ARTICLE Received 23 Apr 2015 | Accepted 13 May 2015 | Published 25 Jun 2015 DOI: 10.1038/ncomms8488 OPEN Two-dimensional isobutyl acetate production pathways to improve carbon yield Yohei Tashiro1, Shuchi H. Desai1,2 & Shota Atsumi1,2 For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. 1 Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA. 2 Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, USA. Correspondence and requests for materials should be addressed to S.A. (email:
[email protected]). NATURE COMMUNICATIONS | 6:7488 | DOI: 10.1038/ncomms8488 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8488 iochemical production from biomass, a renewable resource OH synthesized from CO2 and sunlight, may contribute to a 1 Bcarbon-neutral society .