Thyroid Hormone, T3-Dependent Phosphorylation and Translocation of Trip230 from the Golgi Complex to the Nucleus

Total Page:16

File Type:pdf, Size:1020Kb

Thyroid Hormone, T3-Dependent Phosphorylation and Translocation of Trip230 from the Golgi Complex to the Nucleus Proc. Natl. Acad. Sci. USA Vol. 96, pp. 4443–4448, April 1999 Cell Biology Thyroid hormone, T3-dependent phosphorylation and translocation of Trip230 from the Golgi complex to the nucleus YUMAY CHEN,PHANG-LANG CHEN,CHI-FEN CHEN,Z.DAVE SHARP, AND WEN-HWA LEE* Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207 Communicated by Bert W. O’Malley, Baylor College of Medicine, Houston, TX, February 17, 1999 (received for review December 28, 1998) ABSTRACT Trip230 is a novel coactivator of the thyroid tion (5). These results concerning modulation of hormonal hormone receptor that is negatively regulated by the retino- signaling provided additional evidence of the pleiotrophic, but blastoma tumor-suppressor protein. In an examination of its overlapping, functions of retinoblastoma protein (Rb) in cel- subcellular distribution, Trip230 localized predominantly to lular proliferation, differentiation, and development (6). the vicinity of the Golgi instead of the nucleus, as other nuclear How coactivators are recruited coordinately to the activated hormone receptor coactivators. Using a series of deletion TR is unclear. One possibility is that hormones also are mutants, a critical region identified for Golgi area targeting involved in this process by modifying the receptor, their coincided with a previously defined thyroid hormone receptor- cofactors, or both. Nuclear localization is a prerequisite for binding domain of Trip230. During cell cycle progression, the nuclear hormone receptors and their cofactors to function as expression level of Trip230 is constant and a significant transcriptional regulators. Thus, translocation of these factors portion is imported into the nucleus at S phase. Within an from cytoplasm to nucleus also may be regulated. Based on hour of treating cells with T3, Trip230 immunofluorescence hormone-binding assays, it was proposed that TR is nuclear transiently colocalized with TR in prominent subnuclear regardless of ligand status (7). Although its cellular localiza- structures. T3-dependent nuclear import of Trip230 does not tion is not entirely clear, cellular partitioning of TR may be, in require new protein synthesis. Coincident with T3 treatment part, dependent on ligand binding. How compartmentalization and nuclear import, newly phosphorylated residue(s) ap- of nuclear receptors is regulated in conjunction with their peared in Trip230, suggesting that phosphorylation may be coactivators is not known. involved in its nuclear import. These findings provided a novel To study further the coactivator function of Trip230, we mechanism for the regulation of nuclear hormone transcrip- investigated its cellular partitioning in relation to TR in the tion factors by hormone-responsive phosphorylation and nu- presence or absence of thyroid hormone. Interestingly, we clear import of cytoplasmically located coactivators. found that Trip230 is localized mainly at the Golgi complex region in the cells cultured in T3-free medium. Translocation Steroid, retinoic acid, and thyroid hormone receptors function into the nucleus and colocalization with TR are T3-dependent as ligand-activated transcription factors that control multiple and correlate with phosphorylation of additional residues of biological functions, including cell proliferation, differentia- Trip230. tion, morphogenesis, programmed cell death, and metabolic homeostasis. Understanding the molecular and cellular mech- MATERIALS AND METHODS anisms underlying the ability of these receptors to regulate the transcription of specific target genes is a major challenge. In Cell Culture, Synchronization, and DNA Transfections. recent years, a number of interacting proteins have been CV1 monkey kidney cells were grown on plastic surfaces at identified that are critical for the transcriptional responses 37°C in a humidified 10% CO2-containing atmosphere in transduced by nuclear hormone receptors (reviewed in refs. 1 DMEM (GIBCO) supplemented with 10% heat-inactivated and 2). These coactivators or corepressors form multiprotein FCS (Flow Laboratories). Each 10-cm dish of cells grown to complexes to regulate the expression of hormone-responsive 60% confluence then was cultured in medium containing