The NGFI-B Protein, an Inducible Member of the Thyroid/Steroid Receptor Family, Is Rapidly Modified Posttranslationally TIMOTHY J

Total Page:16

File Type:pdf, Size:1020Kb

The NGFI-B Protein, an Inducible Member of the Thyroid/Steroid Receptor Family, Is Rapidly Modified Posttranslationally TIMOTHY J MOLECULAR AND CELLULAR BIOLOGY, Dec. 1990, p. 6454 6459 Vol. 10, No. 12 0270-7306/90/126454-06$02.00/0 Copyright © 1990, American Society for Microbiology The NGFI-B Protein, an Inducible Member of the Thyroid/Steroid Receptor Family, Is Rapidly Modified Posttranslationally TIMOTHY J. FAHRNER, STEVEN L. CARROLL, AND JEFFREY MILBRANDT* Departments ofPathology and Internal Medicine, Division of Laboratory Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110 Received 23 July 1990/Accepted 12 September 1990 The NGFI-B gene is rapidly activated by a variety of stimuli that induce cells to differentiate or proliferate. It encodes a protein with a predicted molecular mass of ==61 kDa and is a member of the thyroid/steroid hormone receptor gene family. To characterize this protein, monoclonal antibodies were raised against a bacterial TrpE-NGFI-B fusion protein that encompasses a large portion (Glu-410 to Leu-527) of the carboxy-terminal domain of NGFI-B. These antibodies detected a protein that was rapidly synthesized in response to nerve growth factor (NGF) and migrated as a broad band on sodium dodecyl sulfate- polyacrylamide gels with an apparent molecular mass that ranged from 63 to 88 kDa. Pulse-chase analysis demonstrated that NGFI-B was rapidly posttranslationally modified and was a short-lived protein. NGFI-B was found to be a phosphorylated protein, and the multiple NGFI-B species coalesced into a single, more rapidly migrating species when treated with alkaline phosphatase. PC12 cells grown in the absence of NGF contained low levels of NGFI-B that was underphosphorylated. Epidermal growth factor, phorbol ester, and the calcium ionophore A23187 stimulated the synthesis of NGFI-B that was composed largely of underphosphorylated, rapidly migrating species. In contrast, basic fibroblast growth factor, which promotes differentiation of PC12 cells, induced the synthesis of NGFI-B species similar to those synthesized in response to NGF treatment. The underphosphorylated NGFI-B found in uninduced PC12 cells was found only in the nucleus, whereas NGFI-B in NGF-stimulated PC12 cells was present in approximately equal quantities in the cytoplasm and nucleus. Consistent with the cellular distribution observed in nonstimulated PC12 cells, the highly phosphorylated species were predominantly cytoplasmic whereas the more rapidly migrating forms were nuclear. The cellular response to growth factors includes the acti- chromocytoma cells (21); its mouse homolog (nur77) was vation of a set of genes termed early-response genes (15). identified similarly in serum-stimulated fibroblasts (11). In These genes are characterized by several features: their PC12 cells, the 2.4-kb NGFI-B mRNA is normally present at transcription is activated within minutes of growth factor very low levels, but upon administration of NGF, the gene is administration, their induction is not dependent on de novo transcriptionally activated (37). The amount of NGFI-B protein synthesis, and their corresponding mRNAs and the mRNA increases dramatically within 30 min, but this in- proteins they encode are short-lived. Most early-response crease is very transient, with levels returning to base line genes have been isolated by differential hybridization tech- within 4 h. The NGFI-B gene is expressed at relatively high niques, and the functions of these genes are therefore largely levels in the adult rat brain, adrenal gland, and muscle (M. unknown. However, some (e.g., c-fos and c-jun) are known Watson and J. Milbrandt, Development, in press). As has to regulate transcription, and others are inferred to have been observed for a number of early-response genes, the similar functions because they share sequence homology level of NGFI-B mRNA rapidly and dramatically increases with other transcriptional regulators. These include the in the brain following Metrazol-induced seizures (37). genes encoding the zinc finger proteins NGFI-A (20) (also By virtue of its sequence similarity to other ligand-depen- called and Egrl [35], ztf7268 [5], Krox 24 [16]), Krox 20 dent transcriptional regulators, NGFI-B probably plays an (4)/Egr2 (13), and NGFI-B (21)Inur77 (11). Like many early- important role in regulating the cellular response to growth response genes, the NGFI-B gene is activated in a variety of factors. At present, little is known about the protein encoded cell types by multiple, diverse stimuli, including growth by the NGFI-B cDNA. In this we describe seizure calcium and study, the factors, induction, ionophores, phorbol production of antibodies to the NGFI-B protein and the esters. Thus, NGFI-B may function as a nuclear messenger subsequent characterization of NGFI-B biosynthesis, post- of the signal transduction process and represent, along with translational modification, and cellular location. NGFI-B the products of other early-response genes, the primary was detected as a heterogeneous collection of protein spe- effectors of the cellular response to environmental changes. cies ranging in apparent molecular mass from 63 to 88 kDa. The nucleotide sequence of the NGFI-B cDNA predicts a Pulse-chase analysis revealed that NGFI-B is a short-lived protein of 61 kDa that is closely related to members of the protein that undergoes rapid and extensive modification via thyroid/steroid receptor gene family. Each of these receptor phosphorylation in NGF-stimulated and, to a lesser degree, proteins functions as a ligand-dependent, transcriptional basic fibroblast that is growth factor (bFGF)-stimulated PC12 cells. regulator activated by binding to its respective hor- Other agents, including epidermal growth factor (EGF), mone ligand. The NGFI-B gene was identified by virtue of its phorbol ester, and the calcium ionophore A23187 induce nerve factor in rat induction by growth (NGF) PC12 pheo- NGFI-B synthesis but do not promote its phosphorylation. Cellular localization studies demonstrated that NGFI-B is found in approximately equal amounts in the cytoplasm and * Corresponding author. nucleus of NGF-stimulated PC12 cells. 6454 VOL. 10, 1990 POSTTRANSLATIONAL MODEL OF NGFI-B 6455 MATERIALS AND METHODS intestinal alkaline phosphatase in phosphatase buffer (12.5 mM Tris [pH 7.91, 6 mM MgCl2, 5% glycerol, 0.05% Nonidet Materials. NGF was the gift of Eugene Johnson (Depart- P-40, 50 mM KCI) for 30 min at 30°C, followed by a second ment of Pharmacology, Washington University School of incubation with 20 U of bacterial alkaline phosphatase for 30 Medicine). The pATH plasmids were the gift of A. Tza- min at 68°C in the same buffer. When indicated, phosphatase goloff, Columbia University. [35S]methionine (Translabel) inhibitors (100 mM NaF, 10 mM Na4P207, and 1 mM and 32Pi were obtained from ICN Biomedicals (Irvine, NaVO4) were added. Calif.). Leupeptin, 0-12-tetradecanoylphorbol-13-acetate Cell fractionation. Nuclear and cytoplasmic fractionation (TPA), A23187, and Pansorbin were obtained from Calbio- was done essentially as described by Challberg and Kelly chem (San Diego, Calif.). Calf intestinal alkaline phos- (3). Cell lysis was confirmed by examination under a phase- phatase was purchased from Boehringer-Mannheim (India- contrast microscope. After cell lysis, the nuclei were pel- napolis, Ind.). Bacterial alkaline phosphatase and restriction leted by centrifugation at 2,000 x g for 5 min. The cytosolic enzymes were obtained from New England BioLabs (Bev- fraction was decanted and brought to 0.1% sodium dodecyl erly, Mass.). All reagents, unless otherwise indicated, were sulfate (SDS). The nuclear pellet was homogenized in RIPA purchased from Sigma (St. Louis, Mo.). buffer equal in volume to the cytosolic fraction. Cell culture. PC12 cells were grown in Dulbecco modified Eagle medium supplemented with 10% fetal calf serum and RESULTS 5% horse serum (19). The DG44 CHO cell line was grown in F12 medium supplemented with 10% fetal calf serum (36). Production and characterization of anti-NGFI-B antibodies. Production of bacterial fusion proteins. A fusion protein To characterize the NGFI-B protein, we produced