Charcot-Marie-Tooth Disease

Total Page:16

File Type:pdf, Size:1020Kb

Charcot-Marie-Tooth Disease Facts About Charcot-Marie- Tooth Disease & Related Diseases Updated December 2009 Dear Friends: to teach — is that people with disabilities ’ve lived with Charcot-Marie-Tooth are — like everyone else — full of pos- disease (CMT) since my early 20s — I sibilities and gifts. These, not our limita- more than half my life. The disease has tions, are what matter. progressed slowly over the years, mostly affecting my lower legs and hands, so that Another important extended family in my now I use a manual wheelchair part time. life is the Muscular Dystrophy Association, In those years, I’ve continued a career which offers a great program of services, in computer technology, started a small leads the world in CMT research and business, pursued my interests in art and keeps us well informed about the disease. photography, married, and contributed my See “MDA is Here to Help You,” on page knowledge and experience to others with 12, for details of the Association’s pro- disabilities. gram. This booklet has been prepared to give While MDA’s research program continues you the basic knowledge about CMT and making strides toward better treatments Dejerine-Sottas disease (DS) that you’ll and a cure, it’s good to know that people need in order to help you prepare for with disabilities have more opportuni- changes that may occur in your future. ties than ever before to develop and use You’ll learn that CMT is usually quite slow their abilities, and that the laws entitle us in progression and that, while it presents to equal employment opportunities and challenges in daily life, there are many access to public places. techniques and devices to help you adapt to those challenges. As you face the challenges ahead, remem- ber, MDA and all its resources are there You’ll read that many different genetic to help you and your family. You’re not causes of CMT have been found, and alone. cases vary greatly. But CMT is almost never life-threatening, and it seldom George J. Donahue affects the heart and breathing functions. Watertown, Massachusetts And it doesn’t affect intelligence or the spirit. I know of many productive, suc- cessful people with CMT — doctors and scientists, artists and singers, athletes and teachers, active teens and students. I know children with CMT who have bright futures. We’ve all learned to strike a bal- ance between adapting to our limitations and surroundings, and living a fulfilling life despite them. I have the wonderful support of my family and great friends. I’m involved in volun- teer projects that help young people with disabilities, advising them on indepen- dence and entrepreneurship, and raising public awareness about disability wherever I go. What I’ve learned — and what I try 2 CMT • ©2009 MDA What is Charcot-Marie-Tooth Disease? harcot-Marie-Tooth disease (CMT) Because of these features, CMT is Cis a neurological disorder, named sometimes called hereditary motor and after the three physicians who first sensory neuropathy (HMSN). Some described it in 1886 — Jean-Martin doctors also use the old-fashioned Charcot and Pierre Marie of France, name peroneal muscular atrophy, and Howard Henry Tooth of the United which refers to wasting of the peroneal Kingdom. Although most people have muscle in the lower leg. never heard of CMT, it affects some 115,000 Americans. There are even more names for CMT because the disease exists in many dif- Unlike other neurological disorders, ferent forms, each unique in its sever- Brain CMT usually isn’t life-threatening, and it ity, age of onset, progression and exact almost never affects the brain. It causes symptoms. For example, Dejerine- Spinal cord damage to the peripheral nerves — Sottas disease (DS) is a severe form of tracts of nerve cell fibers that connect CMT that manifests during infancy or the brain and spinal cord to muscles early childhood. and sensory organs. Although there’s no cure for CMT, Peripheral nerves control movement by there are treatments that can be used Arm relaying impulses from the spinal cord to to effectively manage its symptoms. muscle muscles. They convey sensation by car- Those treatments, described here along rying feelings like pain and temperature with a general overview of CMT, have from the hands and feet to the spinal allowed many people with the disease cord. They also help control balance, by to lead active, productive lives. carrying information about the position of the body in space. They transmit infor- What causes CMT? mation about the feet and hands to the CMT is caused by defects in genes, Hand spinal cord and then the brain, so that the muscle which are segments of DNA contained Peripheral brain knows where to place the feet when nerves in the chromosomes of the body’s