Monitoring the Ecological Integrity of Pinelands Wetlands

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring the Ecological Integrity of Pinelands Wetlands MONITORING THE ECOLOGICAL INTEGRITY OF PINELANDS WETLANDS A COMPARISON OF WETLAND LANDSCAPES, HYDROLOGY, AND STREAM COMMUNITIES IN PINELANDS WATERSHEDS DRAINING ACTIVE-CRANBERRY BOGS, ABANDONED-CRANBERRY BOGS, AND FOREST LAND FINAL REPORT SUBMITTED TO THE U. S. ENVIRONMENTAL PROTECTION AGENCY FEBRUARY 2006 Cover image is from a 1995-97 color-infrared aerial photograph (National Aerial Photography Program by Photoscience for the United States Geological Survey) showing active-cranberry bogs in the Hospitality Brook watershed and forest land along the Wading River. MONITORING THE ECOLOGICAL INTEGRITY OF PINELANDS WETLANDS A COMPARISON OF WETLAND LANDSCAPES, HYDROLOGY, AND STREAM COMMUNITIES IN PINELANDS WATERSHEDS DRAINING ACTIVE-CRANBERRY BOGS, ABANDONED-CRANBERRY BOGS, AND FOREST LAND PREPARED BY ROBERT A. ZAMPELLA, JOHN F. BUNNELL, KIM J. LAIDIG, AND NICHOLAS A. PROCOPIO THE NEW JERSEY PINELANDS COMMISSION Betty Wilson, Chairperson Candace McKee Ashmun Edward Lloyd William J. Brown Robert W. McIntosh, Jr. Dr. Guy Campbell, Jr. Dr. Patrick T. Slavin Leslie M. Ficcaglia Norman F. Tomasello John A. Haas Francis A. Witt Hon. Robert Hagaman Edward A. Wuillermin, Jr. Stephen V. Lee III John C. Stokes, Executive Director FINAL REPORT SUBMITTED TO THE U. S. ENVIRONMENTAL PROTECTION AGENCY FEBRUARY 2006 CONTENTS EXECUTIVE SUMMARY vii PART 1. A COMPARISON OF STREAM PATTERNS AND WETLAND LANDSCAPES IN PINELANDS BASINS DRAINING ACTIVE-CRANBERRY BOGS, ABANDONED- CRANBERRY BOGS, AND FOREST LAND Nicholas A. Procopio and John F. Bunnell Abstract 1 Introduction 1 Methods 2 Study Basins 2 Stream-pattern and Wetland-landscape Data 2 Data Analysis 3 Results 5 Stream Patterns 5 Wetland Landscapes 5 Discussion 7 Acknowledgements 9 Literature Cited 9 PART 2. HYDROLOGIC AND MORPHOLOGIC VARIABILITY OF STREAMS DRAINING ACTIVE-CRANBERRY BOGS, ABANDONED-CRANBERRY BOGS, AND FOREST LAND Nicholas A. Procopio Abstract 19 Introduction 19 Methods 20 Data Analysis 22 Results and Discussion 22 Stream Discharge 22 Streamflow Variability 22 Flooding Frequency 23 Stream Morphology 24 Acknowledgements 24 Literature Cited 25 iii PART 3. DISTRIBUTION OF DIATOMS IN RELATION TO LAND USE AND PH IN BLACKWATER COASTAL PLAIN STREAMS Robert A. Zampella, Kim J. Laidig, and Rex L. Lowe Abstract 35 Introduction 35 Methods 36 Study Site Selection 36 Stream Habitats 37 Diatom Sampling 37 pH Categories 38 Data Analysis 38 Results 39 Stream Habitats 39 Species Inventory 40 Species Richness 40 Community Patterns 41 Environmental Relationships 42 pH Categories 42 Discussion 42 Acknowledgements 46 Literature Cited 46 PART 4. VEGETATION IN PINELANDS STREAMS DRAINING ACTIVE-CRANBERRY BOGS, ABANDONED-CRANBERRY BOGS, AND FOREST LAND Kim J. Laidig Abstract 59 Introduction 59 Methods 60 Land Use and Study Site Selection 60 Environmental Factors 61 Vegetation Sampling 61 Data Analysis 62 Results and Discussion 63 Environmental Factors 63 Stream-vegetation Inventory 63 Channel-vegetation Composition 64 Bank-vegetation Composition 65 Summary 66 Acknowledgents 67 Literature Cited 67 iv PART 5. MACROINVERTEBRATE ASSEMBLAGES IN PINELANDS STREAMS DRAINING ACTIVE-CRANBERRY BOGS, ABANDONED-CRANBERRY BOGS, AND FOREST LAND Robert A. Zampella, John F. Bunnell, Nicholas A. Procopio, and Dean Bryson Abstract 81 Introduction 82 Methods 83 Land Use and Study Site Selection 83 Environmental Factors 83 Macroinvertebrate Sampling 84 Data Analysis 84 Results 85 Environmental Factors 85 Macroinvertebrate Inventory 86 Family-level Comparison of Stream Types 86 Genus-level Comparison of Stream Types 89 Discussion 91 Acknowledgements 93 Literature Cited 93 PART 6. FISH ASSEMBLAGES IN PINELANDS STREAMS DRAINING