target genes. Different cell types may have distinct composi- charcoal-striped serum for 36 hr. In the case of hormone treatments, T3 was added to the medium to a final concen- tions of associated factors in the nuclear hormone receptor 2 complexes, individual members of which may integrate distinct tration of 10 6 M. Cyclohexamide at 10 mgyml, in addition to physiological signals (2). T3, was included in the treatment of some cells shown in Fig. How a small lipophilic molecule, such as 3,39,5-triiodo-L- 4C. At the various times indicated, cells were fixed for immu- thyronine (T3), coordinates and activates transcription of nostaining (see below) or lysed for Western blot analysis. target genes remains unclear. Thyroid hormone receptor (TR) Human bladder carcinoma cells, T24 (American Type Culture bound to positive thyroid hormone-responsive elements in the Collection, Manassas, VA), grown in DMEMy10% FCS, were absence of ligand decreases transcription. This silencing is due synchronized at G1 by density arrest as described previously to the interactions of the nuclear corepressors NcoR and (8). The transfection experiments in Fig. 3 were done with 1 3 SMRT (3, 4). Ligand-dependent activation of the TR results in 106 cells by using conventional calcium phosphateyDNA (10 removal of the corepressors that are replaced with coactivator mg) coprecipitation. Twelve hours posttransfection, the pre- complex [pCIPySRC1yNcoA-1ypCAF and CBPyp300 (re- cipitates were removed, and the cells were refed fresh medium viewed in refs. 1 and 2)]. One such coactivator, Trip230, binds and observed under a fluorescence microscope (Nikon) 36 hr TR in a T3-dependent manner and potentiates transcription of posttransfection. T3-activated receptor (5). Trip230 originally was identified as Immunoprecipitation and Western Blot Analysis. Cells re- a protein that binds the retinoblastoma protein, which, inter- suspended in Lysis 250 buffer were subjected to three freezey estingly, can down-regulate Trip230yTR-mediated transcrip- Abbreviations: Rb, retinoblastoma protein; TR and TRb, thyroid 9 The publication costs of this article were defrayed in part by page charge hormone receptor; T3, 3,3 ,5-triiodo-L-thyronine; GFP, green fluo- rescent protein. payment. This article must therefore be hereby marked ‘‘advertisement’’ in *To whom reprint requests should be addressed at: Department of accordance with 18 U.S.C. §1734 solely to indicate this fact. Molecular Medicine, Institute of Biotechnology, 15355 Lambda PNAS is available online at www.pnas.org. Drive, San Antonio, TX 78245-3207. e-mail: [email protected]. 4443 Downloaded by guest on October 3, 2021 4444 Cell Biology: Chen et al. Proc. Natl. Acad. Sci. USA 96 (1999) thaw cycles (liquid nitrogeny37°C) and then centrifuged at thyroid hormone (T3)-mediated transcription (5). Because T3 14,000 rpm for 2 min at room temperature. The supernatants is important for growth regulation, especially through the were used for immunoprecipitation as described (9). Briefly, insulin-like growth factor I pathway (12, 13), we were inter- mouse polyclonal anti-C5 (Trip230) antisera (1 ml) were added ested in determining whether Trip230 expression is cell cycle- to each supernatant. After a 1-hr incubation, protein-A Sepha- regulated. Bladder carcinoma T24 cells were arrested at G1 by rose beads were added and incubation continued for another contact inhibition at high density and then released to enter hour. Beads then were collected, washed five times with lysis the cell cycle by plating at low density (8, 14). M phase cells buffer containing 250 mM NaCl, and then boiled in SDS- were enriched by an additional treatment with nocadozol. Cells loading buffer for immunoblot analysis as described (8). were harvested at different stages of cell cycle, and protein Immunostaining. Cells grown on coverslips in tissue culture expression was analyzed by Western blotting by using specific dishes were washed in PBS and fixed for 30 min in 4% antibodies. As shown in Fig. 1A, the amount of Trip230 is not formaldehyde in PBS with 0.5% Triton X-100. After treating altered during the cell cycle. Rb, whose expression and phos- with 0.05% Saponin in water for 30 min and washing exten- phorylation is cell cycle-regulated, served as a marker for the sively with PBS, the cells were blocked in PBS containing 10% cell cycle stages as described previously (14). p84, a nuclear normal goat serum. An overnight incubation with antibody matrix