walking and where the hands should be cells. Genes are recipes for making placed to reach for something. Leg (peroneus) the proteins that serve essential func- muscle Nerve damage, or neuropathy, causes tions in our bodies. Each form of CMT muscle weakness and wasting, and is linked to a specific gene, and all of Foot some loss of sensation, mostly in the those genes make proteins found within muscle extremities of the body: the feet, the the peripheral nerves. lower legs, the hands and the forearms. Peripheral nerves provide an essential CMT causes degeneration of the peripheral Although CMT can look very similar relay between your brain and the rest of nerves, leading to muscle weakness in the body’s extremities. to an acquired neuropathy — a type your body. When you decide to move of nerve damage caused by diabetes, your leg, your brain sends an electrical immunological abnormalities or expo- signal to muscle-controlling nerve cells sure to certain chemicals or drugs — it in your spinal cord, which then use the isn’t caused by anything a person does, peripheral nerves to pass the signal on and it isn’t contagious. It’s hereditary, to your leg muscles. meaning that it can be passed down And if you hurt your leg, you feel it through a family from one generation because pain-sensitive nerve cells there to the next. (See “Does it Run in the Family?” page 10.) 3 CMT • ©2009 MDA have sent a signal through your periph- Nerves other than those that go to and eral nerves to your brain. from the extremities can be affected at the severe end of the CMT spectrum. If The peripheral nerves are made up of the nerves that go to and from the dia- fibers, or axons, that extend from sen- phragm or intercostal (between the ribs) sory nerve cells and muscle-controlling muscles are affected, respiratory impair- nerve cells, and carry electrical signals ment can result. to and from the spinal cord. In order for you to move and react with What happens to someone precision and speed, axons have to with CMT, and how is it transmit their signals within a fraction treated? Nerve cell of a second. This is a real challenge for axons that have to stretch over long Partly because there are different types distances, like the ones connected to of CMT, the exact symptoms vary greatly Schwann muscles in your fingers and toes. from person to person. This section pro- cell/Myelin vides a general picture of CMT, and the Axon To give axons a performance boost, each next section describes different types of one is surrounded by a coating called the disease. myelin. Similar to the way plastic coat- Muscle fiber ing is used to insulate electrical wiring, Muscle weakness myelin insulates the electrical signals in In general, people with CMT experience axons. It also provides essential nourish- slowly progressive weakness and wast- ment to the axons. ing in the distal muscles, which control the extremities. These muscles control Some 20 genes have been implicated foot and hand movements. More proxi- in CMT, each one linked to a specific mal muscles, those closer to the trunk, type (and in many cases, more than one such as the leg and arm muscles, are type) of the disease. (See “What are the rarely affected. different types of CMT?” page 7.) Some of those genes make proteins needed Usually, weakness begins in the feet in axons, and others make proteins and ankles, and manifests itself as foot drop — difficulty lifting the foot at the Peripheral nerves control movement by needed in myelin. relaying impulses from the spinal cord (not ankle, so that the toes point downward shown) to the muscles (shown in the fore- Defective myelin genes can cause a during walking. Foot drop causes arm). They also convey sensation and help breakdown of myelin (called demyelin- frequent tripping, and with increasing with balance and awareness of the body’s ation) while defective axon genes can position. weakness and attempts at compensa- cause an impairment of axon function tion, the affected person develops an A single movement-controlling peripheral (axonopathy). abnormal gait. nerve is composed of many long nerve cell branches — or axons — that extend from the spinal cord and connect to muscle In either case, the end result is the Many people with CMT make their first fibers. Each axon is surrounded by myelin same: Defects in the axon or the visits to a neurologist after they notice made from the wrappings of Schwann myelin cause progressive damage to frequent trips and falls, ankle sprains, cells. the axons. or ankle fractures, caused by foot drop. The longest axons in the body are When these problems occur, some especially sensitive to damage, which people find they can overcome them explains why CMT mostly causes motor just by wearing boots or high-top and sensory problems in the body’s shoes to support the ankles.
