Earthquake Hazards Program Coordinator U.S

Total Page:16

File Type:pdf, Size:1020Kb

Earthquake Hazards Program Coordinator U.S Proceedings of the 7th U.S. / Japan Natural Resources (UJNR) Panel on Earthquake Research Compiled by Shane T. Detweiler and William L. Ellsworth Open-File Report 2008-1335 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Detweiler, Shane T., and Ellsworth, William L., 2008, Compilers, Proceedings of the 7th U.S. / Japan Natural Resources (UJNR) Panel on Earthquake Research: U.S. Geological Survey Open-File Report 2008-1335, 99 p. [http://pubs.usgs.gov/of/2008/1335/]. The abstracts in this volume are published as they were submitted. Abstracts authored entirely by non-USGS authors do not represent the views or position of the U.S. Geological Survey or the U.S. government and are published solely as part of the Proceedings volume. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Proceedings of the 7th U.S. / Japan Natural Resources (UJNR) Panel on Earthquake Research Seattle, Wash. USA 27-30 Oct. 2008 Compiled by Shane T. Detweiler and William L. Ellsworth This page intentionally left blank ii UJNR Participants Dr. Ryosuke Ando Geological Survey of Japan, AIST [email protected] Dr. David Applegate (U.S.-side Chairman) Earthquake Hazards Program Coordinator U.S. Geological Survey [email protected] Dr. Rick Benson Incorporated Research Institutions for Seismology (IRIS) [email protected] Dr. Greg Beroza Stanford University [email protected] Dr. Rich Briggs U.S. Geological Survey [email protected] Dr. Jody Bourgeois University of Washington [email protected] Dr. Tom Brocher U.S. Geological Survey [email protected] Dr. Ikuo Cho Geological Survey of Japan, AIST [email protected] Dr. Ken Creager University of Washington [email protected] Mr. Shane Detweiler (U.S.-side Secretary) U.S. Geological Survey [email protected] Dr. James Dieterich University of California, Riverside [email protected] iii Dr. William Ellsworth U.S. Geological Survey [email protected] Dr. Geoff Ely University of Southern California [email protected] Dr. Joan Gomberg U.S. Geological Survey [email protected] Dr. Gavin Hayes U.S. Geological Survey [email protected] Dr. Steve Hickman U.S. Geological Survey [email protected] Dr. David Hill U.S. Geological Survey [email protected] Dr. Naoshi Hirata Earthquake Research Institute [email protected] Dr. Hitoshi Hirose National Research Institute for Earth Science and Disaster Prevention [email protected] Dr. Shigeki Horiuchi National Research Institute for Earth Science and Disaster Prevention [email protected] Dr. Heidi Houston University of Washington [email protected] Dr. Tetsuro Imakiire Geographical Survey Institute [email protected] iv Dr. Miaki Ishii Harvard University [email protected] Dr. Kaj Johnson Indiana University [email protected] Dr. Hisanori Kimura National Research Institute for Earth Science and Disaster Prevention [email protected] Dr. Kenji Kinoshita (Japan-side Chairman Representative) Deputy Director-General Geographical Survey Institute [email protected] Dr. Bill Leith U.S. Geological Survey [email protected] Dr. Rowena Lohman Cornell University [email protected] Ms. Elizabeth Martin University of Washington [email protected] Dr. Hiroshi Masaharu Geographical Survey Institute [email protected] Dr. Norio Matsumoto Geological Survey of Japan, AIST [email protected] Dr. Jeff McGuire Woods Hole Oceanographic Institution [email protected] Dr. Meghan Miller President, UNAVCO Inc. [email protected] v Dr. Takuya Nishimura Geographical Survey Institute [email protected] Dr. Shin-ichi Noguchi National Research Institute for Earth Science and Disaster Prevention [email protected] Dr. Kazushige Obara National Research Institute for Earth Science and Disaster Prevention [email protected] Dr. Susan Owen Jet Propulsion Laboratory [email protected] Dr. Garry Rogers Natural Resources Canada [email protected] Dr. Justin Rubinstein U.S. Geological Survey [email protected] Dr. Makoto Saito Japan Meteorological Agency [email protected] Dr. Hiroshi P. Sato Geographical Survey Institute [email protected] Dr. David Schmidt University of Oregon [email protected] Dr. David Shelly U.S. Geological Survey [email protected] Dr. Brian Sherrod U.S. Geological Survey [email protected] Dr. Bunichiro Shibazaki Building Research Institute vi [email protected] Dr. Bridget Smith-Konter University of Texas, El Paso [email protected] Dr. Bill Steele University of Washington [email protected] Dr. Tetsuya Takeda National Research Institute for Earth Science and Disaster Prevention [email protected] Dr. Wayne Thatcher U.S. Geological Survey [email protected] Dr. Mikio Tobita Geographical Survey Institute [email protected] Dr. Shinji Toda Geological Survey of Japan, AIST [email protected] Dr. John Vidale University of Washington [email protected] Dr. Charles Wicks U.S. Geological Survey [email protected] Dr. Eva Zanzerkia National Science Foundation [email protected] vii This page intentionally left blank viii AGENDA 7th UJNR Earthquake Research Panel Meeting October 27-30, 2008 University of Washington Urban Horticultural Center & Greater Seattle Field Trip Monday 27 October 2008 0800 Registration 0845 Meet at bus for field trip “Evidence of an active Seattle Fault from Alki Pt. to Lk. Sammamish” 1230 Stop for lunch 1730 Return to hotel 1800 Dinner on own Tuesday 28 October 2008 0715 Breakfast on own 0815 Welcoming Remarks by Panel Co-Chairs David Applegate and Kazuo Komaki Session I- Session Chairs Hiroshi Masaharu and Meghan Miller 0830 Hiroshi Masaharu “New Activities and Role of the Coordinating Committee for Earthquake Prediction” 0850 Eva Zanzerkia “Earth Sciences at the National Science Foundation: Understanding Earthquake Processes and Hazards Though Science, Facilities and Computation” 0910 Naoshi Hirata “Japanese new earthquake research programs : new comprehensive and basic policy for the promotion of seismic research, and new research program for prediction of earthquake and volcanic eruption” 0930 Meghan Miller “Plate Boundary Observatory – Integrated geodetic networks for observing fault deformation mechanisms across the temporal spectrum” 0950 Shinji Toda “Recent destructive inland earthquakes off major active faults: Implications for future updates of the seismic hazard map in Japan” ________________________________ 1010 Break ________________________________ 1030 Session II- Session Chairs Craig Weaver and Ikuo Cho Tom Brocher “Recent Science on the Hayward Fault” ix 1050 Ikuo Cho “Physically-based approach to long-term forecasts of earthquakes on active faults: Evaluation of stress triggering effects” 1110 Jim Dieterich “Characteristics of Earthquake Occurrence and Rupture Propagation in Fault Systems” 1130 Craig Weaver “Seattle Urban Seismic Hazard Maps: Detailed ground shaking estimates in the urban environment. Who Cares?” (talk given by Joan Gomberg) ________________________________ 1150 Lunch ________________________________ 1310 Session III– Session Chairs Shigeki Horiuchi and Jeff McGuire Geoff Ely “Large-scale dynamic earthquake rupture simulations for southern California” 1330 Shigeki Horiuchi “Earthquake Early Warning in Japan” 1350 Kenji Kinoshita “GSI's urgent countermeasure activities against earthquake disaster” 1410 Jeff McGuire “The potential for seafloor based earthquake early warning in subduction zones” 1430 Makoto Saito “Earthquake Information for Disaster Mitigation in Japan” ________________________________ 1450 Break ________________________________ 1510 Session IV- Session Chairs Hisanori Kimura and Bill Ellsworth Steve Hickman “Structure, composition and mechanical behavior of the San Andreas Fault in central California: Recent results from SAFOD downhole measurements and core analyses” 1530 Hisanori Kimura “Detailed distribution and activity of small repeating earthquakes at the Kanto region, central Japan” 1550 Kaj Johnson “What can we learn about frictional properties of faults from postseismic earthquake studies?” 1610 Bill Ellsworth “Micro-, nano- and picoearthquakes: implications for fault friction and fault mechanics” 1630 Miaki Ishii “Monitoring Rupture Process of Giant Earthquakes Using the Japanese Hi-net Array” 1650 Greg Beroza “Strong Ground Motion Prediction Using the Ambient Seismic Field” 1710 Introduction to Posters, short presentations by: Chuck Wicks, “Modeling the slip distribution and fault geometry of the February 21, 2008 Mw 6.0 Wells Nevada Earthquake using InSAR” x Rick Benson “The IRIS DMC: Global Real-Time Collection and Distribution of Seismological Data and Products” Headquarters for Earthquake Research Promotion “National seismic hazard maps for Japan (2008)” Sato et al. “Crustal movements detected by seafloor geodetic observation” Fuyuki Hirose “Anomalous depth distribution of deep low-frequency earthquakes at the northeast Tokai
Recommended publications
  • New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement
    Bulletin of the Seismological Society of America, Vol. 84, No. 4, pp. 974-1002, August 1994 New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement by Donald L. Wells and Kevin J. Coppersmith Abstract Source parameters for historical earthquakes worldwide are com­ piled to develop a series of empirical relationships among moment magnitude (M), surface rupture length, subsurface rupture length, downdip rupture width, rupture area, and maximum and average displacement per event. The resulting data base is a significant update of previous compilations and includes the ad­ ditional source parameters of seismic moment, moment magnitude, subsurface rupture length, downdip rupture width, and average surface displacement. Each source parameter is classified as reliable or unreliable, based on our evaluation of the accuracy of individual values. Only the reliable source parameters are used in the final analyses. In comparing source parameters, we note the fol­ lowing trends: (1) Generally, the length of rupture at the surface is equal to 75% of the subsurface rupture length; however, the ratio of surface rupture length to subsurface rupture length increases with magnitude; (2) the average surface dis­ placement per event is about one-half the maximum surface displacement per event; and (3) the average subsurface displacement on the fault plane is less than the maximum surface displacement but more than the average surface dis­ placement. Thus, for most earthquakes in this data base, slip on the fault plane at seismogenic depths is manifested by similar displacements at the surface. Log-linear regressions between earthquake magnitude and surface rupture length, subsurface rupture length, and rupture area are especially well correlated, show­ ing standard deviations of 0.25 to 0.35 magnitude units.
    [Show full text]
  • Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault Eileen L
    Masthead Logo Smith ScholarWorks Geosciences: Faculty Publications Geosciences 3-2012 Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault Eileen L. Evans Harvard University John P. Loveless Harvard University, [email protected] Brendan J. Meade Harvard University Follow this and additional works at: https://scholarworks.smith.edu/geo_facpubs Part of the Geology Commons Recommended Citation Evans, Eileen L.; Loveless, John P.; and Meade, Brendan J., "Geodetic Constraints on San Francisco Bay Area Fault Slip Rates and Potential Seismogenic Asperities on the Partially Creeping Hayward Fault" (2012). Geosciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/geo_facpubs/21 This Article has been accepted for inclusion in Geosciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B03410, doi:10.1029/2011JB008398, 2012 Geodetic constraints on San Francisco Bay Area fault slip rates and potential seismogenic asperities on the partially creeping Hayward fault Eileen L. Evans,1 John P. Loveless,1,2 and Brendan J. Meade1 Received 28 March 2011; revised 17 November 2011; accepted 31 January 2012; published 31 March 2012. [1] The Hayward fault in the San Francisco Bay Area (SFBA) is sometimes considered unusual among continental faults for exhibiting significant aseismic creep during the interseismic phase of the seismic cycle while also generating sufficient elastic strain to produce major earthquakes. Imaging the spatial variation in interseismic fault creep on the Hayward fault is complicated because of the interseismic strain accumulation associated with nearby faults in the SFBA, where the relative motion between the Pacific plate and the Sierra block is partitioned across closely spaced subparallel faults.
    [Show full text]
  • Earthquake Hazard
    SUB-SECTION 4G.2 PUYALLUP TRIBE ALL HAZARD MITIGATION PLAN EARTHQUAKE HAZARD Table of Contents TABLE OF CONTENTS ............................................................................................... 1 IDENTIFICATION DESCRIPTION ................................................................................ 2 DEFINITION ............................................................................................................. 2 TYPES .................................................................................................................... 2 SECONDARY HAZARDS: ................................................................................................ 3 PROFILE ................................................................................................................... 5 LOCATION AND EXTENT ............................................................................................... 5 VULNERABILITY ....................................................................................................... 15 IMPACTS ............................................................................................................... 16 RESOURCE DIRECTORY .......................................................................................... 24 REGIONAL ............................................................................................................. 24 NATIONAL ............................................................................................................. 24 ENDNOTES ............................................................................................................
