Matrix Metalloproteinases Gene Variants and Dental Caries in Czech

Total Page:16

File Type:pdf, Size:1020Kb

Matrix Metalloproteinases Gene Variants and Dental Caries in Czech Borilova Linhartova et al. BMC Oral Health (2020) 20:138 https://doi.org/10.1186/s12903-020-01130-6 RESEARCH ARTICLE Open Access Matrix metalloproteinases gene variants and dental caries in Czech children Petra Borilova Linhartova1,2, Tereza Deissova2, Martina Kukletova1 and Lydie Izakovicova Holla1* Abstract Background: Matrix metalloproteinases (MMPs) play an important role in tooth formation and the mineralization of dental tissue. The aim of the study was to analyse Czech children with primary/permanent dentition polymorphisms in those genes encoding MMP2, MMP3, MMP9, MMP13, MMP16, and MMP20, which had been previously associated with dental caries in other populations. Methods: In total, 782 Czech children were included in this case-control study. DNA samples were taken from 474 subjects with dental caries (with decayed/missing/filled teeth, DMFT ≥ 1) and 155 caries free children (DMFT = 0) aged 13–15 years, as well as 101 preschool children with early childhood caries (ECC, dmft ≥ 1) and 52 caries free children (dmft = 0), were analyzed for nine MMPs single nucleotide polymorphisms (SNPs) using real time polymerase chain reaction TaqMan assays. Results: There were no significant differences in the allele and/or genotype frequencies of all the studied MMPs SNPs among children with dental caries in primary/permanent dentition and the healthy controls (P > 0.05). In addition, similar allele or genotype frequencies of the studied MMPs SNPs were found in children with severe dental caries in their permanent teeth (children with DMFT ≥ 6) and the healthy controls (DMFT = 0, P >0.05). Conclusions: This study demonstrated the lack of association between the selected SNPs in candidate genes of MMPs and the susceptibility to or severity of dental caries in both primary and permanent dentitions in Czech children. Keywords: Polymorphism, Association study, Caries, Oral disease, Genetic predisposition, ELSPAC Background enzymes. However, the proteases produced by the cariogenic Dental caries is a multifactorial disease affecting the hard tis- bacteria have been found to be highly pH sensitive, and they sues of teeth in both primary and permanent dentitions. In are not able to resist the acidic pH fall (pH 4.3) during the thepresenceofsomecarbohydrates, the dental biofilm is demineralization phase [2]. Therefore, the potential role of dominated by mainly gram-positive carbohydrate-fermenting the host derived proteases, and in particular matrix metallo- bacteria causing a pH decrease [1]. In the long-term, fre- proteinases (MMPs) in dentine matrix degradation, has been quent exposure to a pH lower than 5.5 causes irreversible considered [3]. A new concept in caries research termed as demineralization of the tooth enamel with a progression to “Dentin Degradonomics” has been introduced. This genomic dentin damage. The demineralization is caused by microbial and proteomic approach is applied to the identification of acids, and the degradation of the dentin organic matrix was proteases and their substrates in both physiological and thought to have been carried out by microbial proteolytic pathological conditions [4]. Host MMPs, which are the enzymes responsible for * Correspondence: [email protected] the degradation of intercellular substrates, play an im- 1 Clinic of Stomatology, Institution Shared with St. Anne’s University Hospital, portant role in physiological processes during early tooth Faculty of Medicine, Masaryk University, Pekarska 53, 656 91 Brno, Czech – MMP16 Republic development [5 7], for example, the gene may Full list of author information is available at the end of the article regulate ameloblast maturation and enamel formation © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Borilova Linhartova et al. BMC Oral Health (2020) 20:138 Page 2 of 8 [8]. Several different types of MMPs have been discov- Characteristics of participants and sampling ered, among them MMP2 and MMP9 (gelatinase A and Two groups of children from the South Moravia region B), MMP3 (stromelysin 1), MMP13 (collagenase 3), of the Czech Republic were selected according to their MMP16 (membrane-type MMP), and MMP20 (enamely- dentition - group 1: preschool children with primary sin). MMPs are initially synthesized as inactive zymo- dentition, and group 2: children with permanent denti- gens, and can be activated extracellularly by several tion, all of whom were recruited from the European mechanisms, e.g. low