Recommended publications
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • GBS/CIDP Foundation International
    Guillain-Barré Syndrome GBS: An Acute Care Guide For Medical Professionals A publication of the GBS/CIDP Foundation International Guillain-Barré Syndrome: An Acute Care Guide For Medical Professionals A publication of the GBS/CIDP Foundation International 2012 Edition GBS/CIDP Foundation International The Holly Building 104 1/2 Forrest Avenue Narberth, PA 19072 Phone: 610.667.0131 Toll Free: 866.224.3301 Fax: 610.667.7036 [email protected] www.gbs-cidp.org Guillain-Barré Syndrome: An Acute Care Guide For Medical Professionals Contents Page Acknowledgements . i Introduction . 1 Initial Patient Evaluation . 4 Natural History of GBS: Implications for Patient Care . 6 Respiratory Complications . 8 Dysautonomia and Cardiovascular Complications . 12 Bladder, Bowel Dysfunction . 14 Metabolism: Nutrition, Hydration, Electrolytes . 14 Pain . 17 ICU Delirium . 18 Skin . 18 Musculo-Skeletal Issues, Occupational and Physical Therapy . 19 Infection . 22 Disorder Specific Treatments . 22 Appendix A. Checklist of Patient Issues to Monitor . 24 B. Diagnostic Criteria for GBS . 25 C. Prognosis . 26 References . 27 This pamphlet is provided as a service of the GBS/CIDP Foundation International Serving the medical community and patients with Guillain-Barré syndrome and related acute and chronic paralyzing disorders of the peripheral nerves. Acknowledgements Guillain-Barré syndrome (GBS) is a rare disorder. Some health professionals may not be familiar with treating it. A beautiful video by Tanya Ooraikul chronicled the superb care provided to her husband Kit during his recovery from GBS. His care at Gray Nuns Community Hospital in Edmonton, Alberta, Canada included 86 days in the intensive care unit. The video handsomely demonstrates the high quality of care that can be provided for this rare and complicated disorder in a community hospital.
    [Show full text]
  • Unilateral Foot Drop: an Unusual Presentation of a More Common
    DOI: 10.7860/JCDR/2017/26249.10738 Case Report Unilateral Foot Drop: An Unusual Section Presentation of a more Common Internal Medicine Disease RAMESHWAR NATH CHAURASIA1, ABHISHEK PathaK2, VIJAY nath MISHRA3, DEEPIKA JOSHI4 ABSTRACT An isolated and unilateral foot drop due to intracranial lesion is quite rare. Presenting herein a case of a 14-year-old female who complained of inability to wear and hold slipper in her left foot. Detailed neurological examination revealed left foot dorsiflexion which had 1/5 muscle power along with brisk left ankle reflex. Magnetic resonance imaging of the brain revealed multiple conglomerate inflammatory granulomas in cerebrum and cerebellum, larger one in right parasagittal region with perifocal oedema. Magnetic resonance spectrum was suggestive of tuberculoma. Her chest X-ray chest revealed milliary shadowing. She was put on anti- tubercular drugs, steroid and a prophylactic anti-epileptic drug. The dorsiflexion improved to grade 4/5 after three weeks of treatment. The motor homunculus for foot is located in parasagittal area. Therefore, in patients with foot drop, we must keep high index of suspicion for parasagittal lesions, so that prompt diagnosis and early management can be done to prevent complications and improve the quality of life of patient. Keywords: Lower motor neuron, Magnetic resonance imaging, Spastic foot drop, Tuberculoma, Upper motor neuron CASE REPORT A 14-year-old female presented with history of difficulty in walking for last three days after left foot drop. She noticed difficulty in her left foot when she was trying to wear shoes go to school. Weakness gradually progressed within next two days so much so that she was unable to hold slipper and clear the ground without tripping by her left foot.