ACTIVE-CRANBERRY BOGS, ABANDONED-CRANBERRY BOGS, AND FOREST LAND John F. Bunnell Abstract 113 Introduction 113 Methods 114 Land Use and Study Site Selection 114 Fish Surveys 114 Environmental Factors 115 Data Analysis 116 Results 117 Environmental Factors 117 Fish Inventory 117 Species Composition 118 Biomass and Abundance 119 Discussion 120 Acknowledgements 122 Literature Cited 122 v Executive Summary Cranberry agriculture, which involves clearing land to construct bogs, damming streams to establish reservoirs, channelizing stream segments, and creating extensive ditch networks, is a major land use in parts of the New Jersey Pinelands. The native cranberry was first cultivated in New Jersey in the mid-19th century. Since that time, the industry has been an important landscape-shaping factor. Harvested cranberry acreage, estimated to be about 3,100 acres in 2002, represents less than one-third of the 11,200 acres that existed at the peak of bog cultivation in 1919. Abandoned-cranberry bogs are now a common feature of the Pinelands landscape. In 1999, the Pinelands Commission received a Wetlands Development Grant from the United States Environmental Protection Agency (USEPA) to conduct a study of the potential effect of past and present cranberry agriculture on selected landscape features, stream flow, and aquatic communities in the Mullica River and Rancocas Creek basins. The Pinelands Commission and the National Park Service provided additional funding. The results of the study are presented in this report. Study topics, which are covered in separate sections, include stream drainage patterns and wetland-patch structure, streamflow regimes, diatoms, stream vegetation, macroinvertebrates, and fish. In each section, variations in the landscape, stream, or biological-community characteristic of interest are related to land use in the associated basins. Land uses include forest, active-cranberry bogs (cranberry), and abandoned-cranberry bogs (abandoned bogs). The diatom study also includes developed/agricultural land. The studies include detailed statistical analyses. Because of sample-size limitations and the many comparisons made in each study, relationships that appear fairly clear may not be statistically significant. Throughout each section, we identify statistically significant results as well as apparent trends that do not meet the strict statistical criteria that were applied. Part 1 evaluates differences in stream-drainage patterns (drainage density, sinuosity, and ditching), wetland-patch structure (size, shape, and number of wetland patches), and wetland- vegetation cover-type composition between basins draining cranberry bogs, abandoned bogs, and forest. The results of the stream-pattern analysis indicated that the effect of past and present cranberry agriculture on stream-drainage patterns was limited primarily to the occurrence of ditches. The analysis of wetland-patch structure and wetland-vegetation cover-type composition was limited to areas outside cranberry bogs where the native vegetation was removed. There was no significant difference between the three basin types in the relative number, size, shape, and composition of the vegetation-cover types found. Although the differences were not significant, the median and total number of wetland patches and the number of patches for most dominant wetland-cover types were higher in cranberry and abandoned-bog basins compared to forest basins. Part 2 relates streamflow regimes and stream morphology to land use. Strong relationships exist between some of the flow-regime and channel-morphology metrics. Although no significant difference in these metrics was found between stream types, some general trends suggested that the relationship between channel morphology and flow regime is partly related to land use. In general, cranberry