pH [9]. However, host MMPs are Longitudinal Study of Pregnancy and Childhood functional only in neutral pH. This is maintained by the (ELSPAC) [31]. salivary buffer systems which allow the pH-activated The inclusion criteria for group 1 were: at least 16 pri- MMPs to degrade the dentin matrix which has been pre- mary teeth, general good health, and the willingness of the viously demineralized by bacterial acids [10]. The host- parents to enter their children in the study. The exclusion derived proteases, and in particular MMPs, may be in- criteria for group 1 were: the presence of one or more per- volved in the destruction of the collagenous dentin manent teeth, a familial relationship between children, matrix and, therefore, in the control or progression of and ethnicity other than Caucasian Czech. The inclusion the carious process [3, 11]. MMPs are located through- criteria for group 2 were: age 13–15 years, general good out the dentine, along the enamel–dentine junction, and health, and the willingness of the parents to enter their in the predentine [12]. Increased MMP presence along children in the study [32]. The exclusion criteria for group the dentine–enamel junction may contribute to the 2 were: previous or concomitant therapy with orthodontic widening of caries along this junction, as it progresses appliances, a familial relationship between children, and into the dentine [13]. There are various possible ethnicity other than Caucasian Czech. sources of MMPs, in carious lesions they are released The children included in group 1 were recruited from into the saliva by the salivary glands, into the crevicu- the out-patients’ department of Paediatric Dentistry, lar fluid by the cells in the gingival crevices and into University Hospital Brno, and the Paediatric Department the dentinal fluids by pulpal odontoblast cells [3]. In- of the Clinic of Stomatology, St. Anne’s Faculty Hospital hibition of salivary or dentin endogenous collagenoly- in Brno, where they were sent for a preventive examin- tic enzymes may provide a preventive means against ation (healthy children) or complex treatment under the progression of caries [4, 14, 15]. general anaesthesia (children who were unable to Members of MMPs family are encoded by multiple undergo standard dental treatment due to their unco- genes and their variability has been widely studied in the operativeness and the need for multiple restorations and context of many diseases including oral diseases (such as extractions) in the period 2016–2018. Oral examinations oral cancer [16], periodontitis [17], periapical lesions were performed by two mutually calibrated experienced [18], and dental caries [19–30]). paediatric dentists under standard conditions (using a Based on the literature review, the aim of the study was dental probe and mirror after drying, and in a good to select the SNPs in the genes encoding MMP2, MMP3, light) in a professional dental unit. The dmft index was MMP9, MMP13, MMP16, and MMP20, which had been calculated using dental caries (D3 level) as a cut-off point previously associated with dental caries in other popula- for the detection of decay [32, 33]. tions [19–22, 26–29], and to determine the genotypes of Children selected from the ELSPAC study (group 2) these SNPs in Czech children with primary/permanent underwent dental examinations at the Clinic of Sto- dentitions. The null hypothesis is that there is no associ- matology, St. Anne’s University Hospital, in the ation between the selected SNPs and dental caries devel- period 2005–2007. To determine the DMFT index for opment in both dentitions in our population. each child the teeth were first dried and then exam- ined in a good light, all present teeth were examined in the dentist’s chair using a mirror and a dental Methods probe. The data was entered into a standard medical Design of study record. A radiograph examination was not performed This case-control genetic association study was con- as it was not part of the routine dental care for these ducted in the period from 2005 to 2018. adolescents and would therefore be deemed unethical. All of the procedures performed in the studies involv- The clinical assessment was carried out by one inves- ing human participants were in accordance with the eth- tigator using the cavitation of the lesion as the detec- ical standards of the institutional and/or national tion threshold of caries according to the criteria given research committee and with the 1964 Helsinki declar- in the WHO Oral Health Surveys as described previ- ation and its later amendments or comparable ethical ously [34].