    [Show full text]
  • Physical Therapy & FSHD
    Physical Therapy & FSHD Facioscapulohumeral Muscular Dystrophy A Guide for Patients & Physical Therapists Authors: Wendy M. King, P.T., Assistant Professor, Neurology & Shree Pandya, P.T., M.S., Assistant Professor, Neurology & Physical Medicine and Rehabilitation A publication of the FSH Society, Inc. www.fshsociety.org Table of Contents Introduction ...............................................................................4 Facioscapulohumeral Dystrophy (FSHD) .....................5 Manifestations of Impairments Related to FSHD ......5 Exercise and FSHD ...................................................................7 Hydrotherapy (Water Therapy) and FSHD ..................9 Pain and FSHD ...........................................................................9 Surgical Management of Scapular Problems ............11 Who Are Physical Therapists &What Can You Expect When You See Them? .................................12 To Physical Therapists .......................................................14 Treatment of Pain .................................................................15 Summary ...................................................................................16 References ................................................................................17 About the FSH Society .........................................................18 Contact Information .............................................................19 ‐3‐ Introduction he purpose of this guide is to assist physical T therapists and patients to develop
    [Show full text]
  • Foot Drop Schema Script
    CPS Foot Drop Schema Script Hi everyone - my name is Maniraj. I’m excited to narrate this Clinical Problem Solvers schema on foot drop. Foot drop is really a story about a weakness or paralysis in the muscles that dorsiflex the foot. A patient with foot drop will drag their toes while walking. To avoid tripping over their toes while walking, a patient will lift their foot higher off the ground. Since there is no dorsiflexion for a heel strike when bringing their foot down, the patient “overshoots” and slaps their foot on the ground. This is called a steppage gait. What muscles are we talking about? The main dorsiflexor muscles are the tibialis anterior and the extensors of the toes (extensor hallucis longus and extensor digitorum longus). All of these muscles are innervated by the deep peroneal nerve, which is a branch of the common peroneal nerve. The peroneal nerve itself is a terminal branch of the sciatic nerve; the other branch of the sciatic is the tibial nerve. To help anchor the nerve functions we’ll be talking about, I think it’d be beneficial to first review acronyms that can be used to memorize them. The peroneal nerve functions to evert and dorsiflex at the ankle, which can be remembered by the acronym PED. The tibial nerve functions to invert and plantarflex at the ankle, so that becomes TIP. Since the sciatic nerve is really just the bundle of peroneal & tibial nerves, you can remember the sciatic nerve functions as PED + TIP. The sciatic nerve also supplies the hamstrings, which flex the leg at the knee.
    [Show full text]
  • Nemaline MYOPATHY Myopathy
    NEMALINENemaline MYOPATHY Myopathy due to chest muscle weakness, feeding and swallowing What is nemaline myopathy? problems, and speech difficulties. Often, children with the condition have an elongated face and a Nemaline myopathy (NM) is a group of high arched palate. rare, inherited conditions that affect muscle tone and strength. It is also What causes nemaline myopathy? The condition can be caused by a mutation in one known as rod body disease because of several different genes that are responsible for at a microscopic level, abnormal making muscle protein. Most cases of nemaline rod-shaped bodies (nemalines) can myopathy are inherited, although there are some- be seen in affected muscle tissue. times sporadic cases. People with a family history may choose to undergo genetic counseling to help At various stages in life, the muscles of understand the risks of passing the gene on to their the shoulders, upper arms, pelvis and children. thighs may be affected. Symptoms usually start anywhere from birth to What are the types of nemaline myopathy? There are two main groups of nemaline myopathy: early childhood. In rare cases, it is ‘typical’ and ‘severe.’ Typical nemaline myopathy diagnosed during adulthood. NM is the most common form, presenting usually in affects an estimated 1 in 50,000 infants with muscle weakness and floppiness. It may people -- both males and females. be slowly progressive or non progressive, and most adults are able to walk. Severe nemaline myopathy is characterized by absence of spontaneous movement What are the symptoms? or respiration at birth, and often leads to death in Symptoms vary depending on the age of onset of the first months of life.