    [Show full text]
  • I Final Technical Report United States Geological Survey National
    Final Technical Report United States Geological Survey National Earthquake Hazards Reduction Program - External Research Grants Award Number 08HQGR0140 Third Conference on Earthquake Hazards in the Eastern San Francisco Bay Area: Science, Hazard, Engineering and Risk Conference Dates: October 22nd-26th, 2008 Location: California State University, East Bay Principal Investigator: Mitchell S. Craig Department of Earth and Environmental Sciences California State University, East Bay Submitted March 2010 Summary The Third Conference on Earthquake Hazards in the Eastern San Francisco Bay Area was held October 22nd-26th, 2008 at California State University, East Bay. The conference included three days of technical presentations attended by over 200 participants, a public forum, two days of field trips, and a one-day teacher training workshop. Over 100 technical presentations were given, including oral and poster presentations. A printed volume containing the conference program and abstracts of presentations (attached) was provided to attendees. Participants included research scientists, consultants, emergency response personnel, and lifeline agency engineers. The conference provided a rare opportunity for professionals from a wide variety of disciplines to meet and discuss common strategies to address region-specific seismic hazards. The conference provided participants with a comprehensive overview of the vast amount of new research that has been conducted and new methods that have been employed in the study of East Bay earthquake hazards since the last East Bay Earthquake Conference was held in 1992. Topics of presentations included seismic and geodetic monitoring of faults, trench-based fault studies, probabilistic seismic risk analysis, earthquake hazard mapping, and models of earthquake rupture, seismic wave propagation, and ground shaking.
    [Show full text]
  • Water Supply Forum Resiliency Project, Water Quality Assessment
    Water Supply Forum Regional Water Supply Resiliency Project Water Quality Resiliency Assessment Technical Memorandum Snohomish, King, and Pierce Counties, Washington May 6, 2016 This page is intentionally left blank. Water Quality Resiliency Assessment Contents 1.0 Introduction ............................................................................................................ 1 1.1 Description of Risk ....................................................................................................... 1 1.2 Objectives .................................................................................................................... 1 2.0 Methodology .......................................................................................................... 1 2.1 Multibarrier Approach ................................................................................................... 1 2.2 Risk Event Prioritization ............................................................................................... 3 3.0 Results .................................................................................................................. 4 3.1 Risk Event Prioritization ............................................................................................... 4 3.2 Mitigation Measures ..................................................................................................... 6 4.0 Detailed Review of Risk Events ........................................................................... 11 4.1 Wildfire ........................................................................................................................11
    [Show full text]
  • Diverse Rupture Modes for Surface-Deforming Upper Plate Earthquakes in the Southern Puget Lowland of Washington State
    Diverse rupture modes for surface-deforming upper plate earthquakes in the southern Puget Lowland of Washington State Alan R. Nelson1,*, Stephen F. Personius1, Brian L. Sherrod2, Harvey M. Kelsey3, Samuel Y. Johnson4, Lee-Ann Bradley1, and Ray E. Wells5 1Geologic Hazards Science Center, U.S. Geological Survey, MS 966, PO Box 25046, Denver, Colorado 80225, USA 2U.S. Geological Survey at Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, Washington 98195, USA 3Department of Geology, Humboldt State University, Arcata, California 95521, USA 4Western Coastal and Marine Geology Science Center, U.S. Geological Survey, 400 Natural Bridges Drive, Santa Cruz, California 95060, USA 5Geology, Minerals, Energy, and Geophysics Science Center, U.S. Geological Survey, 345 Middlefi eld Road, MS 973, Menlo Park, California 94025, USA ABSTRACT earthquakes. In the northeast-striking Saddle migrating forearc has deformed the Seto Inland Mountain deformation zone, along the west- Sea into a series of basins and uplifts bounded Earthquake prehistory of the southern ern limit of the Seattle and Tacoma fault by faults. One of these, the Nojima fault, pro- Puget Lowland, in the north-south com- zones, analysis of previous ages limits earth- duced the 1995 Mw6.9 Hyogoken Nanbu (Kobe) pressive regime of the migrating Cascadia quakes to 1200–310 cal yr B.P. The prehistory earthquake, which killed more than 6400 peo- forearc, refl ects diverse earthquake rupture clarifi es earthquake clustering in the central ple, destroyed the port of Kobe, and caused modes with variable recurrence. Stratigraphy Puget Lowland, but cannot resolve potential $100 billion in damage (Chang, 2010).