protein whose expression is not cell cycle-regulated, diluted in 10% goat serum at 4°C was followed by three washes served as loading control. This result suggests that the regu- and then by another 1-hr incubation with fluorochrome- lation of Trip230 may be at the posttranslational level. conjugated secondary antibody. Colocalization of Trip230 and Cell Cycle Dynamics of Trip230 Cellular Partitioning. Be- mannosidase II or TR was performed by using a polyclonal cause Trip230 is proposed to be a coactivator for TR (5), a (mouse) anti-C5 antibody mixed with polyclonal (rabbit) anti- transcription factor that functions in the nucleus, we were ManII antisera (10) or polyclonal (rabbit) anti-TR antibody interested in determining the cellular partitioning of Trip230 (TR-b117;
Recommended publications
  • The Role of Signal Transducer and Activator of Transcription 5 in the Inhibitory Effects of GH on Adipocyte Differentiation
    139 The role of signal transducer and activator of transcription 5 in the inhibitory effects of GH on adipocyte differentiation H E Richter1, T Albrektsen2 and N Billestrup1,3 1Department of Signal Transduction, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsvaerd, Denmark 2Department of Transcription Biology, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsvaerd, Denmark 3Steno Diabetes Centre, Niels Steensensvej 6, DK-2820 Gentofte, Denmark (Requests for offprints should be addressed to N Billestrup, Steno Diabetes Centre, Niels Steensensvej 6, NSK2·023, DK-2820 Gentofte, Denmark; Email:[email protected]) Abstract GH inhibits primary rat preadipocyte differentiation and expression of late genes required for terminal differentiation. Here we show that GH-mediated inhibition of fatty acid-binding protein aP2 gene expression correlates with the activation of the Janus kinase-2/signal transducer and activator of transcription (STAT)-5 signalling pathway. Within minutes of treatment, GH induced the tyrosine phosphorylation, nuclear localization and DNA binding of STAT5. Importantly, there was no evidence that STAT5 acted via an interaction with peroxisome proliferator-activated receptor γ. To further understand the mechanism of STAT5 action, we reconstituted the inhibition of aP2 in a non-adipogenic cell line. Using this system, we showed that the ability of GH to inhibit a 520 bp aP2 reporter was largely dependent upon the presence of either STAT5A or STAT5B. Mutant analysis confirmed that the tyrosine phosphorylation of STAT5 was essential for this signalling. However, STAT5’s C-terminal transactivation domain was fully dispensable for this inhibition. Taken together, these data confirm a key regulatory role of STAT5 in adipose tissue and point to STAT5 as the repressing modulator of GH-mediated inhibition in primary preadipocytes.
    [Show full text]
  • Nuclear Hormone Receptor Antagonism with AP-1 by Inhibition of the JNK Pathway
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway Carme Caelles,1 Jose´M. Gonza´lez-Sancho, and Alberto Mun˜oz2 Instituto de Investigaciones Biome´dicas, Consejo Superior de Investigaciones Cientı´ficas, E-28029 Madrid, Spain The activity of c-Jun, the major component of the transcription factor AP-1, is potentiated by amino-terminal phosphorylation on serines 63 and 73 (Ser-63/73). This phosphorylation is mediated by the Jun amino-terminal kinase (JNK) and required to recruit the transcriptional coactivator CREB-binding protein (CBP). AP-1 function is antagonized by activated members of the steroid/thyroid hormone receptor superfamily. Recently, a competition for CBP has been proposed as a mechanism for this antagonism. Here we present evidence that hormone-activated nuclear receptors prevent c-Jun phosphorylation on Ser-63/73 and, consequently, AP-1 activation, by blocking the induction of the JNK signaling cascade. Consistently, nuclear receptors also antagonize other JNK-activated transcription factors such as Elk-1 and ATF-2. Interference with the JNK signaling pathway represents a novel mechanism by which nuclear hormone receptors antagonize AP-1. This mechanism is based on the blockade of the AP-1 activation step, which is a requisite to interact with CBP. In addition to acting directly on gene transcription, regulation of the JNK cascade activity constitutes an alternative mode whereby steroids and retinoids may control cell fate and conduct their pharmacological actions as immunosupressive, anti-inflammatory, and antineoplastic agents.