    [Show full text]
  • Prescription of Foot and Ankle Orthoses for Children with Charcot–Marie–Tooth Disease: a Review of the Evidence
    Narrative Review Prescription of foot and ankle orthoses for children with Charcot–Marie–Tooth disease: a review of the evidence Grant Scheffers1, Claire Hiller1, Kathryn Refshauge1, Joshua Burns1,2 1Faculty of Health Sciences, The University of Sydney, Australia, 2Institute for Neuroscience and Muscle Research, The Children’s Hospital at Westmead, Australia Background: Charcot–Marie–Tooth disease (CMT) is the most common inherited peripheral neuropathy and is associated with debilitating lower limb impairments and activity limitations. These impairments and activity limitations are potentially amendable to the prescription of orthoses, yet there is no universal, literature-based consensus to inform the decision making process of whether or not orthoses are indicated for a particular child with CMT, and if so, what type of device. Objectives: The aims of this paper were to: (1) review the lower limb impairments and activity limitations of children with CMT; (2) review the indications of commonly prescribed foot and ankle orthoses; and (3) formulate a clinical algorithm for the optimal prescription of foot and ankle orthoses for children with CMT. Major findings: We conducted a comprehensive search of the major databases and reference lists of relevant articles and books. In general, in-shoe orthoses are indicated for children with CMT and pes cavus and foot pain and/or mild balance impairments, whilst ankle-foot orthoses are indicated for children with CMT and pes cavus, foot drop, global foot and ankle muscle weakness and/or ankle equinus, and moderate-severe balance impairments and/or difficulty walking. Conclusions: A clinical algorithm is proposed to guide the prescription of foot and ankle orthoses for children with CMT.
    [Show full text]
  • Psykisk Utviklingshemming Og Forsinket Utvikling
    Psykisk utviklingshemming og forsinket utvikling Genpanel, versjon v03 Tabellen er sortert på gennavn (HGNC gensymbol) Navn på gen er iht. HGNC >x10 Andel av genet som har blitt lest med tilfredstillende kvalitet flere enn 10 ganger under sekvensering x10 er forventet dekning; faktisk dekning vil variere. Gen Gen (HGNC Transkript >10x Fenotype (symbol) ID) AAAS 13666 NM_015665.5 100% Achalasia-addisonianism-alacrimia syndrome OMIM AARS 20 NM_001605.2 100% Charcot-Marie-Tooth disease, axonal, type 2N OMIM Epileptic encephalopathy, early infantile, 29 OMIM AASS 17366 NM_005763.3 100% Hyperlysinemia OMIM Saccharopinuria OMIM ABCB11 42 NM_003742.2 100% Cholestasis, benign recurrent intrahepatic, 2 OMIM Cholestasis, progressive familial intrahepatic 2 OMIM ABCB7 48 NM_004299.5 100% Anemia, sideroblastic, with ataxia OMIM ABCC6 57 NM_001171.5 93% Arterial calcification, generalized, of infancy, 2 OMIM Pseudoxanthoma elasticum OMIM Pseudoxanthoma elasticum, forme fruste OMIM ABCC9 60 NM_005691.3 100% Hypertrichotic osteochondrodysplasia OMIM ABCD1 61 NM_000033.3 77% Adrenoleukodystrophy OMIM Adrenomyeloneuropathy, adult OMIM ABCD4 68 NM_005050.3 100% Methylmalonic aciduria and homocystinuria, cblJ type OMIM ABHD5 21396 NM_016006.4 100% Chanarin-Dorfman syndrome OMIM ACAD9 21497 NM_014049.4 99% Mitochondrial complex I deficiency due to ACAD9 deficiency OMIM ACADM 89 NM_000016.5 100% Acyl-CoA dehydrogenase, medium chain, deficiency of OMIM ACADS 90 NM_000017.3 100% Acyl-CoA dehydrogenase, short-chain, deficiency of OMIM ACADVL 92 NM_000018.3 100% VLCAD
    [Show full text]