    [Show full text]
  • Thomas Brocher
    Bay Area Geophysical Society Seminar Series Thomas Brocher USGS November 19, 2018 4:00 PM McCone Hall 265, UC Berkeley The 150th Anniversary of the Damaging 1868 Hayward Earthquake: Why it Matters Abstract: October 21st marks the 150th anniversary of the damaging 1868 Hayward earthquake. USGS studies of the Hayward Fault reveal that it has produced 12 large earthquakes in the past 2000 years spaced from 100 to 220 years apart. The Hayward Fault is one of the most urbanized faults in the United States. So the expected large Hayward Fault earthquake will impact the entire San Francisco Bay Area. The odds of a damaging M6.7 earthquake in the San Francisco Bay Area in the next 30 years are nearly 3 out of 4. The effects of earthquakes can be mitigated through building codes, retrofits, planning, and training. Speaker Bio: Tom Brocher is a seismologist at the USGS Earthquake Science Center, in Menlo Park, where he has worked for 33 years after working briefly at the Hawaii Institute of Geophysics and Woods Hole Oceanographic Institution. He served as Director of the Earthquake Science Center for several years and prior to that served as the USGS Coordinator for Northern California Earthquake Hazard Investigations. His interests include earthquake hazard assessment, earthquake mitigation, and earthquake preparedness. Tom served as chair of the 1868 Hayward Earthquake Alliance, a public/private non-profit organization seeking to increase public awareness of that earthquake and the hazards posed by the Hayward Fault. Tom has authored or co-authored 165 peer-reviewed publications and is a Fellow of the Geological Society of America.
    [Show full text]
  • Three-Dimensional Deformation and Stress Models: Exploring One-Thousand Years of Earthquake History Along the San Andreas Fault System
    Three-dimensional Deformation and Stress Models: Exploring One-Thousand Years of Earthquake History Along the San Andreas Fault System by Bridget Renee Smith UNIVERSITY OF CALIFORNIA, SAN DIEGO SCRIPPS INSTITUTION OF OCEANOGRAPHY 2005 UNIVERSITY OF CALIFORNIA, SAN DIEGO Three-dimensional Deformation and Stress Models: Exploring One-Thousand Years of Earthquake History Along the San Andreas Fault System A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Earth Sciences by Bridget Renee Smith Committee in charge: David T. Sandwell, Chair Bruce Bills Steve Cande Yuri Fialko Catherine Johnson Xanthippi Markenscoff 2005 Copyright Bridget Smith, 2005 All rights reserved. The dissertation of Bridget Renee Smith is approved, and it is acceptable in quality and form for publication on microfilm: _____________________________________________________ _____________________________________________________ _____________________________________________________ _____________________________________________________ _____________________________________________________ University of California, San Diego 2005 iii For my parents – although I have never been a student in your classrooms, you will always be my most treasured teachers of life. iv TABLE OF CONTENTS Signature Page.……………………...……………………………………………………………….iii Dedication.……………………...……………………………………………………………………iv Table of Contents.……………………..……………………………………………………………...v List of Figures and Tables.……………………...………………………………………………….viii Acknowledgements.…………………….………………………………………………………….…x
    [Show full text]
  • Database of Potential Sources for Earthquakes Larger Than Magnitude 6 in Northern California
    U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY DATABASE OF POTENTIAL SOURCES FOR EARTHQUAKES LARGER THAN MAGNITUDE 6 IN NORTHERN CALIFORNIA By The Working Group on Northern California Earthquake Potential Open-File Report 96-705 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American stratigraphic code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1996 Working Group on Northern California Earthquake Potential William Bakun U.S. Geological Survey Edward Bortugno California Office of Emergency Services William Bryant California Division of Mines & Geology Gary Carver Humboldt State University Kevin Coppersmith Geomatrix N. T. Hall Geomatrix James Hengesh Dames & Moore Angela Jayko U.S. Geological Survey Keith Kelson William Lettis Associates Kenneth Lajoie U.S. Geological Survey William R. Lettis William Lettis Associates James Lienkaemper* U.S. Geological Survey Michael Lisowski Hawaiian Volcano Observatory Patricia McCrory U.S. Geological Survey Mark Murray Stanford University David Oppenheimer U.S. Geological Survey William D. Page Pacific Gas & Electric Co. Mark Petersen California Division of Mines & Geology Carol S. Prentice U.S. Geological Survey William Prescott U.S. Geological Survey Thomas Sawyer William Lettis Associates David P. Schwartz* U.S. Geological Survey Jeff Unruh William Lettis Associates Dave Wagner California Division of Mines & Geology
    [Show full text]
  • IJURCA: International Journal of Undergraduate Research & Creative Activities
