Distribution and Ecology of Soft-Bottom Sipuncula from the Western Mediterranean Sea

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Ecology of Soft-Bottom Sipuncula from the Western Mediterranean Sea Distribution and ecology of soft-bottom Sipuncula from the western Mediterranean Sea Luis Miguel Ferrero Vicente DOCTORADO EN CIENCIAS DEL MAR Y BIOLOGÍA APLICADA Distribution and ecology of soft-bottom Sipuncula from the western Mediterranean Sea Distribución y ecología de los sipuncúlidos de fondos blandos del mar Mediterráneo occidental Memoria presentada para optar al grado de Doctor Internacional en la Universidad de Alicante por LUIS MIGUEL FERRERO-VICENTE ALICANTE, Octubre 2014 Dirigida por: Dr. José Luis Sánchez Lizaso «If I saw further than other men, it was because I stood on the shoulders of giants» —Isaac Newton Agradecimientos /Acknowledgements AGRADECIMIENTOS / ACKNOWLEDGEMENTS En primer lugar quiero agradecer a la Mancomunidad de los Canales del Taibilla la financiación aportada a través de los diferentes proyectos en los que hemos colaborado. También agradezco a José Luis el haberme ofrecido la oportunidad de trabajar en lo que me gusta, el mar y los animales, aunque sean pequeños y raros. Muchas gracias por la confianza, por permitirme realizar esta tesis y participar en otros proyectos de investigación en los que tantas cosas he aprendido. En un plano más personal quiero expresar mi gratitud a toda mi familia y amigos, especialmente a mis padres y hermanos, que saben lo difícil que ha sido este camino. Parecía que nunca iba a llegar el momento de terminar, pero al fin ha llegado, muchas gracias por todo vuestro apoyo. También mi agradecimiento a Ángel Loya, porque sin él está oportunidad posiblemente no habría existido, y por todo su apoyo y amistad durante estos años. Él lo ha vivido conmigo, los momentos buenos y también los malos. Agradecer también a Eva su apoyo durante la primera etapa de este proyecto y por compartir la aventura de iniciar algo nuevo en un lugar distinto. Muchas gracias también a todos mis compañeros/profesores del departamento de Ciencias del Mar y Biología Aplicada y del CIMAR. Cada uno ha ayudado de una u otra forma a que está tesis salga adelante; por su ayuda en el trabajo de campo, en el laboratorio o en el despacho, por sus consejos, por compartir su experiencia conmigo y por los buenos momentos dentro y fuera del trabajo. La lista es grande pero espero no olvidarme de nadie: Candela, Elena, Ángel, José, Yoana, Arecha, Maite, Tocho, Andrés, Irene, Aitor, Esther, Damián, Carlos, Yolanda, Vicky, Kilian, Lute, Lydia, Agustín, José Miguel, Aurora, Marta D, Mercedes, Antonio, Isidro, Celia, Elia, Bea, Cristina, Mohamed, Ana F, Ana N, José Vicente, Rosa, Marta, José Luis, Pablo S, Just B, Alfonso, Paqui, Zubcoff… perdón si me olvido de alguien. Muchísimas gracias a todos! Tengo que agradecer a Iñaki Saiz el haberme mostrado el camino. Mi estancia en la UPV en 2006 fue muy corta, apenas una mañana, pero llegué allí con una caja llena de ascidias, actinias, nemertinos, platelmintos y algún que otro sipuncúlido... cuando regresé a Alicante ya tenía claro lo que era un sipuncúlido y la metodología a seguir para identificarlos. Ese fue el verdadero inicio de este trabajo. Gracias también por la orientación que me has dado cuando te he trasladado alguna duda. Agradezco también el gran trabajo y el esfuerzo realizado por mis predecesores en este campo, en especial a Edward Cutler, al que no tuve la suerte de conocer, pero aun así me lo ha hecho todo más fácil. También gracias a Serge Gofas y Jesús Troncoso por los consejos y la ayuda en la identificación de los pequeños bivalvos que han aparecido en este trabajo. Muchas gracias a Just Cebrián por permitirme realizar una estancia en su laboratorio del DISL en Alabama y por portarse conmigo como un buen amigo más que como un jefe; tus consejos son siempre bien recibidos. Allí conocí a gente maravillosa y aprendí muchísimo, tanto en el plano laboral como en el personal. Muchas gracias también a todo el staff del DISL por ponérmelo todo tan fácil durante la estancia, especialmente 7 Distribution and ecology of soft-bottom Sipuncula from the western Mediterranean Sea a Aaron M por su ayuda con el inglés y a Ken Heck por muchísimas cosas. Thank you all!. Por último y más importante muchas gracias a Candela, por estar siempre a mi lado, tanto en el plano personal como en el profesional, y porque no has dejado de apoyarme ni un segundo en los momentos buenos y en los más bajos. Eres lo más importante que me llevo de todos estos años. Gracias por ser el faro que alumbra mi camino. 8 Tabla de contenidos / Table of contents TABLA DE CONTENIDOS / TABLE OF CONTENTS Agradecimientos / Acknowledgements ............................................................................ 7 Resumen ........................................................................................................................................ 11 1. Introducción general ......................................................................................................... 25 1.1—Antecedentes históricos ........................................................................................................ 29 1.2—Contribuciones recientes ...................................................................................................... 30 1.3—Posición filogenética del phylum Sipuncula ........................................................................ 31 1.4—Distribución del phylum Sipuncula ..................................................................................... 33 1.5—El Phylum Sipuncula en el Mediterráneo español ...............................................................35 1.6—Aspectos morfológicos...........................................................................................................35 1.7—Aspectos ecológicos .............................................................................................................. 