTRE FÁRMACOS ANTIHIPERTENSIVOS Y ALIMENTOS Objective: A drug interaction is defined as any alter- ation, pharmacokinetics and/or pharmacodynamics, Resumen produced by different substances, other drug treatments, dietary factors and habits such as drinking and smoking. Objetivo: la interacción de medicamentos se define como These interactions can affect the antihypertensive drugs, cualquier alteración, farmacocinética y/o farmacodiná- altering their therapeutic efficacy and causing toxic mica, producida por diferentes sustancias, otros tratamien- effects. The aim of this study was to conduct a review of tos, factores dietéticos y hábitos como beber y fumar. Estas available data about interactions between antihyperten- interacciones pueden afectar a los fármacos antihipertensi- sive agents and food. vos, alterando su eficacia terapéutica y causando efectos Methods: The purpose of this review was to report an tóxicos. El objetivo de este estudio fue realizar una revisión update of main findings with respect to the interactions de los datos disponibles acerca de las interacciones entre los between food and antihypertensive drugs
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev
    Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM GADOCOLETICUM 280776-87-6 ABAFUNGIN 129639-79-8 ACIDUM LIDADRONICUM 63132-38-7 ABAMECTIN 65195-55-3 ACIDUM SALCAPROZICUM 183990-46-7 ABANOQUIL 90402-40-7 ACIDUM SALCLOBUZICUM 387825-03-8 ABAPERIDONUM 183849-43-6 ACIFRAN 72420-38-3 ABARELIX 183552-38-7 ACIPIMOX 51037-30-0 ABATACEPTUM 332348-12-6 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABETIMUSUM 167362-48-3 ACIVICIN 42228-92-2 ABIRATERONE 154229-19-3 ACLANTATE 39633-62-0 ABITESARTAN 137882-98-5 ACLARUBICIN 57576-44-0 ABLUKAST 96566-25-5 ACLATONIUM NAPADISILATE 55077-30-0 ABRINEURINUM 178535-93-8 ACODAZOLE 79152-85-5 ABUNIDAZOLE 91017-58-2 ACOLBIFENUM 182167-02-8 ACADESINE 2627-69-2 ACONIAZIDE 13410-86-1 ACAMPROSATE
    [Show full text]
  • Stereospecific Pharmacokinetics and Pharmacodynamics of Beta- Adrenergic Blockers in Humans
    Stereospecific Pharmacokinetics and Pharmacodynamics of Beta- Adrenergic Blockers in Humans Reza Mehvar School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA Dion R. Brocks College of Pharmacy, Western University of Health Sciences, Pomona, California, USA Received May 18th, 2001, Revised July 5th, 2001, Accepted July 5th, 2001 predict differences among patients in pharmacologic Abstract The beta-blockers comprise a group of drugs responses to these drugs. that are mostly used to treat cardiovascular disorders such as hypertension, cardiac arrhythmia, or ischemic heart disease. Each of these drugs possesses at least one INTRODUCTION chiral center, and an inherent high degree of enantiose- In clinical practice, the β-adrenergic antagonists are an β lectivity in binding to the -adrenergic receptor. For extremely important class of drugs due to their high beta-blockers with a single chiral center, the (–) enanti- prevalence of use. Many have been synthesized and are omer possesses much greater affinity for binding to the commonly used systemically in the treatment of condi- β -adrenergic receptors than antipode. The enantiomers tions including hypertension, cardiac arrhythmia, of some of these drugs possess other effects, such as angina pectoris, and acute anxiety, and topically for antagonism at alpha-adrenergic receptors or Class III open angle glaucoma. With respect to their clinical antiarrhythmic activity. However, these effects gener- utility, the beta-blockers are normally distinguished ally display a lower level of stereoselectivity than the based on their selectivity for beta-receptors. The nonse- beta-blocking activity. Except for timolol, all of these lective beta-blockers, including propranolol, oxpre- drugs used systemically are administered clinically as nolol, pindolol, nadolol, timolol and labetalol, each the racemate.