streams had steeper banks, greater bankfull depths, and lower vii bankfull width/depth ratios, whereas the gentlest slopes, shallowest channels, and highest width/depth ratios were associated with abandoned-bog streams. Higher bankfull widths and bankfull cross-sectional areas characterized forest streams. Discharge and the frequency of overbank flooding were highest, and spread, which is a measure of streamflow variability, was lowest for cranberry streams compared to the other two stream types. Part 3 describes the relationship between the composition of diatom assemblages collected from streams draining four different land uses, including forest land, abandoned bogs, cranberry bogs, and developed/upland agriculture. This study focuses on variations in diatom assemblages associated with differences in pH. Neither species richness nor genus richness was significantly different between the four land-use types. A significant difference in species composition existed between the developed/upland agriculture sites and both cranberry and forest sites. Variations in diatom composition were associated with variations in pH and specific conductance. Although species composition varied between forest, abandoned-bog, and cranberry sites, all three stream types were dominated by diatoms associated with pH values below 7, whereas species associated with a pH around 7 dominated the developed/upland agriculture samples. Part 4 compares channel and bank plant-species composition in forest, cranberry, and abandoned-bog streams. Total channel-vegetation and bank-vegetation cover and channel and bank species richness did not differ significantly between stream types. Species presence- absence data revealed a difference in channel-vegetation and bank-vegetation composition between stream types and these differences appear to be most closely related to the type of canopy cover at a site. Whether canopy type is determined by land use is not known. Part 5 compares macroinvertebrate assemblages in cranberry, abandoned-bog, and forest streams
Recommended publications
  • From Lake Sediments in British Columbia / by Ian Richard
    LATE-QUATERNARY PALAEOECOLOGY OF CHIRONOMIDAE (DIPTERA: INSECTA) FROM LAKE SEDIMENTS IN BRITISH COLUMBIA Ian Richard Walker B.Sc., Mount Allison University, 1980 M.Sc., University of Waterloo, 1982 THESIS SUBMIlTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Biological Sciences @ Ian Richard Walker 1988 SIMON FRASER UNIVERSITY March 1988 All rights -eserved. This work may not be reproduced in whole or in part, by photocopy or other means, .without permission of the author. APPROVAL Name : Ian Richard Walker Degree : Doctor of Philosophy Title of Thesis: LATE-QUATERNARY PAWIlEOECOLOGY OF CHIRONOMIDAE (D1PTERA:INSECTA) FROM LAKE SEDIMENTS IN BRITISH COLUMBIA Examining Comnittee: Chairman: Dr. R.C. Brooke, Associate Professor Dr. R .W . hlathewes , Professor, Senior Supervisor professor T. ~inspisq,~merd- J.G. ~tocX~%$ ~e~artmentof and Oceans, West Vancouver Dr. P. Belton, Associate Professor, Public Examiner Dr. R.J. Hebda, Royal British Columbia Museum, Victoria, Public Examiner Dr. D.R. Oliver, Biosystematics Research Centre, Central Experimental Farm, Agriculture Canada, Ottawa, External Examiner Date Approved ern& 23, /988 PARTIAL COPYRIGHT LICENSE I hereby grant to Slmn Fraser Unlverslty the right to lend my thesis, proJect or extended essay (the :It10 of whlch Is shown below1 to users ot the Slmon Fraser Unlverslty ~lbrlr~,and to make part la1 or single copies only for such users or in response to a request from the 1 i brary of any other unlversl ty, or other educat lona l Insti tutIon, on its own behalf or for one of Its users. I further agree that permission for multiple copying of thls work for scholarly purposes may be granted by me or the Dean of Graduate Studies.