36 1.8—Valor comercial ..................................................................................................................... 38 1.9—Justificación y objetivos ....................................................................................................... 39 2. First record of the sipunculan worm Phascolion caupo Hendrix 1975 in the Mediterranean Sea ....................................................................................................... 41 2.1—Abstract ................................................................................................................................. 43 2.2—Introduction ......................................................................................................................... 43 2.3—Materials and methods ........................................................................................................ 44 2.4—Results and discussion ......................................................................................................... 44 2.5—Key to the genus Phascolion in the Mediterranean Sea ...................................................... 47 3. Soft-bottom Sipuncula from San Pedro del Pinatar (western Mediterranean): influence of anthropogenic impacts and sediment characteristics on their distribution .......................................................................... 49 3.1—Abstract .................................................................................................................................. 51 3.2—Introduction .......................................................................................................................... 51 3.3—Material and methods ...........................................................................................................53 3.3.1 Study area and sampling design ................................................................................53 3.3.2 Laboratory analysis ................................................................................................... 54 3.3.3 Data processing ........................................................................................................... 55 3.4—Results .................................................................................................................................. 56 3.5—Discussion ............................................................................................................................. 60 4. Distribution of Sipuncula in the Gulf of Valencia and Cape Nao (western Mediterranean) ..................................................................................................................... 63 4.1—Abstract ................................................................................................................................. 65 4.2—Introduction ......................................................................................................................... 65 4.3—Material and methods .......................................................................................................... 66 4.3.1 Study area and sampling design ............................................................................... 66 4.3.2 Laboratory analysis ................................................................................................... 66 4.3.3 Species identification................................................................................................... 67 4.3.4 Statistical analysis ...................................................................................................... 67 4.4—Results .................................................................................................................................
Recommended publications
  • Sipuncula: an Emerging Model of Spiralian Development and Evolution MICHAEL J
    Int. J. Dev. Biol. 58: 485-499 (2014) doi: 10.1387/ijdb.140095mb www.intjdevbiol.com Sipuncula: an emerging model of spiralian development and evolution MICHAEL J. BOYLE1 and MARY E. RICE2 1Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama and 2Smithsonian Marine Station at Fort Pierce (SMSFP), Florida, USA ABSTRACT Sipuncula is an ancient clade of unsegmented marine worms that develop through a conserved pattern of unequal quartet spiral cleavage. They exhibit putative character modifications, including conspicuously large first-quartet micromeres and prototroch cells, postoral metatroch with exclusive locomotory function, paired retractor muscles and terminal organ system, and a U-shaped digestive architecture with left-right asymmetric development. Four developmental life history patterns are recognized, and they have evolved a unique metazoan larval type, the pelagosphera. When compared with other quartet spiral-cleaving models, sipunculan development is understud- ied, challenging and typically absent from evolutionary interpretations of spiralian larval and adult body plan diversity. If spiral cleavage is appropriately viewed as a flexible character complex, then understudied clades and characters should be investigated. We are pursuing sipunculan models for modern molecular, genetic and cellular research on evolution of spiralian development. Protocols for whole mount gene expression studies are established in four species. Molecular labeling and confocal imaging techniques are operative from embryogenesis through larval development. Next- generation sequencing of developmental transcriptomes has been completed for two species with highly contrasting life history patterns, Phascolion cryptum (direct development) and Nephasoma pellucidum (indirect planktotrophy). Looking forward, we will attempt intracellular lineage tracing and fate-mapping studies in a proposed model sipunculan, Themiste lageniformis.