two containing the bacterial TrpE protein and a portion of MAbs (1A8 and 2E1) to a bacterial fusion protein (B1440) NGFI-B was produced by using the pATH expression vector containing a portion of NGFI-B that encodes part of the (10). This construct (pB1440) was made by ligating a 353- putative ligand-binding domain of this receptor. These anti- nucleotide Sacl fragment (nucleotides 1440 to 1793 of the NGFI-B MAbs were shown to immunoprecipitate NGFI-B NGFI-B cDNA) into pATH 11. Escherichia coli DHSa cells produced in a reticulocyte lysate system primed with bearing this plasmid produced a protein of the predicted NGFI-B RNA and by CHO cells transfected with an molecular mass when induced by tryptophan depletion and NGFI-B expression vector (data not shown). The specificity addition of 25 ,ug of indole acrylic acid per ml. The B1440 of these MAbs was confirmed by blocking experiments with fusion protein, which contains NGFI-B residues from Glu- the B1440 fusion protein (see Materials and Methods). 410 to Leu-527, was purified by preparing an insoluble NGFI-B is rapidly synthesized and modified in PC12 cells fraction from the bacterial lysate (39). after NGF administration. In the initial characterization of Production of MAbs. Female BALb/cJ mice (Jackson the MAbs, we noticed that NGFI-B produced in vitro Laboratory) were immunized with 30 ,ug of B1440 fusion migrated more rapidly on SDS-polyacrylamide gels than did protein. The mice were injected subcutaneously once each that synthesized by the transfected CHO cells. This obser- week for 3 weeks and then injected intraperitoneally every vation suggested that NGFI-B was posttranslationally mod- month for 4 months. Three days prior to fusion, 20 ,ug of ified and led us to examine the initial induction of NGFI-B in B1440 fusion protein was injected intravenously. The ani- PC12 cells treated with NGF. To examine the synthesis of mals were sacrificed, spleen cells were harvested, and hy- NGFI-B protein after NGF stimulation, PC12 cells were bridomas were generated by using the nonsecreting my- incubated in the presence of [35S]methionine and treated eloma cell line P3X63AG8.6.5.3 (34).
Recommended publications
  • The Role of Signal Transducer and Activator of Transcription 5 in the Inhibitory Effects of GH on Adipocyte Differentiation
    139 The role of signal transducer and activator of transcription 5 in the inhibitory effects of GH on adipocyte differentiation H E Richter1, T Albrektsen2 and N Billestrup1,3 1Department of Signal Transduction, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsvaerd, Denmark 2Department of Transcription Biology, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsvaerd, Denmark 3Steno Diabetes Centre, Niels Steensensvej 6, DK-2820 Gentofte, Denmark (Requests for offprints should be addressed to N Billestrup, Steno Diabetes Centre, Niels Steensensvej 6, NSK2·023, DK-2820 Gentofte, Denmark; Email:[email protected]) Abstract GH inhibits primary rat preadipocyte differentiation and expression of late genes required for terminal differentiation. Here we show that GH-mediated inhibition of fatty acid-binding protein aP2 gene expression correlates with the activation of the Janus kinase-2/signal transducer and activator of transcription (STAT)-5 signalling pathway. Within minutes of treatment, GH induced the tyrosine phosphorylation, nuclear localization and DNA binding of STAT5. Importantly, there was no evidence that STAT5 acted via an interaction with peroxisome proliferator-activated receptor γ. To further understand the mechanism of STAT5 action, we reconstituted the inhibition of aP2 in a non-adipogenic cell line. Using this system, we showed that the ability of GH to inhibit a 520 bp aP2 reporter was largely dependent upon the presence of either STAT5A or STAT5B. Mutant analysis confirmed that the tyrosine phosphorylation of STAT5 was essential for this signalling. However, STAT5’s C-terminal transactivation domain was fully dispensable for this inhibition. Taken together, these data confirm a key regulatory role of STAT5 in adipose tissue and point to STAT5 as the repressing modulator of GH-mediated inhibition in primary preadipocytes.