    [Show full text]
  • Distribution of Freshwater Midges in Relation to Air Temperature and Lake Depth
    J Paleolimnol (2006) 36:295-314 DOl 1O.1007/s10933-006-0014-6 A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth Erin M. Barley' Ian R. Walker' Joshua Kurek, Les C. Cwynar' Rolf W. Mathewes • Konrad Gajewski' Bruce P. Finney Received: 20 July 2005 I Accepted: 5 March 2006/Published online: 26 August 2006 © Springer Science+Business Media B.Y. 2006 Abstract Freshwater midges, consisting of Chiro- organic carbon, lichen woodland vegetation and sur- nomidae, Chaoboridae and Ceratopogonidae, were face area contributed significantly to explaining assessed as a biological proxy for palaeoclimate in midge distribution. Weighted averaging partial least eastern Beringia. The northwest North American squares (WA-PLS) was used to develop midge training set consists of midge assemblages and data inference models for mean July air temperature 2 for 17 environmental variables collected from 145 (R boot = 0.818, RMSEP = 1.46°C), and transformed 2 lakes in Alaska, British Columbia, Yukon, Northwest depth (1n (x+ l); R boot = 0.38, and RMSEP = 0.58). Territories, and the Canadian Arctic Islands. Canon- ical correspondence analyses (CCA) revealed that Key words Chironomidae : Transfer function . mean July air temperature, lake depth, arctic tundra Beringia' Air temperature . Lake depth' Canonical vegetation, alpine tundra vegetation, pH, dissolved correspondence analysis . Paleoclimate E. M. Barley· R. W. Mathewes Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A IS6 Introduction I. R. Walker Departments of Biology, and Earth and Environmental Sciences, University of British Columbia Okanagan, Palaeoecologists seeking to quantify past environ- Kelowna, BC, Canada VIV IV7 mental changes rely increasingly on transfer func- e-mail: [email protected] tions that make use of biological proxies (Battarbee J.
    [Show full text]
  • CHIRONOMUS Newsletter on Chironomidae Research
    CHIRONOMUS Newsletter on Chironomidae Research No. 25 ISSN 0172-1941 (printed) 1891-5426 (online) November 2012 CONTENTS Editorial: Inventories - What are they good for? 3 Dr. William P. Coffman: Celebrating 50 years of research on Chironomidae 4 Dear Sepp! 9 Dr. Marta Margreiter-Kownacka 14 Current Research Sharma, S. et al. Chironomidae (Diptera) in the Himalayan Lakes - A study of sub- fossil assemblages in the sediments of two high altitude lakes from Nepal 15 Krosch, M. et al. Non-destructive DNA extraction from Chironomidae, including fragile pupal exuviae, extends analysable collections and enhances vouchering 22 Martin, J. Kiefferulus barbitarsis (Kieffer, 1911) and Kiefferulus tainanus (Kieffer, 1912) are distinct species 28 Short Communications An easy to make and simple designed rearing apparatus for Chironomidae 33 Some proposed emendations to larval morphology terminology 35 Chironomids in Quaternary permafrost deposits in the Siberian Arctic 39 New books, resources and announcements 43 Finnish Chironomidae 47 Chironomini indet. (Paratendipes?) from La Selva Biological Station, Costa Rica. Photo by Carlos de la Rosa. CHIRONOMUS Newsletter on Chironomidae Research Editors Torbjørn EKREM, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX The CHIRONOMUS Newsletter on Chironomidae Research is devoted to all aspects of chironomid research and aims to be an updated news bulletin for the Chironomidae research community. The newsletter is published yearly in October/November, is open access, and can be downloaded free from this website: http:// www.ntnu.no/ojs/index.php/chironomus. Publisher is the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology in Trondheim, Norway.
    [Show full text]
  • Dear Colleagues
    NEW RECORDS OF CHIRONOMIDAE (DIPTERA) FROM CONTINENTAL FRANCE Joel Moubayed-Breil Applied ecology, 10 rue des Fenouils, 34070-Montpellier, France, Email: [email protected] Abstract Material recently collected in Continental France has allowed me to generate a list of 83 taxa of chironomids, including 37 new records to the fauna of France. According to published data on the chironomid fauna of France 718 chironomid species are hitherto known from the French territories. The nomenclature and taxonomy of the species listed are based on the last version of the Chironomidae data in Fauna Europaea, on recent revisions of genera and other recent publications relevant to taxonomy and nomenclature. Introduction French territories represent almost the largest Figure 1. Major biogeographic regions and subregions variety of aquatic ecosystems in Europe with of France respect to both physiographic and hydrographic aspects. According to literature on the chironomid fauna of France, some regions still are better Sites and methodology sampled then others, and the best sampled areas The identification of slide mounted specimens are: The northern and southern parts of the Alps was aided by recent taxonomic revisions and keys (regions 5a and 5b in figure 1); western, central to adults or pupal exuviae (Reiss and Säwedal and eastern parts of the Pyrenees (regions 6, 7, 8), 1981; Tuiskunen 1986; Serra-Tosio 1989; Sæther and South-Central France, including inland and 1990; Soponis 1990; Langton 1991; Sæther and coastal rivers (regions 9a and 9b). The remaining Wang 1995; Kyerematen and Sæther 2000; regions located in the North, the Middle and the Michiels and Spies 2002; Vårdal et al.