    [Show full text]
  • Reinterpretation of the Enigmatic Ordovician Genus Bolboporites (Echinodermata)
    Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata). Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, Frédéric Marin To cite this version: Emeric Gillet, Bertrand Lefebvre, Véronique Gardien, Emilie Steimetz, Christophe Durlet, et al.. Reinterpretation of the enigmatic Ordovician genus Bolboporites (Echinodermata).. Zoosymposia, Magnolia Press, 2019, 15 (1), pp.44-70. 10.11646/zoosymposia.15.1.7. hal-02333918 HAL Id: hal-02333918 https://hal.archives-ouvertes.fr/hal-02333918 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Reinterpretation of the Enigmatic Ordovician Genus Bolboporites 2 (Echinodermata) 3 4 EMERIC GILLET1, BERTRAND LEFEBVRE1,3, VERONIQUE GARDIEN1, EMILIE 5 STEIMETZ2, CHRISTOPHE DURLET2 & FREDERIC MARIN2 6 7 1 Université de Lyon, UCBL, ENSL, CNRS, UMR 5276 LGL-TPE, 2 rue Raphaël Dubois, F- 8 69622 Villeurbanne, France 9 2 Université de Bourgogne - Franche Comté, CNRS, UMR 6282 Biogéosciences, 6 boulevard 10 Gabriel, F-2100 Dijon, France 11 3 Corresponding author, E-mail: [email protected] 12 13 Abstract 14 Bolboporites is an enigmatic Ordovician cone-shaped fossil, the precise nature and systematic affinities of 15 which have been controversial over almost two centuries.
    [Show full text]
  • Fauna of Australia 4A Phylum Sipuncula
    FAUNA of AUSTRALIA Volume 4A POLYCHAETES & ALLIES The Southern Synthesis 5. PHYLUM SIPUNCULA STANLEY J. EDMONDS (Deceased 16 July 1995) © Commonwealth of Australia 2000. All material CC-BY unless otherwise stated. At night, Eunice Aphroditois emerges from its burrow to feed. Photo by Roger Steene DEFINITION AND GENERAL DESCRIPTION The Sipuncula is a group of soft-bodied, unsegmented, coelomate, worm-like marine invertebrates (Fig. 5.1; Pls 12.1–12.4). The body consists of a muscular trunk and an anteriorly placed, more slender introvert (Fig. 5.2), which bears the mouth at the anterior extremity of an introvert and a long, recurved, spirally wound alimentary canal lies within the spacious body cavity or coelom. The anus lies dorsally, usually on the anterior surface of the trunk near the base of the introvert. Tentacles either surround, or are associated with the mouth. Chaetae or bristles are absent. Two nephridia are present, occasionally only one. The nervous system, although unsegmented, is annelidan-like, consisting of a long ventral nerve cord and an anteriorly placed brain. The sexes are separate, fertilisation is external and cleavage of the zygote is spiral. The larva is a free-swimming trochophore. They are known commonly as peanut worms. AB D 40 mm 10 mm 5 mm C E 5 mm 5 mm Figure 5.1 External appearance of Australian sipunculans. A, SIPUNCULUS ROBUSTUS (Sipunculidae); B, GOLFINGIA VULGARIS HERDMANI (Golfingiidae); C, THEMISTE VARIOSPINOSA (Themistidae); D, PHASCOLOSOMA ANNULATUM (Phascolosomatidae); E, ASPIDOSIPHON LAEVIS (Aspidosiphonidae). (A, B, D, from Edmonds 1982; C, E, from Edmonds 1980) 2 Sipunculans live in burrows, tubes and protected places.