Recommended publications
  • Epithelial-Specific Knockout of the Rac1 Gene Leads to Enamel Defects
    Eur J Oral Sci 2011; 119 (Suppl. 1): 168–176 Ó 2011 Eur J Oral Sci DOI: 10.1111/j.1600-0722.2011.00904.x European Journal of Printed in Singapore. All rights reserved Oral Sciences Zhan Huang1, Jieun Kim2, Rodrigo Epithelial-specific knockout of the Rac1 S. Lacruz1, Pablo Bringas Jr1, Michael Glogauer3, Timothy G. gene leads to enamel defects Bromage4, Vesa M. Kaartinen2, Malcolm L. Snead1 1The Center for Craniofacial Molecular Biology, Huang Z, Kim J, Lacruz RS, Bringas P Jr, Glogauer M, Bromage TG, Kaartinen VM, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA; Snead ML. Epithelial-specific knockout of the Rac1 gene leads to enamel defects. 2 Eur J Oral Sci 2011; 119 (Suppl. 1): 168–176. Ó 2011 Eur J Oral Sci Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; 3Matrix The Ras-related C3 botulinum toxin substrate 1 (Rac1) gene encodes a 21-kDa GTP- Dynamics Group, Faculty of Dentistry, binding protein belonging to the RAS superfamily. RAS members play important University of Toronto, Toronto, Ontario, roles in controlling focal adhesion complex formation and cytoskeleton contraction, Canada; 4New York University College of activities with consequences for cell growth, adhesion, migration, and differentiation. Dentistry, New York, NY, USA To examine the role(s) played by RAC1 protein in cell–matrix interactions and enamel matrix biomineralization, we used the Cre/loxP binary recombination system to characterize the expression of enamel matrix proteins and enamel formation in Rac1 knockout mice (Rac1)/)). Mating between mice bearing the floxed Rac1 allele and mice bearing a cytokeratin 14-Cre transgene generated mice in which Rac1 was absent Zhan Huang, The Center for Craniofacial from epithelial organs.
    [Show full text]
  • Effect of Nanoparticles on the Expression and Activity of Matrix Metalloproteinases
    Nanotechnol Rev 2018; 7(6): 541–553 Review Magdalena Matysiak-Kucharek*, Magdalena Czajka, Krzysztof Sawicki, Marcin Kruszewski and Lucyna Kapka-Skrzypczak Effect of nanoparticles on the expression and activity of matrix metalloproteinases https://doi.org/10.1515/ntrev-2018-0110 Received September 14, 2018; accepted October 11, 2018; previously 1 Introduction published online November 15, 2018 Matrix metallopeptidases, commonly known as matrix Abstract: Matrix metallopeptidases, commonly known metalloproteinases (MMPs), are zinc-dependent proteo- as matrix metalloproteinases (MMPs), are a group of pro- lytic enzymes whose primary function is the degradation teolytic enzymes whose main function is the remodeling and remodeling of extracellular matrix (ECM) compo- of the extracellular matrix. Changes in the activity of nents. ECM is a complex, dynamic structure that condi- these enzymes are observed in many pathological states, tions the proper tissue architecture. MMPs by digesting including cancer metastases. An increasing body of evi- ECM proteins eliminate structural barriers and allow dence indicates that nanoparticles (NPs) can lead to the cell migration. Moreover, by hydrolyzing extracellularly deregulation of MMP expression and/or activity both in released proteins, MMPs can change the activity of many vitro and in vivo. In this work, we summarized the current signal peptides, such as growth factors, cytokines, and state of knowledge on the impact of NPs on MMPs. The chemokines. MMPs are involved in many physiological literature analysis showed that the impact of NPs on MMP processes, such as embryogenesis, reproduction cycle, or expression and/or activity is inconclusive. NPs exhibit wound healing; however, their increased activity is also both stimulating and inhibitory effects, which might be associated with a number of pathological conditions, such dependent on multiple factors, such as NP size and coat- as diabetes, cardiovascular diseases and neurodegenera- ing or a cellular model used in the research.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Importance of Altered Gene Expression of Metalloproteinases 2, 9, and 16 in Acute Myeloid Leukemia: Preliminary Study
    Hindawi Journal of Oncology Volume 2021, Article ID 6697975, 8 pages https://doi.org/10.1155/2021/6697975 Research Article Importance of Altered Gene Expression of Metalloproteinases 2, 9, and 16 in Acute Myeloid Leukemia: Preliminary Study Jacek Pietrzak , Marek Mirowski , Rafał S´wiechowski , Damian Wodzin´ ski , Agnieszka Wosiak , Katarzyna Michalska , and Ewa Balcerczak Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Laboratory of Molecular Diagnostics and Pharmacogenomics, Medical University of Lodz, Muszynskiego 1, Lodz 90-151, Poland Correspondence should be addressed to Jacek Pietrzak; [email protected] Received 14 December 2020; Revised 13 April 2021; Accepted 29 April 2021; Published 7 May 2021 Academic Editor: Liren Qian Copyright © 2021 Jacek Pietrzak et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acute myeloid leukemia is a group of hematological neoplasms characterized by a heterogeneous course and high mortality. +e important factor in the neoplastic process is metalloproteinases, proteolytic enzymes capable of degrading various components of the extracellular matrix, which take an active part in modifying the functioning of the cell, including transformation to cancer cell. +ey interact with numerous signaling pathways responsible for the process of cell growth, proliferation, or apoptosis. In the present study, changes in the expression of MMP2, MMP9, and MMP16 genes between patients with AML and people without cancer were examined. +e impact of cytogenetic changes in neoplastic cells on the expression level of MMP2, MMP9, and MMP16 was also assessed, as well as the impact of the altered expression on the effectiveness of the first cycle of remission- inducing therapy.