    IJURCA: International Journal of Undergraduate Research & Creative Activities Volume 13 Article 6 MAY 17, 2021 Modeling Tsunamis in Washington State and Integrating Universal Design: Incorporating Universal Design into Tsunami Modeling Results for Cascadia Subduction Zone Faults to Create and Inundation and Universal Design Evacuation Map for Washington State Hannah Spero Boise State University, Department of Geosciences, Undergraduate Dr. Breanyn MacInnes Central Washington University, Department of Geology, Research Mentor (Geosciences/GeoClaw) Dr. Naomi Jeffery Petersen Central Washington University, Department of Educational Foundations and Curriculum, Research Mentor (Universal Design) Abstract Current tsunami hazard inundation and evacuation maps in the Puget Sound are based primarily on Cascadia and Seattle fault tsunamis. The standard evaluation process for tsunami impacts focuses on elevation and hypothetical fault rupture of known and predicted earthquakes. However, there are several known tsunami deposits in the Puget Sound that are not from Cascadia or Seattle fault tsunamis, potentially from other faults within the region, that could affect tsunami mitigation. Work to understand newly discovered crustal deformation and faults in Puget Sound is ongoing, therefore evacuation and inundation maps need to be updated to include these new faults and integrate universal design more broadly. Methods involved using GeoClaw software to map tsunamis from the Cascadia Subduction Zone (CSZ), Leech River fault (LRF), and Utsalady Point fault (UPF). Modeled tsunamis determined the overall inundation of Port Angeles, Washington through a wide range of earthquake inputs of magnitude, proximity, and recurrence. The output simulations were evaluated with key components of universal design to create a new tsunami hazard map. Comparison between the universal design-based map to current the tsunami hazard map allowed for an evaluation of the current evacuation map.
    [Show full text]
  • Fault Scaling Relationships Depend on the Average Fault Slip Rate
    Manuscript Click here to download Manuscript RL+SR_2MW_r16.tex 1 Fault Scaling Relationships Depend on the 2 Average Fault Slip Rate 3 John G. Anderson, Glenn P. Biasi, Steven G. Wes- 4 nousky 5 Abstract 6 This study addresses whether knowing the slip rate on a fault improves es- 7 timates of magnitude (MW ) of shallow, continental surface-rupturing earth- 8 quakes. Based on 43 earthquakes from the database of Wells and Coppersmith 9 (1994), Anderson et al. (1996) previously suggested that estimates of MW from 10 rupture length (LE)areimprovedbyincorporatingthesliprateofthefault 11 (SF ). We re-evaluate this relationship with an expanded database of 80 events, 12 that includes 57 strike-slip, 12 reverse, and 11 normal faulting events. When the 13 data are subdivided by fault mechanism, magnitude predictions from rupture 14 length are improved for strike-slip faults when slip rate is included, but not for 15 reverse or normal faults. Whether or not the slip rate term is present, a linear 16 model with M log L over all rupture lengths implies that the stress drop W ⇠ E 17 depends on rupture length - an observation that is not supported by teleseismic 18 observations. We consider two other models, including one we prefer because it 19 has constant stress drop over the entire range of LE for any constant value of 20 SF and fits the data as well as the linear model. The dependence on slip rate for 21 strike-slip faults is a persistent feature of all considered models. The observed 22 dependence on SF supports the conclusion that for strike-slip faults of a given 23 length, the static stress drop, on average, tends to decrease as the fault slip rate 24 increases.
    [Show full text]
  • Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014
    Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 Contents 4.0 The Hanford Site Tectonic Setting ............................................................................................... 4.1 4.1 Tectonic Setting.................................................................................................................... 4.1 4.2 Contemporary Plate Motions and Tectonic Stress Regime .................................................. 4.11 4.3 Late Cenozoic and Quaternary History ................................................................................ 4.16 4.3.1 Post-CRB Regional Stratigraphy ............................................................................... 4.17 4.3.2 Summary of Late Miocene, Pliocene and Quaternary History .................................. 4.19 4.4 Seismicity in the Hanford Site Region ................................................................................. 4.21 4.4.1 Crustal Seismicity ..................................................................................................... 4.21 4.4.2 Cascadia Subduction Zone Seismicity ...................................................................... 4.26 4.5 References ............................................................................................................................ 4.28 4.i 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis Figures 4.1 Plate tectonic setting of the Hanford Site .................................................................................... 4.1 4.2 Areal extent
    [Show full text]