    [Show full text]
  • Kiefferulus Tendipediformis GOETGH. Und Tanytarsus Excavatus EDW. — Zwei Für Österreich Neue Chironomidenarten (Diptera, Nematocera)
    ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhistor. Mus. Wien 78 385-391 Wien, Dezember 1974 Kiefferulus tendipediformis GOETGH. und Tanytarsus excavatus EDW. — zwei für Österreich neue Chironomidenarten (Diptera, Nematocera) Von RUTH LICHTENBEEG X) (Mit einer Textabbildung) Manuskript eingelangt am 2. April 1974 Zusammenfassung Im Rahmen von Untersuchungen an einem südlich von Wien gelegenen Ziegelteich (Hallateich) wurden neben verschiedenen anderen Wasserinsekten auch Chironomiden gesammelt. Die in der vorliegenden Arbeit aufgezählten Chironomiden gehören den Unterfamilien der Chironominae und Tanypodinae an (Orthocladiinae waren in dem aufgesammelten Material weniger vertreten und sind hier nicht berücksichtigt). Die hier genannten Chironomidenarten sind alle in stehenden größeren oder kleineren Gewässern verbreitet. In dem bearbeiteten Material werden zwei Arten angeführt, die bisher aus Österreich nicht bekannt waren : Kiefferulus tendipediformis GOETGH. und Tanytarsus excavatus EDW. Summary Occasionally of investigations on a pond south of Vienna (Hallateich) Chironomidae had also been collected. The species mentioned here belong to the subfamilies of Chirono- minae and Tanypodinae (Orthocladiinae had been found not so frequent and are not considered). They all are common in standing waters of different sizes. In the samples were two species, which had not yet been known from Austria : Kiefferulus tendipediformis GOETGH. and Tanytarsus excavatus EDW. Einleitung Im Rahmen hydrobiologischer Untersuchungen an einem südlich von Wien bei Vösendorf gelegenen Ziegelteich (Hallateich) wurden von 1963 bis 1968 während einiger Nächte auch Lichtfänge durchgeführt. In den Proben einer Nachtausfahrt vom August 1965 waren unter anderem auch Imagines der beiden aus Österreich bisher noch nicht bekannten Chironomidenarten Kiefferulus tendipediformis GOETGH. und Tanytarsus excavatus EDW. in größerer Anzahl vertreten. x) Anschrift der Verfasserin : Dr.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • UNIVERSITÀ DEGLI STUDI DI MILANO Approfondimento Delle
    UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Protezione dei Sistemi Agroalimentare e Urbano e valorizzazione delle biodiversità Scuola di dottorato in Terra, Ambiente e Biodiversità DOTTORATO DI RICERCA IN SCIENZE NATURALISTICHE E AMBIENTALI CICLO XXIII Approfondimento delle conoscenze sull'ecologia dei Ditteri Chironomidi nelle acque interne Italiane TUTOR: PROF. BRUNO ROSSARO CO-TUTOR: DOTT.SSA VALERIA LENCIONI COORDINATORE DEL DOTTORATO: PROF. ANDREA TINTORI CANDIDATA: DOTT.SSA VALENTINA GRAZIOLI (…) la motivazione su cui si fonda questo comportamento non va ricercata nell’appetenza verso un’unica azione finale che costituisce lo scopo e che soddisfa la pulsione, ma deriva da un’altra fonte, cui spetta la singolare capacità di attivare molte, o addirittura tutte le coordinazioni ereditarie dell’animale. Questo tipo di acquisizione del sapere (…) viene chiamato comportamento esplorativo o di curiosità.(…).L’elemento qualitativamente nuovo consiste nel fatto che la motivazione è fornita dal processo di apprendimento stesso, e non dall’esecuzione dell’azione finale. Con questo passo apparentemente così piccolo si manifesta un processo cognitivo di tipo del tutto nuovo, che è fondamentalmente identico alla ricerca umana, e che conduce, senza che intervengano modificazioni essenziali, allo studio scientifico della natura. K. Lorenz INDICE 1. PREFAZIONE ................................................................................................... 5 2. SCOPO DELLA TESI ......................................................................................