    [Show full text]
  • Nuclear Hormone Receptor Antagonism with AP-1 by Inhibition of the JNK Pathway
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway Carme Caelles,1 Jose´M. Gonza´lez-Sancho, and Alberto Mun˜oz2 Instituto de Investigaciones Biome´dicas, Consejo Superior de Investigaciones Cientı´ficas, E-28029 Madrid, Spain The activity of c-Jun, the major component of the transcription factor AP-1, is potentiated by amino-terminal phosphorylation on serines 63 and 73 (Ser-63/73). This phosphorylation is mediated by the Jun amino-terminal kinase (JNK) and required to recruit the transcriptional coactivator CREB-binding protein (CBP). AP-1 function is antagonized by activated members of the steroid/thyroid hormone receptor superfamily. Recently, a competition for CBP has been proposed as a mechanism for this antagonism. Here we present evidence that hormone-activated nuclear receptors prevent c-Jun phosphorylation on Ser-63/73 and, consequently, AP-1 activation, by blocking the induction of the JNK signaling cascade. Consistently, nuclear receptors also antagonize other JNK-activated transcription factors such as Elk-1 and ATF-2. Interference with the JNK signaling pathway represents a novel mechanism by which nuclear hormone receptors antagonize AP-1. This mechanism is based on the blockade of the AP-1 activation step, which is a requisite to interact with CBP. In addition to acting directly on gene transcription, regulation of the JNK cascade activity constitutes an alternative mode whereby steroids and retinoids may control cell fate and conduct their pharmacological actions as immunosupressive, anti-inflammatory, and antineoplastic agents.
    [Show full text]
  • The Histone Acetylase PCAF Is a Nuclear Receptor Coactivator
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press The histone acetylase PCAF is a nuclear receptor coactivator Jorge C.G. Blanco,1,4 Saverio Minucci,1 Jianming Lu,1 Xiang-Jiao Yang,1 Kristen K. Walker,3 Hongwu Chen,3 Ronald M. Evans,2,3 Yoshihiro Nakatani,1 and Keiko Ozato1,5 1Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892-2753 USA; 2Howard Hughes Medical Institute; 3The Salk Institute for Biological Studies, La Jolla, California 92037 USA Whereas the histone acetylase PCAF has been suggested to be part of a coactivator complex mediating transcriptional activation by the nuclear hormone receptors, the physical and functional interactions between nuclear receptors and PCAF have remained unclear. Our efforts to clarify these relationships have revealed two novel properties of nuclear receptors. First, we demonstrate that the RXR/RAR heterodimer directly recruits PCAF from mammalian cell extracts in a ligand-dependent manner and that increased expression of PCAF leads to enhanced retinoid-responsive transcription. Second, we demonstrate that, in vitro, PCAF directly associates with the DNA-binding domain of nuclear receptors, independently of p300/CBP binding, therefore defining a novel cofactor interaction surface. Furthermore, our results show that dissociation of corepressors enables ligand-dependent PCAF binding to the receptors. This observation illuminates how a ligand-dependent receptor function can be propagated to regions outside the ligand-binding domain itself. On the basis of these observations, we suggest that PCAF may play a more central role in nuclear receptor function than previously anticipated.