    [Show full text]
  • Musculature in Sipunculan Worms: Ontogeny and Ancestral States
    EVOLUTION & DEVELOPMENT 11:1, 97–108 (2009) DOI: 10.1111/j.1525-142X.2008.00306.x Musculature in sipunculan worms: ontogeny and ancestral states Anja Schulzeà and Mary E. Rice Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA ÃAuthor for correspondence (email: [email protected]). Present address: Department of Marine Biology, Texas A & M University at Galveston, 5007 Avenue U, Galveston, TX 77551, USA. SUMMARY Molecular phylogenetics suggests that the introvert retractor muscles as adults, go through devel- Sipuncula fall into the Annelida, although they are mor- opmental stages with four retractor muscles that are phologically very distinct and lack segmentation. To under- eventually reduced to a lower number in the adult. The stand the evolutionary transformations from the annelid to the circular and sometimes the longitudinal body wall musculature sipunculan body plan, it is important to reconstruct the are split into bands that later transform into a smooth sheath. ancestral states within the respective clades at all life history Our ancestral state reconstructions suggest with nearly 100% stages. Here we reconstruct the ancestral states for the head/ probability that the ancestral sipunculan had four introvert introvert retractor muscles and the body wall musculature in retractor muscles, longitudinal body wall musculature in bands the Sipuncula using Bayesian statistics. In addition, we and circular body wall musculature arranged as a smooth describe the ontogenetic transformations of the two muscle sheath. Species with crawling larvae have more strongly systems in four sipunculan species with different de- developed body wall musculature than those with swimming velopmental modes, using F-actin staining with fluo- larvae.
    [Show full text]
  • Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications
    Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications Le´a Devaere1*,Se´bastien Clausen1, J. Javier A´ lvaro2, John S. Peel3, Daniel Vachard1 1 UMR 8217 Ge´osyste`mes CNRS – Universite´ Lille 1Villeneuve d’Ascq, France, 2 Centro de Astrobiologı´a, Instituto Nacional de Te´cnica Aeroespacial, Consejo Superior de Investigaciones Cientı´ficas, Torrejo´n de Ardoz, Spain, 3 Department of Earth Sciences (Palaeobiology), Uppsala University, Uppsala, Sweden Abstract More than 285 specimens of Conotheca subcurvata with three-dimensionally preserved digestive tracts were recovered from the Terreneuvian (early Cambrian) Heraultia Limestone of the northern Montagne Noire, southern France. They represent one of the oldest occurrences of such preserved guts. The newly discovered operculum of some complete specimens provides additional data allowing emendation of the species diagnosis. Infestation of the U-shaped digestive tracts by smooth uniseriate, branching to anastomosing filaments along with isolated botryoidal coccoids attests to their early, microbially mediated phosphatisation. Apart from taphonomic deformation, C. subcurvata exhibits three different configurations of the digestive tract: (1) anal tube and gut parallel, straight to slightly undulating; (2) anal tube straight and loosely folded gut; and (3) anal tube straight and gut straight with local zigzag folds. The arrangement of the digestive tracts and its correlation with the mean apertural diameter of the specimens are interpreted as ontogenetically dependent. The simple U-shaped gut, usually considered as characteristic of the Hyolithida, developed in earlier stages of C. subcurvata, whereas the more complex orthothecid type-3 only appears in largest specimens. This growth pattern suggests a distinct phylogenetic relationship between these two hyolith orders through heterochronic processes.