  • Diagnosis and Treatment of Facioscapulohumeral Muscular Dystrophy: 2015 Guidelines Steven Karceski Neurology 2015;85;E41-E43 DOI 10.1212/WNL.0000000000001865
    PATIENT PAGE Section Editors Diagnosis and treatment of DavidC.Spencer,MD Steven Karceski, MD facioscapulohumeral muscular dystrophy 2015 guidelines Steven Karceski, MD WHAT DID THE AUTHORS STUDY? Dr. Tawil led a in people with FSHD. However, a person with committee of doctors who specialize in diagnosing FSHD could develop heart problems unrelated to and treating facioscapulohumeral muscular dystrophy FSHD. If a person with FSHD developed heart prob- (FSHD). Together, they reviewed published articles lems, he or she would need to see a doctor for an eval- and research in FSHD and similar muscular dystro- uation and treatment. phies. They assembled detailed recommendations Although rare, patients with a low number of about the diagnosis and treatment of people with copies of D4Z4 may develop problems with their FSHD.1 vision. They develop Coats disease, which can be de- tected by an ophthalmologist using special equip- HOW IS FSHD DIAGNOSED? The initial step to the ment called indirect ophthalmoscopy. In short, a diagnosis of FSHD is taking a careful medical history. person who has a low number of copies should be This starts in the doctor’s office. The doctor will ask screened and evaluated for this possibility by a many questions about the person’s weakness: how it trained eye specialist. started, where it is most noticeable, how quickly it is Pain is common in people with FSHD. The pain worsening, and whether there is a family history of occurs in the muscles and bones. It often responds to the same kind of problem. If there is a family history several medications and physical therapy.
    [Show full text]
  • Full Disclosure Forms
    Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS Xia Tian, PhD* ABSTRACT * Wen-Chen Liang, MD Objective: To establish and evaluate the effectiveness of a comprehensive next-generation * Yanming Feng, PhD sequencing (NGS) approach to simultaneously analyze all genes known to be responsible for Jing Wang, MD the most clinically and genetically heterogeneous neuromuscular diseases (NMDs) involving spi- Victor Wei Zhang, PhD nal motoneurons, neuromuscular junctions, nerves, and muscles. Chih-Hung Chou, MS Methods: All coding exons and at least 20 bp of flanking intronic sequences of 236 genes causing Hsien-Da Huang, PhD NMDs were enriched by using SeqCap EZ solution-based capture and enrichment method fol- Ching Wan Lam, PhD lowed by massively parallel sequencing on Illumina HiSeq2000. Ya-Yun Hsu, PhD ; 3 Thy-Sheng Lin, MD Results: The target gene capture/deep sequencing provides an average coverage of 1,000 per Wan-Tzu Chen, MS nucleotide. Thirty-five unrelated NMD families (38 patients) with clinical and/or muscle pathologic Lee-Jun Wong, PhD diagnoses but without identified causative genetic defects were analyzed. Deleterious mutations Yuh-Jyh Jong, MD were found in 29 families (83%). Definitive causative mutations were identified in 21 families (60%) and likely diagnoses were established in 8 families (23%). Six families were left without diagnosis due to uncertainty in phenotype/genotype correlation and/or unidentified causative Correspondence to genes. Using this comprehensive panel, we not only identified mutations in expected genes but Dr. Wong: also expanded phenotype/genotype among different subcategories of NMDs. [email protected] or Dr. Jong: Conclusions: Target gene capture/deep sequencing approach can greatly improve the genetic [email protected] diagnosis of NMDs.