    [Show full text]
  • Mutant Thyroid Hormone Receptor Represses the Expression And
    [CANCER RESEARCH 63, 5274–5280, September 1, 2003] Mutant Thyroid Hormone Receptor ␤ Represses the Expression and Transcriptional Activity of Peroxisome Proliferator-activated Receptor ␥ during Thyroid Carcinogenesis Hao Ying, Hideyo Suzuki, Li Zhao, Mark C. Willingham, Paul Meltzer, and Sheue-Yann Cheng1 Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4264 [H. Y., H. S., L. Z., S-Y. C.]; National Human Genome Research Institute, NIH, Bethesda, Maryland 20892-4264 [P. M.]; and Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1072 [M. C. W.] ABSTRACT not in 10 papillary carcinomas. This unique genetic rearrangement in follicular carcinoma was further confirmed by subsequent analyses The molecular genetics underlying thyroid carcinogenesis is not clear. using a larger number of samples (8). When fused to PAX8, PPAR␥1 Recent identification of a PAX8-peroxisome proliferator-activated receptor ␥ ␥ not only loses its capability to stimulate thiazolidinedione-induced (PPAR ) fusion gene in human thyroid follicular carcinoma suggests a ␥ tumor suppressor role of PPAR␥ in thyroid carcinogenesis. Mice harbor- transcription but also acts to inhibit PPAR 1 transcriptional activity ␥ ing a knockin mutant thyroid hormone ␤ receptor (TR␤PV) spontaneously (7). However, how the loss of PPAR 1 transcriptional activity im- develop thyroid follicular carcinoma through pathological progression of pacts the normal functions of thyroid follicular cells is unclear. hyperplasia, capsular invasion, vascular invasion, anaplasia, and eventu- We have recently created a mutant mouse by targeting a mutation ally, distant organ metastasis. This mutant mouse (TR␤PV/PV mouse) (PV)totheTR␤ gene locus (TR␤PV mice; Ref.
    [Show full text]
  • Mutation of Thyroid Hormone Receptor-&Beta
    Oncogene (2011) 30, 3381–3390 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Mutation of thyroid hormone receptor-b in mice predisposes to the development of mammary tumors CJ Guigon1, DW Kim1, MC Willingham2 and S-y Cheng1 1Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA and 2Department of Pathology, Wake Forest University, Winston-Salem, NC, USA Correlative data suggest that thyroid hormone receptor-b Introduction (TRb) mutations could increase the risk of mammary tumor development, but unequivocal evidence is still Thyroid hormone receptors (TRs) belong to the lacking. To explore the role of TRb mutants in vivo in superfamily of nuclear receptors that are ligand- breast tumor development and progression, we took dependent transcription factors. Two TR genes, THRA advantage of a knock-in mouse model harboring a and THRB, located on chromosomes 17 and 3, respec- mutation in the Thrb gene encoding TRb (ThrbPV mouse). tively, encode four thyroid hormone (T3)-binding Although in adult nulliparous females, a single ThrbPV receptors: TRa1, TRb1, TRb2 and TRb3. They bind allele did not contribute to mammary gland abnormalities, T3 that has critical roles in differentiation, growth and the presence of two ThrbPV alleles led to mammary metabolism (Yen, 2001). hyperplasia in B36% ThrbPV/PV mice. The ThrbPV Several findings support the notion that mutations of mutation further markedly augmented the risk of TRs can be associated with cancer. Early evidence mammary hyperplasia in a mouse model with high suggested that mutated TRs could be involved in susceptibility to mammary tumors (Pten þ /À mouse), as carcinogenesis came from the discovery that v-erbA, a demonstrated by the occurrence of mammary hyperplasia highly mutated chicken THRA1 that has lost the ability in B60% of ThrbPV/ þ Pten þ /À and B77% of ThrbPV/PV to activate gene transcription, leads to neoplastic trans- Pten þ /À mice versus B33% of Thrb þ / þ Pten þ /À mice.