    [Show full text]
  • (Bol. Invest. Mar. Cost.) Viene De La Contraportada (ISSN 0122-9761) B
    BOLETÍN DE INVESTIGACIONES MARINAS Y COSTERAS Serie de Publicaciones Periódicas Santa Marta • Colombia (Bol. Invest. Mar. Cost.) Año 2015 • Volumen 44 (2) ISSN: 0122-9761 44 (2) VOL. 44 (2) Santa Marta, Colombia, 2015 CONTENIDO • CONTENTS Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis” Vinculado al Ministerio de Ambiente y Desarrollo Sostenible A. G. Valle, A. Fresneda-Rodríguez, L. Chasqui y S. Caballero Diversidad genética del langostino blanco Litopenaeus schmitti en el Caribe colombiano [Genetic diversity of the southern white shrimp Litopenaeus schmitti in the Colombian Caribbean] . 237 I. C. Molina-Acevedo y M. H. Londoño-Mesa Terebélidos (Annelida: Polychaeta: Terebellidae) de Isla Fuerte, Caribe colombiano [Terebellids (Annelida: Polychaeta: Terebellidae) from Isla Fuerte, Colombian Caribbean] . .253 M. Pérez, M. García, M. Stupak y G. Blustein Disminución del contenido de cobre en pinturas “antifouling” de matriz soluble, uso del eugenol como aditivo [Diminution of the copper concentration in antifouling paints of soluble matrix, eugenol use as (Bol.(Bol. Invest.Invest. Mar.Mar. Cost.)Cost.) additive] . .281 V. Coronado-Carrascal, R. García-Urueña y Arturo Acero P. Comunidad de peces arrecifales en relación con la invasión del pez león: el caso del Caribe sur [Reef fish community in relation to the lionfish invasion: the southern Caribbean case] . .291 S. A. Rodríguez-Satizábal, C. Castellanos, G. Contreras, A. Franco, y M. Serrano Efectos letales y subletales en juveniles de Argopecten nucleus expuestos a lodos de perforación [Lethal and sublethal effects on juvenile Argopecten nucleus exposed to drilling muds] . .303 PED:353099-011/ SERIE: 334167A0 / LINEATURA:200DPI/TIRO M. M. Quiroz-Ruiz y M.
    [Show full text]
  • Bulletin of the British Museum (Natural History)
    A classification of the phylum Sipuncula Peter E. Gibbs Marine Biological Association of the U.K., Plymouth, Devon PL1 2PB, U.K. Edward B. Cutler Division of Science and Mathematics, Utica College of Syracuse University, Utica, New York 13502, U.S.A. Synopsis A classification of the phylum Sipuncula is adopted following the analysis of Cutler & Gibbs (1985) and comprises two classes, four orders and six families. This replaces the earlier classification of Stephen & Edmonds (1972) which was based on four families only. The diagnostic characters are reviewed. Seventeen genera are redefined, one new subgenus is described and twelve other subgenera are recognised. Introduction The classification of the phylum Sipuncula has had a confused history. Early attempts to define higher taxa by grouping genera were, to a large extent, thwarted by incomplete, imprecise or erroneous descriptions of many species. Stephen & Edmonds (1972) classified the phylum into four families in providing the first compilation of species described prior to about 1970. How- ever, this monograph is essentially literature-based and consequently many errors are repeated; nevertheless, it provides a useful base-line to the present revision. The need for greater precision in defining genera has led the authors to re-examine most of the available type specimens. The definitions of genera presented below incorporate both novel observations and corrections to earlier descriptions. Where possible, nine basic characters have been checked for each species before assigning it to a genus. These characters are summarised for each genus in Table 1 . A phylogenetic interpretation of the classification used here will be found in Cutler & Gibbs (1985).