    [Show full text]
  • The Histone Acetylase PCAF Is a Nuclear Receptor Coactivator
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press The histone acetylase PCAF is a nuclear receptor coactivator Jorge C.G. Blanco,1,4 Saverio Minucci,1 Jianming Lu,1 Xiang-Jiao Yang,1 Kristen K. Walker,3 Hongwu Chen,3 Ronald M. Evans,2,3 Yoshihiro Nakatani,1 and Keiko Ozato1,5 1Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892-2753 USA; 2Howard Hughes Medical Institute; 3The Salk Institute for Biological Studies, La Jolla, California 92037 USA Whereas the histone acetylase PCAF has been suggested to be part of a coactivator complex mediating transcriptional activation by the nuclear hormone receptors, the physical and functional interactions between nuclear receptors and PCAF have remained unclear. Our efforts to clarify these relationships have revealed two novel properties of nuclear receptors. First, we demonstrate that the RXR/RAR heterodimer directly recruits PCAF from mammalian cell extracts in a ligand-dependent manner and that increased expression of PCAF leads to enhanced retinoid-responsive transcription. Second, we demonstrate that, in vitro, PCAF directly associates with the DNA-binding domain of nuclear receptors, independently of p300/CBP binding, therefore defining a novel cofactor interaction surface. Furthermore, our results show that dissociation of corepressors enables ligand-dependent PCAF binding to the receptors. This observation illuminates how a ligand-dependent receptor function can be propagated to regions outside the ligand-binding domain itself. On the basis of these observations, we suggest that PCAF may play a more central role in nuclear receptor function than previously anticipated.
    [Show full text]
  • Mutant Thyroid Hormone Receptor Represses the Expression And
    [CANCER RESEARCH 63, 5274–5280, September 1, 2003] Mutant Thyroid Hormone Receptor ␤ Represses the Expression and Transcriptional Activity of Peroxisome Proliferator-activated Receptor ␥ during Thyroid Carcinogenesis Hao Ying, Hideyo Suzuki, Li Zhao, Mark C. Willingham, Paul Meltzer, and Sheue-Yann Cheng1 Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4264 [H. Y., H. S., L. Z., S-Y. C.]; National Human Genome Research Institute, NIH, Bethesda, Maryland 20892-4264 [P. M.]; and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1072 [M. C. W.] ABSTRACT not in 10 papillary carcinomas. This unique genetic rearrangement in follicular carcinoma was further confirmed by subsequent analyses The molecular genetics underlying thyroid carcinogenesis is not clear. using a larger number of samples (8). When fused to PAX8, PPAR␥1 Recent identification of a PAX8-peroxisome proliferator-activated receptor ␥ ␥ not only loses its capability to stimulate thiazolidinedione-induced (PPAR ) fusion gene in human thyroid follicular carcinoma suggests a ␥ tumor suppressor role of PPAR␥ in thyroid carcinogenesis. Mice harbor- transcription but also acts to inhibit PPAR 1 transcriptional activity ␥ ing a knockin mutant thyroid hormone ␤ receptor (TR␤PV) spontaneously (7). However, how the loss of PPAR 1 transcriptional activity im- develop thyroid follicular carcinoma through pathological progression of pacts the normal functions of thyroid follicular cells is unclear. hyperplasia, capsular invasion, vascular invasion, anaplasia, and eventu- We have recently created a mutant mouse by targeting a mutation ally, distant organ metastasis. This mutant mouse (TR␤PV/PV mouse) (PV)totheTR␤ gene locus (TR␤PV mice; Ref.