    [Show full text]
  • Some Aspects of Ecology and Genetics of Chironomidae (Diptera) in Rice Field and the Effect of Selected Herbicides on Its Population
    SOME ASPECTS OF ECOLOGY AND GENETICS OF CHIRONOMIDAE (DIPTERA) IN RICE FIELD AND THE EFFECT OF SELECTED HERBICIDES ON ITS POPULATION By SALMAN ABDO ALI AL-SHAMI Thesis submitted in fulfillment of the requirements for the degree of Master August 2006 ACKNOWLEDGEMENTS First of all, Allah will help me to finish this study. My sincere gratitude to my supervisor, Associate Professor Dr. Che Salmah Md. Rawi and my co- supervisor Associate Professor Dr. Siti Azizah Mohd. Nor for their support, encouragement, guidance, suggestions and patience in providing invaluable ideas. To them, I express my heartfelt thanks. I would like to thank Universiti Sains Malaysia, Penang, Malaysia, for giving me the opportunity and providing me with all the necessary facilities that made my study possible. Special thanks to Ms. Madiziatul, Ms. Ruzainah, Ms. Emi, Ms. Kamila, Mr. Adnan, Ms. Yeap Beng-keok and Ms. Manorenjitha for their valuable help. I am also grateful to our entomology laboratory assistants Mr. Hadzri, Ms. Khatjah and Mr. Shahabuddin for their help in sampling and laboratory work. All the staff of Electronic Microscopy Unit, drivers Mr. Kalimuthu, Mr. Nurdin for their invaluable helps. I would like to thank all the staff of School of Biological Sciences, Universiti Sains Malaysia, who has helped me in one way or another either directly or indirectly in contributing to the smooth progress of my research activities throughout my study. My genuine thanks also go to the specialists, Prof. Saether, Prof Anderson, Dr. Mendes (Bergen University, Norway) and Prof. Xinhua Wang (Nankai University, China) for kindly identifying and verifying Chironomidae larvae and adult specimens.
    [Show full text]
  • "SRS Ecology Environmental Information Document," Chapter 7
    Chapter 7 Additional Information to Support Research on the Ecology of SRS This page is intentionally left blank. WSRC-TR-97-0223 7-2 WSRC-TR-97-0223 Environmental Information Document-SRS Ecology Chapter 7-Additional Information Introduction Introduction The preceding chapters of this document have dealt primarily with the direct effects of man's activities on Savannah River Site (SRS) natural resources. Since its creation in 1950, SRS has served as a unique resource for scientists studying the ecology of the Southeast, beginning with Dr. E. P. Odum's early work on theories of plant community succession that he tested in the old agricultural fields of SRS. This chapter identifies additional sources of data on the SRS natural environment and sum marizes an ecological investigation of the Burial Ground Complex. Scientists at the Savan nah River Technology Center (SRTC), the Savannah River Ecology Laboratory (SREL), and the Savannah River Forest Station (SRFS) have published more than 2000 technical papers detailing research done at SRS under the auspices of the U.S. Department of Energy (DOE). Information on this research is available through the various organizations, all of which are at the SRS. Remote Sensing Data Remote sensing data have been used to evaluate SRS's natural resources and to monitor the environmental effects of operations since the early 1950s. From the beginning, the U.S. For est Service used vertical aerial photography to support SRS timber resource management. Numerous other overflights have been conducted, such as those by the National High Alti tude Program and the DOE Remote Sensing Laboratory.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]