A Comparison of the Effect of Advice to Eat Either '5-A-Day'fruit And

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of the Effect of Advice to Eat Either '5-A-Day'fruit And European Journal of Clinical Nutrition (2003) 57, 316–323 ß 2003 Nature Publishing Group All rights reserved 0954–3007/03 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION A comparison of the effect of advice to eat either ‘5-a-day’ fruit and vegetables or folic acid-fortified foods on plasma folate and homocysteine PAL Ashfield-Watt1{, JM Whiting1, ZE Clark1, SJ Moat1, RG Newcombe2, ML Burr2 and IFW McDowell1* 1Cardiovascular Sciences Research Group, Wales Heart Research Institute, University of Wales College of Medicine, Cardiff, Wales, UK; and 2Department of Epidemiology, Statistics and Public Health, University of Wales College of Medicine, Cardiff, Wales, UK Objective: To assess and compare the effects of natural folate (100 mg) with those of folic acid from fortified sources (100 mg=day) on plasma folate and homocysteine. Design: Randomized controlled trial (parallel groups). Setting: Men and women living in South Wales, UK. Subjects: A total of 135 healthy individuals recruited from the local workforce and blood donor sessions. All subjects possessed the ‘wild-type’ CC genotype for C677T polymorphism in methylenetetrahydrofolate reductase (MTHFR). Interventions: Subjects underwent one of the following dietary interventions for 4 months: (1) fortified diet — usual diet plus 100 mg=day folic acid from fortified foods; (2) natural folate diet — usual diet plus 100 mg=day folate from natural sources; (3) control — usual diet. Results: The fortified group increased reported intake of folic acid from fortified foods compared to other groups (P < 0.001) achieving an extra 98 mg=day (95% CI 88 – 108). The natural folate group increased reported intake of natural source folates compared with the other two groups (P < 0.001), but achieved a mean increase of only 50 mg=day (95% CI 34 – 66). Plasma folate increased (P < 0.01) by a similar amount in both intervention groups compared to controls (fortified group 2.97, 95% CI 0.8 – 5.1; natural group 2.76, 95% CI 0.6 – 4.9. Plasma homocysteine, vitamins B6 and B12 were not significantly changed. Conclusions: Subjects achieved increases in folate intake using fortified foods more easily than by folate-rich foods, however both sources increased plasma folate by a similar amount. These levels of intake were insufficient to reduce homocysteine concentrations in MTHFR CC homozygotes, but may be more effective in other genotypes. Sponsorship: This study was supported by the UK Ministry of Agriculture, Fisheries and Foods (latterly UK, Food Standards Agency, Project Reference N05002). The Kellogg Company of Great Britain provided funding for reimbursement of subjects for the cost of fortified foods. European Journal of Clinical Nutrition (2003) 57, 316 – 323. doi:10.1038=sj.ejcn.1601545 Keywords: natural folates, fortified foods, 5-a-day fruits and vegetables, plasma folate, plasma homocysteine Introduction Sub-optimal folate status is associated with increased risk of *Correspondence: Dr IFW McDowell, Department of Medical neural tube defects (NTD; Medical Research Council, 1991), Biochemistry, University of Wales College of Medicine, Cardiff, Wales CF14 4XN, UK. cardiovascular disease (CVD; Boushey et al, 1995) and cancer E-mail: [email protected] (Kim, 1999). Although a causal link has been proven only for { Current address: Strangeways Research Laboratory, Wort’s Causeway, NTD (Medical Research Council, 1991), possible health bene- The University of Cambridge CB1 8RN, UK. fits of folate at all stages of the life cycle have stimulated Guarantor: Dr IFW McDowell. Contributors: PALA-W, MLB, IFWMcD, RGN designed the study. PALA- much research into optimal folate nutrition. Plasma W and JMW collected the data presented here. ZEC and SJM were homocysteine is inversely related to blood measures of responsible for the genotyping and biochemical assessments. RGN folate and is therefore a responsive marker of folate status analysed the data. PALA-W wrote the first draft of the paper and the (Selhub et al, 1993). Epidemiological studies show an other authors commented on this and subsequent drafts. Received 18 June 2001; revised 27 May 2002; association between elevated homocysteine and both NTD accepted 28 May 2002 and CVD (Stone et al, 1999). ‘5-a-day’ fruit and vegetables vs folic acid-fortified foods PAL Ashfield-Watt et al 317 Dietary folates occur as natural folates in green leafy indicated mean intakes of 2.3 portions=day of fruit and vegetables, citrus fruits, liver and dairy products and as vegetables in this region of South Wales. An increase to added synthetic folic acid in fortified food products. five portions per day would raise natural folate intake by The major function of folates in vivo is the transfer of approximately 100 mg=day and may be more easily achieved single carbon units, particularly for DNA synthesis and at the population level than the higher folate doses homocysteine remethylation. Homocysteine is regulated by previously investigated. Alternatively, folate intake may be two pathways: transulfuration catalysed by cystathionine- increased using foods fortified with folic acid. We have b-synthase with co-factor pyridoxal phosphate (vitamin B6) previously demonstrated that a diet enhanced with fortified and remethylation catalysed by methionine synthase with foods (200 mg=day extra folate) significantly increases co-factor vitamin B12 and substrate 5-methyltetrahydrofolate plasma folate and reduces plasma homocysteine (Ashfield- (Finkelstein, 1998). Folate is the strongest nutritional pre- Watt et al, 2001). Low-dose natural and fortified folate dictor of homocysteine concentrations (Boushey et al, 1995). approaches have not been directly compared. This study Methylenetetrahydrofolate reductase (MTHFR) converts sought to investigate the relative efficacy of 100 mg=day 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate folate from natural sources (fruit and vegetables) compared which is required for remethylation of homocysteine. with 100 mg=day folic acid from fortified foods in terms of A common mutation in MTHFR (C677T) is present in the changes in folate status. homozygous form in approximately 12% of the Caucasian population (Clark et al, 1998) and is associated with raised Methodology homocysteine concentrations especially when folate intake Subjects were healthy men and women who were of the and plasma folate are low (Harmon et al, 1996). Homozy- ‘wild-type’ CC genotype for the MTHFR C677T polymorph- gotes for the ‘wild-type’ C allele (CC genotype) comprise ism. These were individuals who had previously been approximately half the general population. screened for, but not recruited to a study of the effect of In the UK and EU the reference nutrient intake for folate is C677T variant MTHFR genotype on response to folic acid 200 mg=day for adults (Department of Health, 1991; Commis- interventions (reported elsewhere, Pullin et al, 2001; sion of the European Community, 1993). It is recommended Ashfield-Watt et al, 2002). Buccal cell samples were collected that women intending pregnancy consume an additional at the screening sessions for determination of MTHFR geno- 400 mg=day to protect against NTD. Limited success of stra- type. The study was approved by Bro Taf Research Ethics tegies to increase folate intakes during pregnancy and the Committee. All subjects gave informed, written consent. possible relationship between folate and chronic disease Subjects were eligible to participate in the study if they have stimulated interest in population interventions to fulfilled the following criteria: (1) non-smoking; (2) no increase folate status. history of cardiovascular disease or epilepsy; (3) aged Cross-sectional studies have shown dietary folate intake between 18 and 65; (4) not taking supplements containing to be positively associated with plasma folate and inversely vitamins B6,B12 or folic acid; (5) not taking any drugs known with plasma homocysteine (Tucker et al, 1996). However, to interfere with folate metabolism, eg methotrexate, bile most successful dietary intervention studies have investi- acid sequestrants; and (6) women not pregnant nor planning gated synthetic folic acid either as a supplement or a food pregnancy during the timeframe of the study. fortificant (Brouwer et al, 1999a; Dierkes, 1995). Natural Subjects were allocated to treatment groups which were folate intervention studies have reported limited success balanced with respect to age and gender using a randomiza- due to lack of compliance with dietary advice, destruction tion scheme produced by the study statistician (RGN). A of natural food folates during processing and poor bioavail- total of 135 subjects were assessed at baseline (dietary assess- ability (Sauberlich et al, 1987; Cuskelly et al, 1996). Impor- ment and venepuncture) and randomly allocated to one of tantly, Cuskelly et al demonstrated that the additional three dietary interventions. Subjects were monitored regu- 400 mg=day folate intake required for pregnancy could not larly throughout the intervention period and were reassessed be achieved using natural source folates alone. Large at clinic after 4 months. The study profile is illustrated in increases in natural folate intake have been reported, but Figure 1. were achieved under conditions which could not be gene- rally applied to free-living individuals (Brouwer et al, 1999b). Dietary assessment and interventions Low-dose natural folate strategies would be easier to achieve Folate intake was assessed using a semi-quantitative and may produce important increases in folate
Recommended publications
  • Pyridoxal Phosphate Is Better Than Pyridoxine for Controlling Idiopathic Intractable Epilepsy
    512 ORIGINAL ARTICLE Arch Dis Child: first published as 10.1136/adc.2003.045963 on 25 April 2005. Downloaded from Pyridoxal phosphate is better than pyridoxine for controlling idiopathic intractable epilepsy H-S Wang, M-F Kuo, M-L Chou, P-C Hung, K-L Lin, M-Y Hsieh, M-Y Chang ............................................................................................................................... Arch Dis Child 2005;90:512–515. doi: 10.1136/adc.2003.045963 Aim: To study the difference between pyridoxine (PN) and its active form, pyridoxal phosphate, (PLP) in control of idiopathic intractable epilepsy in children. Methods: Among 574 children with active epilepsy, 94 (aged 8 months to 15 years) were diagnosed with idiopathic intractable epilepsy for more than six months. All received intravenous PLP 10 mg/kg, then 10 mg/kg/day in four divided doses. If seizures recurred within 24 hours, another dose of 40 mg/kg was See end of article for given, followed by 50 mg/kg/day in four divided doses. For those patients whose seizures were totally authors’ affiliations controlled, PLP was replaced by the same dose of oral PN. If the seizure recurred, intravenous PLP was ....................... infused followed by oral PLP 50 mg/kg/day. Correspondence to: Results: Fifty seven patients had generalised seizures (of whom 13 had infantile spasms) and 37 had focal Dr M-F Kuo, Division of seizure. Eleven had dramatic and sustained responses to PLP; of these, five also responded to PN. Within (Pediatric) Neurosurgery, six months of treatment with PLP or PN, five of the 11 patients were seizure free and had their previous Department of Surgery, National Taiwan University antiepileptic medicine tapered off gradually.