    [Show full text]
  • Thyroid Hormones and Their Receptors in the Regulation of Cell Proliferation
    Vol. 53 No. 4/2006, 641–650 on-line at: www.actabp.pl Review Thyroid hormones and their receptors in the regulation of cell proliferation Monika Puzianowska-Kuznicka1,2*, Maciej Pietrzak1, Olga Turowska2 and Alicja Nauman2 1Department of Endocrinology, Medical Research Center, Polish Academy of Sciences, Warszawa, Poland; 2De- partment of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Warszawa, Poland; *e-mail: [email protected] Received: 25 October, 2006; revised: 07 November, 2006; accepted: 08 November, 2006 available on-line: 19 November, 2006 In the present work, we have reviewed data showing that triiodothyronine and its nuclear recep- tors modify expression of different genes/proteins involved in cell cycle control beginning from growth factors (such as EGF and TGF-β), to cell surface receptors (EGFR), as well as proteins act- ing at the cell membrane (Ras), various transcription factors (c-Fos, c-Myc, E2F1), cyclins, Cip/Kip family of cdk2 inhibitors, and p53 inhibitor Mdm2 (Table 1). We have shown how TRs are also able to modify the fate of a cell, thanks to their ability to form complexes with other transcrip- tion factors such as p53 — a key regulator of apoptosis and proliferation. Available data show that the function of thyroid hormones and of their receptors on cell proliferation is not homog- enous. In fact, it strongly depends on the cell type, its developmental state (progenitor or dif- ferentiated), its patho-physiological state (normal or tumor cell), and the so-called ‘cellular con- text’. Therefore, it is not possible to uniformly recommend T3 treatment or T3 depletion to stop or initiate proliferation of all cell types.
    [Show full text]
  • Retinoid X Receptor Is Necessary to Establish the S-Opsin Gradient In
    Retinoid X Receptor ␥ Is Necessary to Establish the S-opsin Gradient in Cone Photoreceptors of the Developing Mouse Retina Melanie R. Roberts,1,2 Anita Hendrickson,2 Christopher R. McGuire,2 and Thomas A. Reh2 PURPOSE. The retinoid X receptors (RXRs) are members of the tion, they also have demonstrated some isoform-specific family of ligand-dependent nuclear hormone receptors. One of functions. For example, RXR␣ heterodimerizes with retinoic these genes, RXR␥, is expressed in highly restricted regions of acid receptors (RARs) to regulate retinal growth and cardiac the developing central nervous system (CNS), including the development.4 retina. Although previous studies have localized RXR␥ to de- Although all three isoforms are expressed in the developing veloping cone photoreceptors in several species, its function nervous system, RXR␥ has the most restricted and develop- in these cells is unknown. A prior study showed that thyroid mentally regulated expression. It is expressed in the develop- hormone receptor ␤2 (TR␤2) is necessary to establish proper ing striatum, part of the tegmentum, the pituitary, the ventral cone patterning in mice by activating medium-wavelength (M) horns of the spinal cord,3,5 and the retina.6 RXR␥-null mice cone opsin and suppressing short-wavelength (S) cone opsin. show isoform-specific defects in both striatal and hippocampal Thyroid hormone receptors often regulate gene transcription function, although RXR␤ can partially compensate for the loss as heterodimeric complexes with RXRs. of RXR␥ in the striatum.2,7,8 RXR␥ has also been identified in 6,9,10 METHODS. To determine whether RXR␥ cooperates with TR␤2 the developing retina of Xenopus, chicks, and mice.