    [Show full text]
  • Phascolosoma Agassizi Class: Phascolosomatida Order: Phascolosomaformes Pacific Peanut Worm Family: Phasoclosomatidae
    Phylum: Annelida Phascolosoma agassizi Class: Phascolosomatida Order: Phascolosomaformes Pacific peanut worm Family: Phasoclosomatidae Taxonomy: The evolutionary origins of can be surrounded by ciliated tentacles, a sipunculans, recently considered a distinct mouth and nuchal organ (Fig. 2) (Rice 2007). phylum (Rice 2007), is controversial. Current Along the introvert epidermis are spines or molecular phylogenetic evidence (e.g., Staton hooks. 2003; Struck et al. 2007; Dordel et al. 2010; Oral disc: The oral disc is bordered Kristof et al. 2011) suggests that Sipuncula be by a ridge (cephalic collar) of tentacles placed within the phylum Annelida, which is enclosing a dorsal nuchal gland. characterized by segmentation. Placement of Inconspicuous, finger-like and not branched the unsegmented Sipuncula and Echiura (Rice 1975b), the 18–24 tentacles exist in a within Annelida, suggests that segmentation crescent-shaped arc, enclosing a heart- was secondarily lost in these groups (Struck shaped nuchal gland (Fig. 2). et al. 2007; Dordel et al. 2010). Mouth: Inconspicuous and posterior to oral disc, with thin flange (cervical collar) Description just ventral to and outside the arc of tentacles Size: Up to 15 cm (extended) and commonly (Fig. 2). 5–7 cm in length (Rice 1975b). The Eyes: A pair of ocelli at anterior end illustrations are from a specimen (Coos Bay) are internal and in an ocular tube (Fig. 4) 13 cm in length. Young individuals are 10–13 (Hermans and Eakin 1969). mm in length (extended, Fisher 1950). Hooks: Tiny chitinous spines on the Juveniles can be up to 30 mm long (Gibbs introvert anterior are arranged in a variable 1985).
    [Show full text]
  • Distribution of Sipuncula in Relation to the Environmental Characteristics at Selected Sites in Kuching Division, Sarawak
    DISTRIBUTION OF SIPUNCULA IN RELATION TO THE ENVIRONMENTAL CHARACTERISTICS AT SELECTED SITES IN KUCHING DIVISION, SARAWAK. Nurnadirah Bt Ibrahim (38150) Bachelor of Science with Honours (Aquatic Resource Science and Management) 2015 Distribution of Sipuncula in relation to the Environmental Characteristics at Selected Sites in Kuching Division, Sarawak Nurnadirah Binti Ibrahim (38150) This report is submitted in partial fulfillment of the Final Year Project 2 (STF 3015) Faculty of Resource Science and Technology UNIVERSITI MALAYSIA SARAWAK 2015 Acknowledgement Alhamdulillah, praises to Allah for His blessing in completing this thesis. Special gratitude goes to my supervisor, Dr Siti Akmar Khadijah, for her supervision and support. Her priceless comments, suggestion and support throughout the experimental and thesis work have contributed to the triumph of this research. Sincere thanks to my roommates, course mate and my friend for their kindness and moral support during my studies. Besides, large appreciation to the master students Mr Norhakimi Muhammad for the helping throughout this project. My deepest appreciation goes to my beloved family for their support, prayers as well as encouragement. They are my inspiration to move forward through the challenges. My appreciation also goes to all the laboratory assistant who help me during the field work as well as in the laboratory. For those who indirectly help me, your kind-heartedness means a lot for me. Thank you. i DECLARATION I hereby declare that no portion of this dissertation has been
    [Show full text]
  • 1 Rrh: Middle Cambrian Coprolites Lrh: J. Kimmig And
    RRH: MIDDLE CAMBRIAN COPROLITES LRH: J. KIMMIG AND B.R. PRATT Research Article DOI: http://dx.doi.org/10.2110/palo.2017.038 COPROLITES IN THE RAVENS THROAT RIVER LAGERSTÄTTE OF NORTHWESTERN CANADA: IMPLICATIONS FOR THE MIDDLE CAMBRIAN FOOD WEB 1 2 JULIEN KIMMIG AND BRIAN R. PRATT 1Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USA 2Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada e-mail: [email protected] ABSTRACT: The Rockslide Formation (middle Cambrian, Drumian, Bolaspidella Zone) of the Mackenzie Mountains, northwestern Canada, hosts the Ravens Throat River Lagerstätte, which consists of two, 1-m thick intervals of greenish, thinly laminated, locally burrowed, slightly calcareous mudstone yielding a low-diversity and low-abundance fauna of bivalved arthropods, ‘worms’, hyoliths, and trilobites. Also present are flattened, circular, black carbonaceous objects averaging 15 mm in diameter, interpreted as coprolites preserved in either dorsal or ventral view. Many consist of aggregates of ovate carbonaceous flakes 0.5–2 mm long, which are probably compacted fecal pellets. Two-thirds contain a variably disarticulated pair of arthropod valves, and many also contain coiled to fragmented, corrugated ‘worm’ cuticle, either alone or together with valves. A few contain an enrolled agnostoid. In rare cases a ptychoparioid cranidium, agnostoid shield, bradoriid valve, or hyolith conch or operculum is present; these are taken to be due to capture and ingestion of bioclasts from the adjacent seafloor. Many of the coprolites are associated with semi-circular spreiten produced by movement of the worm-like predator while it occupied a vertical burrow. Its identity is unknown but it clearly exhibited prey selectivity.