    [Show full text]
  • Pharmacological Properties of Beta-Adrenoceptor Blocking Drugs
    Journal of Clinical and Basic Cardiology An Independent International Scientific Journal Journal of Clinical and Basic Cardiology 1998; 1 (1), 5-9 Pharmacological properties of beta-adrenoceptor blocking drugs Borchard U Homepage: www.kup.at/jcbc Online Data Base Search for Authors and Keywords Indexed in Chemical Abstracts EMBASE/Excerpta Medica Krause & Pachernegg GmbH · VERLAG für MEDIZIN und WIRTSCHAFT · A-3003 Gablitz/Austria REVIEWS β-blocking drugs J Clin Bas Cardiol 1998; 1: 5 Pharmacological properties of β-adrenoceptor blocking drugs U. Borchard β-adrenoceptor blocking drugs are widely used for the treat- Pharmacodynamic properties ment of cardiovascular diseases such as arterial hypertension, β β coronary heart disease and supraventricular and ventricular In many organs there is a coexistence of 1- and 2-receptors (Table 1). For example, in the normal human heart about 80% tachyarrhythmias. They may also be beneficial in the hyper- β β β kinetic heart syndrome, hypotensive circulatory disorders, of the -receptors are of the 1-subtype. In heart failure 1- receptors are down-regulated so that a relatively higher pro- portal hypertension, hyperthyroidism, tremour, migraine, β anxiety, psychosomatic disorders or glaucoma. In recent years portion of 2-receptors can be measured [3]. The physiological and therapeutic actions of a β-blocker depend on the actual even patients with heart failure have been successfully treated β β with β-blockers initially given at very low doses. density of 1- and/or 2-receptors in the different organs, on β A great number of β-adrenoceptor blocking drugs are now the affinity of the -blocker and on the local drug concen- available for clinical use which differ widely with respect to tration.
    [Show full text]
  • 2000 Dialysis of Drugs
    2000 Dialysis of Drugs PROVIDED AS AN EDUCATIONAL SERVICE BY AMGEN INC. I 2000 DIAL Dialysis of Drugs YSIS OF DRUGS Curtis A. Johnson, PharmD Member, Board of Directors Nephrology Pharmacy Associates Ann Arbor, Michigan and Professor of Pharmacy and Medicine University of Wisconsin-Madison Madison, Wisconsin William D. Simmons, RPh Senior Clinical Pharmacist Department of Pharmacy University of Wisconsin Hospital and Clinics Madison, Wisconsin SEE DISCLAIMER REGARDING USE OF THIS POCKET BOOK DISCLAIMER—These Dialysis of Drugs guidelines are offered as a general summary of information for pharmacists and other medical professionals. Inappropriate administration of drugs may involve serious medical risks to the patient which can only be identified by medical professionals. Depending on the circumstances, the risks can be serious and can include severe injury, including death. These guidelines cannot identify medical risks specific to an individual patient or recommend patient treatment. These guidelines are not to be used as a substitute for professional training. The absence of typographical errors is not guaranteed. Use of these guidelines indicates acknowledgement that neither Nephrology Pharmacy Associates, Inc. nor Amgen Inc. will be responsible for any loss or injury, including death, sustained in connection with or as a result of the use of these guidelines. Readers should consult the complete information available in the package insert for each agent indicated before prescribing medications. Guides such as this one can only draw from information available as of the date of publication. Neither Nephrology Pharmacy Associates, Inc. nor Amgen Inc. is under any obligation to update information contained herein. Future medical advances or product information may affect or change the information provided.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • Control of Hypertension in Patients with Chronic Renal Failure
    REVIEW ARTICLE Control of hypertension in patients with chronic renal failure ROBERT J. HEYKA, MD AND DONALD G. VIDT, MD • Hypertension related to renal parenchymal disease is the most common cause of secondary hyperten- sion. Poor control of renal hypertension is associated with an increased risk for progressive atherosclerosis and progressive renal failure. This review discusses the prevalence, significance, and pathophysiology of renal hypertension. Treatment options, both dietary and pharmacologic, are reviewed. Special emphasis is given to important pharmacokinetic changes in chronic renal failure. Treatment of hypertensive urgen- cies and emergencies in this population is also reviewed. • INDEX TERMS: HYPERTENSION; KIDNEY DISEASES • CLEVE CLIN J MED 1989; 56:65-76 YPERTENSION and chronic renal failure PREVALENCE AND VARIATION may be related in one of two ways. First, es- sential or idiopathic hypertension may cause Chronic renal disease is the most common cause of renal parenchymal damage. The kidney may secondary hypertension accounting for 2.5% to 5% of all bHe more victim than culprit in this situation. It is impor- hypertension. Renal parenchymal hypertension is more tant to break the cycle of idiopathic hypertension with prevalent than the hypertension due to renovascular adequate control of the hypertension, thus preventing disease or endocrine abnormalities such as Cushing's progressive renal damage. Second, chronic renal failure syndrome, primary hyperaldosteronism, or pheochro- is frequently accompanied by hypertension. Here the mocytoma, which account for 0.5% to 3% of all hyper- kidney may be more the culprit but is also a victim of its tension.1 own dysfunction. Hypertension secondary to chronic A recent study compared 3,090 determinations of renal failure presents certain unique challenges to the glomerular filtration rate (GFR) using the isotope clinician.
    [Show full text]