    [Show full text]
  • Gene Expression Responses in a Cellular Model of Parkinson's Disease
    Gene Expression Responses in a Cellular Model of Parkinson's Disease Louis Beverly Brill II Manassas, Virginia B.A., Johns Hopkins University, 1995 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Cell Biology University of Virginia May, 2004 Table of Contents Chapter 1 . 1 Chapter 2 . 48 Chapter 3 . 87 Chapter 4 . 123 Chapter 5 . 133 References . 137 Appendix A . 163 Appendix B . 209 Appendix C . 216 Appendix D . 223 Appendix E . 232 Appendix F . 234 Appendix G . 283 Appendix H . 318 Appendix I . 324 Abstract This research represents initial steps towards understanding the relation between changes in gene expression, mitochondrial function and cell death in cell-based models of Parkinson’s disease. The main hypothesis is that rapid gene expression changes in cells exposed to parkinsonian neurotoxins occur, are dependent on mitochondrial status, and directly impact intracellular signaling pathways that determine whether a cell lives or dies. Our cellular model is comprised of SH-SY5Y neuroblastoma cells exposed to the parkinsonian neurotoxin methylpyridinium ion. Transcriptomic changes are evaluated with nylon and glass-based cDNA microarray technology. Cardinal symptoms of Parkinson’s disease, characteristic pathological changes, therapeutic modalities, and current theories on the etiology of the disorder are discussed. Our results verify the existence of mitochondrial-nuclear signaling in the context of electron transport chain deficits, as well as suggesting the vital roles played in this process by previously described intracellular signaling pathways. These results will serve to direct future investigations into gene expression changes relevant to the processes of cell death and cell survival in our cellular model of Parkinson’s disease, and may provide important insights into the pathophysiology of the in vivo disease process.
    [Show full text]
  • (MMP-12) Correlates with Radiation-Induced Lung Fibrosis
    Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 29-30, 2014 Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with radiation-induced lung fibrosis MYUNG GU JUNG a, Ye Ji Jeonga, Su-Jae Leeb, Hae-June Lee a,* aDivision of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea bDepartment of Life Sciences, Hanyang University, Seoul, Korea *Corresponding author: [email protected] 1. Introduction X-RAD 320 (Precision X-ray, Inc., USA) at 250 kV, 10 mA with 42 mm aluminum added filtration. The mice MMPs are a family of more than 20 secreted or imaged with X-ray scanning before whole lung transmembraneproteins that are capable of digesting irradiation. Animals were sacrificed at 1, 3, 5, 7. 14 and extracellular matrix and basement membrane 21 days after whole lung radiation. Lungs components under physiologic conditions [1]. were immediately fixed in formalin, and paraffin- According to their substrate specificity and structure, embedded for morphometric analysis and MMPs are classified into five subgroups: collagenases immunohistochemical staining. (MMP-1, MMP-8, MMP-13), gelatinases (MMP-2, MMP-9), stromelysins (MMP-3, MMP-10, MMP-11), 2.2 Cell culture and reagents as well as metalloelastase (MMP-12), the membrane- type MMPs (MMP14, MMP15), and other MMPS (e.g., Human lung cancer A549 cells were obtained from MMP-19, and MMP20) [2]. MMP-12 (matrix ATCC (USA). A549 cells were cultured in RPMI 1640 metalloproteinase12), also known as macrophage medium supplemented with 10% fetal bovine serum metalloelastase, was first identified as an elastolytic (FBS, Lonza, USA), 1% antibiotic and antimycotic metalloproteinase secreted by inflammatory (Gibco, USA), A549 cells were grown at 37 ºC in 5% macrophages 30 years ago [3].