    [Show full text]
  • Oldest Mickwitziid Brachiopod from the Terreneuvian of Southern France
    Oldest mickwitziid brachiopod from the Terreneuvian of southern France LÉA DEVAERE, LARS HOLMER, SÉBASTIEN CLAUSEN, and DANIEL VACHARD Devaere, L., Holmer, L., Clausen, S., and Vachard, D. 2015. Oldest mickwitziid brachiopod from the Terreneuvian of southern France. Acta Palaeontologica Polonica 60 (3): 755–768. Kerberellus marcouensis Devaere, Holmer, and Clausen gen. et sp. nov., originally described as Dictyonina? sp., from the Terreneuvian of northern Montagne Noire (France) is re-interpreted as the oldest relative to or member of mickwitziid- like stem-group brachiopods. We extracted 170 partial to complete phosphatic internal moulds of two types of adult and one type of juvenile disarticulated valves, rarely externally coated with phosphates, from the calcareous Heraultia Member of the Marcou Formation. They correspond to microbially infested, ventribiconvex, inequivalved, bivalved shells. The ventral interarea is bisected by a triangular sinus. The shell, most probably dominantly organic in origin, is orthogonally pierced throughout its entire thickness by radially-aligned, smooth-walled, cylindrical to hour-glass shaped canals except for the sub-apical planar field (interarea). The through-going canals of K. marcouensis are compared with brachiopods endopunctae and with canals of mickwitziid brachiopods. The absence of striations on K. marcouensis canal walls, typical of mickwitziids, implies that (i) the tubes could have been depleted of setae or; (ii) traces of the microvilli were not preserved on the tube wall (taphonomic bias) or, (iii) the tubes could have been associated with an outer epithelial follicle. Key words: Brachiopoda, Mickwitziidae, shell canals, Cambrian, Terreneuvian, West Gondwana, France. Léa Devaere [[email protected]], Sébastien Clausen [[email protected]], and Daniel Vachard [[email protected]], UMR 8217 Géosystèmes CNRS-Université Lille 1, bâtiment SN5, avenue Paul Lan- gevin, 59655 Villeneuve d’Ascq, France.
    [Show full text]
  • Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park
    Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park By Linda Sue Lassiter1, Justin S. Tweet2, Frederick A. Sundberg3, John R. Foster4, and P. J. Bergman5 1Northern Arizona University Department of Biological Sciences Flagstaff, Arizona 2National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 3Museum of Northern Arizona Research Associate Flagstaff, Arizona 4Utah Field House of Natural History State Park Museum Vernal, Utah 5Northern Arizona University Flagstaff, Arizona Introduction As impressive as the Grand Canyon is to any observer from the rim, the river, or even from space, these cliffs and slopes are much more than an array of colors above the serpentine majesty of the Colorado River. The erosive forces of the Colorado River and feeder streams took millions of years to carve more than 290 million years of Paleozoic Era rocks. These exposures of Paleozoic Era sediments constitute 85% of the almost 5,000 km2 (1,903 mi2) of the Grand Canyon National Park (GRCA) and reveal important chronologic information on marine paleoecologies of the past. This expanse of both spatial and temporal coverage is unrivaled anywhere else on our planet. While many visitors stand on the rim and peer down into the abyss of the carved canyon depths, few realize that they are also staring at the history of life from almost 520 million years ago (Ma) where the Paleozoic rocks cover the great unconformity (Karlstrom et al. 2018) to 270 Ma at the top (Sorauf and Billingsley 1991). The Paleozoic rocks visible from the South Rim Visitors Center, are mostly from marine and some fluvial sediment deposits (Figure 5-1).
    [Show full text]