    [Show full text]
  • Mutation of Thyroid Hormone Receptor-&Beta
    Oncogene (2011) 30, 3381–3390 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Mutation of thyroid hormone receptor-b in mice predisposes to the development of mammary tumors CJ Guigon1, DW Kim1, MC Willingham2 and S-y Cheng1 1Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA and 2Department of Pathology, Wake Forest University, Winston-Salem, NC, USA Correlative data suggest that thyroid hormone receptor-b Introduction (TRb) mutations could increase the risk of mammary tumor development, but unequivocal evidence is still Thyroid hormone receptors (TRs) belong to the lacking. To explore the role of TRb mutants in vivo in superfamily of nuclear receptors that are ligand- breast tumor development and progression, we took dependent transcription factors. Two TR genes, THRA advantage of a knock-in mouse model harboring a and THRB, located on chromosomes 17 and 3, respec- mutation in the Thrb gene encoding TRb (ThrbPV mouse). tively, encode four thyroid hormone (T3)-binding Although in adult nulliparous females, a single ThrbPV receptors: TRa1, TRb1, TRb2 and TRb3. They bind allele did not contribute to mammary gland abnormalities, T3 that has critical roles in differentiation, growth and the presence of two ThrbPV alleles led to mammary metabolism (Yen, 2001). hyperplasia in B36% ThrbPV/PV mice. The ThrbPV Several findings support the notion that mutations of mutation further markedly augmented the risk of TRs can be associated with cancer. Early evidence mammary hyperplasia in a mouse model with high suggested that mutated TRs could be involved in susceptibility to mammary tumors (Pten þ /À mouse), as carcinogenesis came from the discovery that v-erbA, a demonstrated by the occurrence of mammary hyperplasia highly mutated chicken THRA1 that has lost the ability in B60% of ThrbPV/ þ Pten þ /À and B77% of ThrbPV/PV to activate gene transcription, leads to neoplastic trans- Pten þ /À mice versus B33% of Thrb þ / þ Pten þ /À mice.
    [Show full text]
  • Thyroid Hormones and Their Receptors in the Regulation of Cell Proliferation
    Vol. 53 No. 4/2006, 641–650 on-line at: www.actabp.pl Review Thyroid hormones and their receptors in the regulation of cell proliferation Monika Puzianowska-Kuznicka1,2*, Maciej Pietrzak1, Olga Turowska2 and Alicja Nauman2 1Department of Endocrinology, Medical Research Center, Polish Academy of Sciences, Warszawa, Poland; 2De- partment of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Warszawa, Poland; *e-mail: [email protected] Received: 25 October, 2006; revised: 07 November, 2006; accepted: 08 November, 2006 available on-line: 19 November, 2006 In the present work, we have reviewed data showing that triiodothyronine and its nuclear recep- tors modify expression of different genes/proteins involved in cell cycle control beginning from growth factors (such as EGF and TGF-β), to cell surface receptors (EGFR), as well as proteins act- ing at the cell membrane (Ras), various transcription factors (c-Fos, c-Myc, E2F1), cyclins, Cip/Kip family of cdk2 inhibitors, and p53 inhibitor Mdm2 (Table 1). We have shown how TRs are also able to modify the fate of a cell, thanks to their ability to form complexes with other transcrip- tion factors such as p53 — a key regulator of apoptosis and proliferation. Available data show that the function of thyroid hormones and of their receptors on cell proliferation is not homog- enous. In fact, it strongly depends on the cell type, its developmental state (progenitor or dif- ferentiated), its patho-physiological state (normal or tumor cell), and the so-called ‘cellular con- text’. Therefore, it is not possible to uniformly recommend T3 treatment or T3 depletion to stop or initiate proliferation of all cell types.
    [Show full text]
  • Retinoid X Receptor Is Necessary to Establish the S-Opsin Gradient In
    Retinoid X Receptor ␥ Is Necessary to Establish the S-opsin Gradient in Cone Photoreceptors of the Developing Mouse Retina Melanie R. Roberts,1,2 Anita Hendrickson,2 Christopher R. McGuire,2 and Thomas A. Reh2 PURPOSE. The retinoid X receptors (RXRs) are members of the tion, they also have demonstrated some isoform-specific family of ligand-dependent nuclear hormone receptors. One of functions. For example, RXR␣ heterodimerizes with retinoic these genes, RXR␥, is expressed in highly restricted regions of acid receptors (RARs) to regulate retinal growth and cardiac the developing central nervous system (CNS), including the development.4 retina. Although previous studies have localized RXR␥ to de- Although all three isoforms are expressed in the developing veloping cone photoreceptors in several species, its function nervous system, RXR␥ has the most restricted and develop- in these cells is unknown. A prior study showed that thyroid mentally regulated expression. It is expressed in the develop- hormone receptor ␤2 (TR␤2) is necessary to establish proper ing striatum, part of the tegmentum, the pituitary, the ventral cone patterning in mice by activating medium-wavelength (M) horns of the spinal cord,3,5 and the retina.6 RXR␥-null mice cone opsin and suppressing short-wavelength (S) cone opsin. show isoform-specific defects in both striatal and hippocampal Thyroid hormone receptors often regulate gene transcription function, although RXR␤ can partially compensate for the loss as heterodimeric complexes with RXRs. of RXR␥ in the striatum.2,7,8 RXR␥ has also been identified in 6,9,10 METHODS. To determine whether RXR␥ cooperates with TR␤2 the developing retina of Xenopus, chicks, and mice.