    [Show full text]
  • Non-Canonical Dimerization of the Androgen Receptor and Other Nuclear Receptors: Implications for Human Disease
    26 8 Endocrine-Related A Jiménez-Panizo et al. Androgen receptor 26:8 R479–R497 Cancer dimerization in disease REVIEW Non-canonical dimerization of the androgen receptor and other nuclear receptors: implications for human disease Alba Jiménez-Panizo1, Paloma Pérez2, Ana M Rojas3, Pablo Fuentes-Prior4 and Eva Estébanez-Perpiñá1 1Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain 2Instituto de Biomedicina de Valencia (IBV)-CSIC, Valencia, Spain 3Computational Biology and Bioinformatics Group, Andalusian Center for Developmental Biology (CABD-CSIC), Sevilla, Spain 4Molecular Bases of Disease, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain Correspondence should be addressed to P Fuentes-Prior or E Estébanez-Perpiñá: [email protected] or [email protected] Abstract Nuclear receptors are transcription factors that play critical roles in development, Key Words homeostasis and metabolism in all multicellular organisms. An important family of f androgen receptor nuclear receptors comprises those members that respond to steroid hormones, and f glucocorticoid receptor which is subdivided in turn into estrogen receptor (ER) isoforms α and β (NR3A1 and f protein structure A2, respectively), and a second subfamily of so-called oxosteroid receptors. The latter f ligand-binding domain includes the androgen receptor (AR/NR3C4), the glucocorticoid receptor (GR/NR3C1), f multimerization the mineralocorticoid receptor (MR/NR3C2) and the progesterone receptor (PR/NR3C3). f prostate cancer Here we review recent advances in our understanding of the structure-and-function f androgen insensitivity relationship of steroid nuclear receptors and discuss their implications for the etiology syndromes (AIS) of human diseases.
    [Show full text]
  • Thyroid Hormone Regulated Genes in Cerebral Cortex Development
    232 2 J BERNAL Thyroid hormones and cortex 232:2 R83–R97 Review development Thyroid hormone regulated genes in cerebral cortex development Juan Bernal Correspondence Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas y Universidad should be addressed Autónoma de Madrid, and Center for Biomedical Research on Rare Diseases, Instituto de Salud Carlos to J Bernal III, Madrid, Spain Email [email protected] Abstract The physiological and developmental effects of thyroid hormones are mainly due to Key Words the control of gene expression after interaction of T3 with the nuclear receptors. To f brain understand the role of thyroid hormones on cerebral cortex development, knowledge f development of the genes regulated by T3 during specific stages of development is required. In our f fetus laboratory, we previously identified genes regulated by 3T in primary cerebrocortical f gene expression cells in culture. By comparing these data with transcriptomics of purified cell types from f thyroid hormone the developing cortex, the cellular targets of T3 can be identified. In addition, many of metabolism the genes regulated transcriptionally by T3 have defined roles in cortex development, from which the role of T3 can be derived. This review analyzes the specific roles of Endocrinology T -regulated genes in the different stages of cortex development within the of 3 physiological frame of the developmental changes of thyroid hormones and receptor concentrations in the human cerebral cortex during fetal development. These data Journal indicate an increase in the sensitivity to T3 during the second trimester of fetal development. The main cellular targets of T3 appear to be the Cajal-Retzius and the subplate neurons.
    [Show full text]
  • Retinoid X Receptors: X-Ploring Their (Patho)Physiological Functions