    [Show full text]
  • Expression Profiling of Metalloproteinases and Their
    Available online http://arthritis-research.com/content/8/4/R124 ResearchVol 8 No 4 article Open Access Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage Rose K Davidson1, Jasmine G Waters1, Lara Kevorkian1, Clare Darrah2, Adele Cooper2, Simon T Donell2 and Ian M Clark1 1School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK 2Institute of Orthopaedics, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK Corresponding author: Ian M Clark, [email protected] Received: 24 May 2006 Revisions requested: 19 Jun 2006 Revisions received: 11 Jul 2006 Accepted: 14 Jul 2006 Published: 19 Jul 2006 Arthritis Research & Therapy 2006, 8:R124 (doi:10.1186/ar2013) This article is online at: http://arthritis-research.com/content/8/4/R124 © 2006 Davidson et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Cartilage destruction in osteoarthritis (OA) is thought to be The four most significantly upregulated genes (P < 0.0001) in mediated by two main enzyme families; the matrix OA synovium compared to the fractured NOF are MMP28, metalloproteinases (MMPs) are responsible for cartilage ADAMTS16, ADAMTS17 and TIMP2. For MMP9, MMP10, collagen breakdown, whereas enzymes from the 'a disintegrin MMP12, MMP17, MMP23, MMP28, ADAMTS4, and and metalloproteinase domain with thrombospondin motifs' ADAMTS9, there is a significant correlation between expression (ADAMTS) family mediate cartilage aggrecan loss. Tissue levels in the synovium and cartilage, suggesting similar inhibitors of metalloproteinases (TIMPs) regulate the activity of mechanisms of regulation.
    [Show full text]
  • Overview Gene List Target Scan Vs DIANA Group a Group B Group A
    Overview Gene list Target scan vs DIANA Group A Group B Group A hsa-miR-181a hsa-miR-323 hsa-miR-326 Target scan Diana microT Overlap Target scan Diana microT Overlap Target scan SEPT3 SEPT3 SEPT3 SEPT7 ADARB1 HPCAL4 ABHD2 ABL2 ABHD13 ACVR2A ADCYAP1R1 AKAP13 PDPK1 ACRBP ACAN ABI1 ADAMTS1 ALAD APOBR ACVRL1 ACCN2 ABLIM1 ADAMTSL1 ANKRD52 ATXN1 ADAM19 ACER3 ACSL1 AKAP7 ARID2 C18orf23,RNF165 ADAM33 ACVR2A ACTN2 ANKRD43 ARL3 C20orf29 ADAMTS2 ADAMTS1 ACVR2A AP1S3 ARRB1 CACNG4 AHCYL2 ADAMTS18 ACVR2B ARID2 BBC3 CCNJL ALOX15B ADAMTS5 ADAM11 ATP11A BTG1 CYP2E1 ANK1 ADAMTSL1 ADAM22 ATXN1 C18orf62 GNB1L ANKS6 ADARB1 ADAMTS1 B4GALT1 C1orf21 GPR61 APBA1 AFAP1 ADAMTS6 BAG4 CADM4 GTSE1 ARCN1 AFTPH ADAMTSL1 BAI3 CALML4 HPCAL4 ARHGEF37 AK3 ADCY9 BNC2 CAPN6 KIAA0152 ARID3B AKAP7 ADRBK1 BRD1 CBFA2T2 KIF1A ARL8A ANAPC16 AFF2 BRWD1 CEBPA MACF1 ATP2B2 ANK1 AHCTF1,AHCTF1PBTBD3 CHD1 MYO1D ATP6V1G2 ANKRD12 AKAP2,PALM2 C13orf23 CIT PCNT AUP1 ANKRD33B AKAP6 C14orf43 CLASP2 PDPK1 BCL2L2 ANKRD43 AKAP7 CAPRIN1 CLCN5 PLEKHG4B BHLHE40 ANKRD44 AKAP9 CARM1 CLIP3 PPARA BTBD3 ANKRD52 AKT3 CBX4 COL5A2 PRB1,PRB2,PRB4 BTRC AP1S3 ALG9 CCDC117 CTNS PTPRT C10orf26 APBA1 ANKRD13C CCNJ DCTN4 PYCR1 C14orf1 APLP2 ANKRD20B CDH13 DCUN1D4 RAPGEF1 C16orf45 APOO ANKRD43 CDON DDB1 SRCAP C16orf54 ARID2 ANKRD50 CDYL DDX39B TMEM63C C1orf106 ARL3 AP1G1 CEP350 DIP2C C1orf27 ARRDC3 AP1S3 CHD7 DNAJB3 C22orf29 ATF7 API5 CHIC1 EEPD1 C9orf3 ATG2B ARFGEF2 CLIP1 EIF2C1 CACNA1E ATG7 ARHGAP12 CNOT6L ELFN2 CAPN12 ATP11A ARHGAP26 CNR1 ELK1 CASKIN1 ATP2B3 ARHGAP29 CNTN4 FAM172A CBFA2T3 ATP8B2 ARHGEF3 CNTNAP2
    [Show full text]
  • Lipofection of Single Guide RNA Targeting MMP8 Decreases Proliferation and Migration in Lung Adenocarcinoma Cells