    [Show full text]
  • Non-Canonical Dimerization of the Androgen Receptor and Other Nuclear Receptors: Implications for Human Disease
    26 8 Endocrine-Related A Jiménez-Panizo et al. Androgen receptor 26:8 R479–R497 Cancer dimerization in disease REVIEW Non-canonical dimerization of the androgen receptor and other nuclear receptors: implications for human disease Alba Jiménez-Panizo1, Paloma Pérez2, Ana M Rojas3, Pablo Fuentes-Prior4 and Eva Estébanez-Perpiñá1 1Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain 2Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain 3Computational Biology and Bioinformatics Group, Andalusian Center for Developmental Biology (CABD-CSIC), Sevilla, Spain 4Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain Correspondence should be addressed to P Fuentes-Prior or E Estébanez-Perpiñá: [email protected] or [email protected] Abstract Nuclear receptors are transcription factors that play critical roles in development, Key Words homeostasis and metabolism in all multicellular organisms. An important family of f androgen receptor nuclear receptors comprises those members that respond to steroid hormones, and f glucocorticoid receptor which is subdivided in turn into estrogen receptor (ER) isoforms α and β (NR3A1 and f protein structure A2, respectively), and a second subfamily of so-called oxosteroid receptors. The latter f ligand-binding domain includes the androgen receptor (AR/NR3C4), the glucocorticoid receptor (GR/NR3C1), f multimerization the mineralocorticoid receptor (MR/NR3C2) and the progesterone receptor (PR/NR3C3). f prostate cancer Here we review recent advances in our understanding of the structure-and-function f androgen insensitivity relationship of steroid nuclear receptors and discuss their implications for the etiology syndromes (AIS) of human diseases.
    [Show full text]
  • Thyroid Hormone Regulated Genes in Cerebral Cortex Development
    232 2 J BERNAL Thyroid hormones and cortex 232:2 R83–R97 Review development Thyroid hormone regulated genes in cerebral cortex development Juan Bernal Correspondence Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas y Universidad should be addressed Autónoma de Madrid, and Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos to J Bernal III, Madrid, Spain Email [email protected] Abstract The physiological and developmental effects of thyroid hormones are mainly due to Key Words the control of gene expression after interaction of T3 with the nuclear receptors. To f brain understand the role of thyroid hormones on cerebral cortex development, knowledge f development of the genes regulated by T3 during specific stages of development is required. In our f fetus laboratory, we previously identified genes regulated by 3T in primary cerebrocortical f gene expression cells in culture. By comparing these data with transcriptomics of purified cell types from f thyroid hormone the developing cortex, the cellular targets of T3 can be identified. In addition, many of metabolism the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of Endocrinology T -regulated genes in the different stages of cortex development within the of 3 physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data Journal indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons.