    Cell Death and Differentiation (2004) 11, S126–S143 & 2004 Nature Publishing Group All rights reserved 1350-9047/04 $30.00 www.nature.com/cdd Review Retinoid X receptors: X-ploring their (patho)physiological functions A Szanto1, V Narkar2, Q Shen2, IP Uray2, PJA Davies2 and aspects of metabolism. The discovery of retinoid receptors L Nagy*,1 substantially contributed to understanding how these small, lipophilic molecules, most importantly retinoic acid (RA), exert 1 Department of Biochemistry and Molecular Biology, Research Center for their pleiotropic effects.1,2 Retinoid receptors belong to the Molecular Medicine, University of Debrecen, Medical and Health Science family of nuclear hormone receptors, which includes steroid Center, Nagyerdei krt. 98, Debrecen H-4012, Hungary 2 hormone, thyroid hormone and vitamin D receptors, various Department of Integrative Biology and Pharmacology, The University of Texas- orphan receptors and also receptors activated by intermediary Houston Medical School, Houston, TX, USA * Corresponding author: L Nagy, Department of Biochemistry and Molecular metabolites: for example, peroxisome proliferator-activated Biology, University of Debrecen, Medical and Health Science Center, receptor (PPAR) by fatty acids, liver X receptor (LXR) by Nagyerdei krt. 98, Debrecen H-4012, Hungary. Tel: þ 36-52-416432; cholesterol metabolites, farnesoid X receptor (FXR) by bile Fax: þ 36-52-314989; E-mail: [email protected] acids and pregnane X receptor (PXR) by xenobiotics.3,4 Members of this family function as ligand-activated
    [Show full text]
  • Characterization of a Thyroid Hormone Receptor Expressed in Human Kidney and Other Tissues AKIRA NAKAI, SUSUMU SEINO, AKIHIRO SAKURAI, ILLYA SZILAK, GRAEME I
    Proc. Nail. Acad. Sci. USA Vol. 85, pp. 2781-2785, April 1988 Medical Sciences Characterization of a thyroid hormone receptor expressed in human kidney and other tissues AKIRA NAKAI, SUSUMU SEINO, AKIHIRO SAKURAI, ILLYA SZILAK, GRAEME I. BELL, AND LESLIE J. DEGROOT* Thyroid Study Unit, Department of Medicine, Howard Hughes Medical Institute, and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 Communicated by Donald F. Steiner, December 18, 1987 ABSTRACT A cDNA encoding a specific form of thyroid brary, which, although clearly related to the thyroid hormone hormone receptor expressed in human liver, kidney, placenta, receptor type a that has been described by others, is a distinct and brain was isolated from a human kidney library. Identical molecule.t In addition, we have demonstrated that the protein clones were found in human placenta and HepG2 cDNA encoded by this cDNA corresponds to a high-affinity triiodo- libraries. The cDNA encodes a 490-amino acid protein (Mr, thyronine (T3) receptor and that its mRNA is expressed in 54,824). When expressed and translated in vitro, the protein several human tissues. product binds triiodothyronine with Ka of 2.3 X 109 M-1. This protein, designated human thyroid hormone receptor type a2 (hTRa2), has the same domain structure as other MATERIALS AND METHODS members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type a described in cDNA Cloning and Sequencing. Human adult kidney and chicken and rat and less similar to human thyroid hormone hepatoblastoma (HepG2) cDNA libraries in AgtlO were receptor type (3 (formerly referred to as c-erbA.8) from prepared as described (14).
    [Show full text]
  • Thyroid Hormone Receptor SS
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2017 Thyroid Hormone Receptor SS (trß) Regulation Of Runt-Related Transcription Factor 2 (runx2) In Thyroid Tumorigenesis: Determination Of The Trß Nuclear Protein Complexes That Associate With The Runx2 Gene. Thomas Howland Taber University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Cell Biology Commons, and the Oncology Commons Recommended Citation Taber, Thomas Howland, "Thyroid Hormone Receptor SS (trß) Regulation Of Runt-Related Transcription Factor 2 (runx2) In Thyroid Tumorigenesis: Determination Of The rT ß Nuclear Protein Complexes That Associate With The Runx2 Gene." (2017). Graduate College Dissertations and Theses. 820. https://scholarworks.uvm.edu/graddis/820 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. THYROID HORMONE RECEPTOR ß (TRß) REGULATION OF RUNT-RELATED TRANSCRIPTION FACTOR 2 (RUNX2) IN THYROID TUMORIGENESIS: DETERMINATION OF THE TRß NUCLEAR PROTEIN COMPLEXES THAT ASSOCIATE WITH THE RUNX2 GENE. A Thesis Presented by Thomas Howland Taber to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Pharmacology October, 2017 Defense Date: August 15th, 2017 Thesis Examination Committee: Frances E. Carr, Ph.D., Advisor Jeanne Harris, Ph.D., Chairperson George Wellman, Ph.D. Karen M. Lounsbury, Ph.D. Cynthia J.
    [Show full text]