    medicina Article Lipofection of Single Guide RNA Targeting MMP8 Decreases Proliferation and Migration in Lung Adenocarcinoma Cells Oscar David Hernandez Maradiaga 1,†, Pooi Ling Mok 2,3,4,*,† , Gothai Sivapragasam 5, Antony V. Samrot 6 , Mohammed Safwan Ali Khan 7,8, Aisha Farhana 2, Badr Alzahrani 2, Jiabei Tong 1, Thilakavathy Karuppiah 3,4 , Narcisse M. S. Joseph 1 and Suresh Kumar Subbiah 1,4,5,9,* 1 Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] (O.D.H.M.); [email protected] (J.T.); [email protected] (N.M.S.J.) 2 Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia; [email protected] (A.F.); [email protected] (B.A.) 3 Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 4 Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia 5 Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 6 School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia; [email protected] 7 Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; [email protected] 8 Department of Pharmacology, Hamidiye International Faculty of Medicine, University of Health Sciences, Mekteb-I, Tibbiye-I Sahane (Hamidiye) Complex Selimiye Mahallesi, Tibbiye Caddesi #38, Citation: Maradiaga, O.D.H.; Mok, Istanbul 34668, Turkey 9 P.L.; Sivapragasam, G.; Samrot, A.V.; Department of Biotechnology, Bharath Institute of Higher Education and Research, 173, Agaram Main Rd, Selaiyur, Chennai 600073, India Ali Khan, M.S.; Farhana, A.; Alzahrani, * Correspondence: [email protected] (P.L.M.); [email protected] (S.K.S.); B.; Tong, J.; Karuppiah, T.; Joseph, Tel.: +60-13-986-8287 (P.L.M.); +91-93-617-23864 (S.K.S.) N.M.S.; et al.
    [Show full text]
  • Matrix Metalloproteinase-12 Expression Correlates with Local Recurrence and Metastatic Disease in Non–Small Cell Lung Cancer Patients
    1086 Vol. 11, 1086–1092, February 1, 2005 Clinical Cancer Research Matrix Metalloproteinase-12 Expression Correlates with Local Recurrence and Metastatic Disease in Non–Small Cell Lung Cancer Patients Hans-Stefan Hofmann,1 Gesine Hansen,2 the 169,000 new cases identified in the United States in 2002 Gu¨nther Richter,4 Christiane Taege,3 will lead to more deaths than breast, colon, prostate, and cervical Andreas Simm,1 Rolf-Edgar Silber,1 cancers combined (1). The pathogenesis of lung cancer remains highly elusive due to its aggressive nature and considerably and Stefan Burdach4 heterogeneity as compared with other cancers. Many lung cancer 1 2 3 Departments of Cardio-Thoracic Surgery and Paediatrics; Institute patients have distant metastases or occult hematogenous and of Pathology, Martin-Luther-University Halle-Wittenberg, Halle; and 4Cancer Center and Division of Pediatric Hematology/Oncology, lymphatic spread of tumor cells at diagnosis, thus accounting for Munich University of Technology, Munich, Germany poor prognosis of this disease (2). Metastasis is the final stage in tumor progression from a normal cell to a fully malignant cell. One of the initial steps in ABSTRACT the metastatic process involves degradation of different Purpose: Non–small cell lung cancer (NSCLC) is a very components of the extracellular matrix and requires the action common and aggressive malignancy. Survival after resection of proteolytic enzymes such as serine-, cysteinyl- and aspartyl- of tumor is especially determined by the occurrence of distant proteinases as well as matrix metalloproteinases (MMP). metastasis. Matrix metalloproteinases (MMP) support this MMPs are a family of more than 20 secreted or transmembrane metastatic process by degradation of the extracellular matrix.
    [Show full text]