    [Show full text]
  • Retinoid X Receptors: X-Ploring Their (Patho)Physiological Functions
    Cell Death and Differentiation (2004) 11, S126–S143 & 2004 Nature Publishing Group All rights reserved 1350-9047/04 $30.00 www.nature.com/cdd Review Retinoid X receptors: X-ploring their (patho)physiological functions A Szanto1, V Narkar2, Q Shen2, IP Uray2, PJA Davies2 and aspects of metabolism. The discovery of retinoid receptors L Nagy*,1 substantially contributed to understanding how these small, lipophilic molecules, most importantly retinoic acid (RA), exert 1 Department of Biochemistry and Molecular Biology, Research Center for their pleiotropic effects.1,2 Retinoid receptors belong to the Molecular Medicine, University of Debrecen, Medical and Health Science family of nuclear hormone receptors, which includes steroid Center, Nagyerdei krt. 98, Debrecen H-4012, Hungary 2 hormone, thyroid hormone and vitamin D receptors, various Department of Integrative Biology and Pharmacology, The University of Texas- orphan receptors and also receptors activated by intermediary Houston Medical School, Houston, TX, USA * Corresponding author: L Nagy, Department of Biochemistry and Molecular metabolites: for example, peroxisome proliferator-activated Biology, University of Debrecen, Medical and Health Science Center, receptor (PPAR) by fatty acids, liver X receptor (LXR) by Nagyerdei krt. 98, Debrecen H-4012, Hungary. Tel: þ 36-52-416432; cholesterol metabolites, farnesoid X receptor (FXR) by bile Fax: þ 36-52-314989; E-mail: [email protected] acids and pregnane X receptor (PXR) by xenobiotics.3,4 Members of this family function as ligand-activated
    [Show full text]
  • Characterization of a Thyroid Hormone Receptor Expressed in Human Kidney and Other Tissues AKIRA NAKAI, SUSUMU SEINO, AKIHIRO SAKURAI, ILLYA SZILAK, GRAEME I
    Proc. Nail. Acad. Sci. USA Vol. 85, pp. 2781-2785, April 1988 Medical Sciences Characterization of a thyroid hormone receptor expressed in human kidney and other tissues AKIRA NAKAI, SUSUMU SEINO, AKIHIRO SAKURAI, ILLYA SZILAK, GRAEME I. BELL, AND LESLIE J. DEGROOT* Thyroid Study Unit, Department of Medicine, Howard Hughes Medical Institute, and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 Communicated by Donald F. Steiner, December 18, 1987 ABSTRACT A cDNA encoding a specific form of thyroid brary, which, although clearly related to the thyroid hormone hormone receptor expressed in human liver, kidney, placenta, receptor type a that has been described by others, is a distinct and brain was isolated from a human kidney library. Identical molecule.t In addition, we have demonstrated that the protein clones were found in human placenta and HepG2 cDNA encoded by this cDNA corresponds to a high-affinity triiodo- libraries. The cDNA encodes a 490-amino acid protein (Mr, thyronine (T3) receptor and that its mRNA is expressed in 54,824). When expressed and translated in vitro, the protein several human tissues. product binds triiodothyronine with Ka of 2.3 X 109 M-1. This protein, designated human thyroid hormone receptor type a2 (hTRa2), has the same domain structure as other MATERIALS AND METHODS members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type a described in cDNA Cloning and Sequencing. Human adult kidney and chicken and rat and less similar to human thyroid hormone hepatoblastoma (HepG2) cDNA libraries in AgtlO were receptor type (3 (formerly referred to as c-erbA.8) from prepared as described (14).
    [Show full text]
  • Thyroid Hormone Receptor SS
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2017 Thyroid Hormone Receptor SS (trß) Regulation Of Runt-Related Transcription Factor 2 (runx2) In Thyroid Tumorigenesis: Determination Of The Trß Nuclear Protein Complexes That Associate With The Runx2 Gene. Thomas Howland Taber University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Cell Biology Commons, and the Oncology Commons Recommended Citation Taber, Thomas Howland, "Thyroid Hormone Receptor SS (trß) Regulation Of Runt-Related Transcription Factor 2 (runx2) In Thyroid Tumorigenesis: Determination Of The rT ß Nuclear Protein Complexes That Associate With The Runx2 Gene." (2017). Graduate College Dissertations and Theses. 820. https://scholarworks.uvm.edu/graddis/820 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. THYROID HORMONE RECEPTOR ß (TRß) REGULATION OF RUNT-RELATED TRANSCRIPTION FACTOR 2 (RUNX2) IN THYROID TUMORIGENESIS: DETERMINATION OF THE TRß NUCLEAR PROTEIN COMPLEXES THAT ASSOCIATE WITH THE RUNX2 GENE. A Thesis Presented by Thomas Howland Taber to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Pharmacology October, 2017 Defense Date: August 15th, 2017 Thesis Examination Committee: Frances E. Carr, Ph.D., Advisor Jeanne Harris, Ph.D., Chairperson George Wellman, Ph.D. Karen M. Lounsbury, Ph.D. Cynthia J.
    [Show full text]