    [Show full text]
  • Myopathies Infosheet
    The University of Chicago Genetic Services Laboratories 5841 S. Maryland Ave., Rm. G701, MC 0077, Chicago, Illinois 60637 Toll Free: (888) UC GENES (888) 824 3637 Local: (773) 834 0555 FAX: (773) 702 9130 [email protected] dnatesting.uchicago.edu CLIA #: 14D0917593 CAP #: 18827-49 Gene tic Testing for Congenital Myopathies/Muscular Dystrophies Congenital Myopathies Congenital myopathies are typically characterized by the presence of specific structural and histochemical features on muscle biopsy and clinical presentation can include congenital hypotonia, muscle weakness, delayed motor milestones, feeding difficulties, and facial muscle involvement (1). Serum creatine kinase may be normal or elevated. Heterogeneity in presenting symptoms can occur even amongst affected members of the same family. Congenital myopathies can be divided into three main clinicopathological defined categories: nemaline myopathy, core myopathy and centronuclear myopathy (2). Nemaline Myopathy Nemaline Myopathy is characterized by weakness, hypotonia and depressed or absent deep tendon reflexes. Weakness is typically proximal, diffuse or selective, with or without facial weakness and the diagnostic hallmark is the presence of distinct rod-like inclusions in the sarcoplasm of skeletal muscle fibers (3). Core Myopathy Core Myopathy is characterized by areas lacking histochemical oxidative and glycolytic enzymatic activity on histopathological exam (2). Symptoms include proximal muscle weakness with onset either congenitally or in early childhood. Bulbar and facial weakness may also be present. Patients with core myopathy are typically subclassified as either having central core disease or multiminicore disease. Centronuclear Myopathy Centronuclear Myopathy (CNM) is a rare muscle disease associated with non-progressive or slowly progressive muscle weakness that can develop from infancy to adulthood (4, 5).
    [Show full text]
  • Dissociated Leg Muscle Atrophy in Amyotrophic Lateral
    www.nature.com/scientificreports OPEN Dissociated leg muscle atrophy in amyotrophic lateral sclerosis/ motor neuron disease: the ‘split‑leg’ sign Young Gi Min1,4, Seok‑Jin Choi2,4, Yoon‑Ho Hong3, Sung‑Min Kim1, Je‑Young Shin1 & Jung‑Joon Sung1* Disproportionate muscle atrophy is a distinct phenomenon in amyotrophic lateral sclerosis (ALS); however, preferentially afected leg muscles remain unknown. We aimed to identify this split‑leg phenomenon in ALS and determine its pathophysiology. Patients with ALS (n = 143), progressive muscular atrophy (PMA, n = 36), and age‑matched healthy controls (HC, n = 53) were retrospectively identifed from our motor neuron disease registry. We analyzed their disease duration, onset region, ALS Functional Rating Scale‑Revised Scores, and results of neurological examination. Compound muscle action potential (CMAP) of the extensor digitorum brevis (EDB), abductor hallucis (AH), and tibialis anterior (TA) were reviewed. Defned by CMAPEDB/CMAPAH (SIEDB) and CMAPTA/CMAPAH (SITA), respectively, the values of split‑leg indices (SI) were compared between these groups. SIEDB was signifcantly reduced in ALS (p < 0.0001) and PMA (p < 0.0001) compared to the healthy controls (HCs). SITA reduction was more prominent in PMA (p < 0.05 vs. ALS, p < 0.01 vs. HC), but was not signifcant in ALS compared to the HCs. SI was found to be signifcantly decreased with clinical lower motor neuron signs (SIEDB), while was rather increased with clinical upper motor neuron signs (SITA). Compared to the AH, TA and EDB are more severely afected in ALS and PMA patients. Our fndings help to elucidate the pathophysiology of split‑leg phenomenon.
    [Show full text]