    [Show full text]
  • Composition: Each
    ______________________________________________________________________________________________________________ Composition: Each Tablet Contains L-Methylfolate 1mg Mecobalamin 1500 mcg Pyridoxal 5’-phosphate 0.5mg Pharmacokinetic properties: L-methylfolate is a water soluble molecule which is primarily excreted via the kidneys. In a study of subjects with coronary artery disease (n=21), peak plasma levels were reached in 1-3 hours following ORAL/PARENTERAL administration. Peak concentrations of L-methylfolate were found to be more than seven times higher than folic acid (129 ng ml-1 vs. 14.1 ng ml-1) following ORAL/PARENTERAL administration. The mean elimination half-life is approximately 3 hours after 5mg of oral L- methylfolate, administered daily for 7 days. The mean values for Cmax, Tmax, and AUC0-12 were 129 ng ml-1, 1.3 hr., and 383 respectively. Red blood cells (RBCs) appear to be the storage depot for folate, as RBC levels remain elevated for periods in excess of 40 days following discontinuation of supplementation. Plasma protein binding studies showed that L-methylfolate is 56% bound to plasma proteins. Mecobalamin substances bind to intrinsic factor; a glycoprotein secreted by the gastric mucosa, and are then actively absorbed from the gastrointestinal tract. Absorption is impaired in patients with an absence of intrinsic factor, with a malabsorption syndrome or with disease or abnormality of the gut, or after gastrectomy. Absorption from the gastrointestinal tract can also occur by passive diffusion; little of the vitamin present in food is absorbed in this manner although the process becomes increasingly important with larger amounts such as those used therapeutically. After intranasal dosage, peak plasma concentrations of cyanocobalamin have been reached in 1 to 2 hours.
    [Show full text]
  • Vitamin B6 Metabolism and Regulation of Pyridoxal Kinase
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2009 VITAMIN B6 METABOLISM AND REGULATION OF PYRIDOXAL KINASE Amit Gandhi Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Chemicals and Drugs Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2008 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. © Amit K. Gandhi 2009 All Rights Reserved VITAMIN B 6 METABOLISM AND REGULATION OF PYRIDOXAL KINASE A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. By AMIT K. GANDHI M.S (Pharmaceutical Science), Rajiv Gandhi University, Indore, India, 2003 B.Pharm, Rajiv Gandhi University, Indore, India, 2001 Director: Martin K. Safo, Ph.D Assistant Professor, Department of Medicinal Chemistry Virginia Commonwealth University Richmond, Virginia December, 2009 Acknowledgement I would like to take this opportunity to express my deep gratitude and profound respect to my advisor, Dr. Martin K. Safo, for his supervision, advice, and guidance in this research work. His support and insight have been invaluable in the progression of my research. I also appreciate his words of encouragement, which kept me always in an innovative mood and guided me at all the times to bring about the best in me. He is my mentor and teacher whom I shall remember forever.
    [Show full text]
  • Phosphate-Dependent Enzymes Involved in Biotin Biosynthesis: Structure, Reaction Mechanism and Inhibition☆
    Biochimica et Biophysica Acta 1814 (2011) 1459–1466 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Pyridoxal-5′-phosphate-dependent enzymes involved in biotin biosynthesis: Structure, reaction mechanism and inhibition☆ Stéphane Mann, Olivier Ploux ⁎ Laboratoire Charles Friedel, ENSCP Chimie ParisTech, UMR CNRS 7223, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France article info abstract Article history: The four last steps of biotin biosynthesis, starting from pimeloyl-CoA, are conserved among all the Received 5 July 2010 biotin-producing microorganisms. Two enzymes of this pathway, the 8-amino-7-oxononanoate synthase Received in revised form 4 November 2010 (AONS) and the 7,8-diaminopelargonic acid aminotransferase (DAPA AT) are dependent on pyridoxal-5′- Accepted 10 December 2010 phosphate (PLP). This review summarizes our current understanding of the structure, reaction mechanism Available online 21 December 2010 and inhibition on these two interesting enzymes. Mechanistic studies as well as the determination of the crystal structure of AONS have revealed a complex mechanism involving an acylation with inversion of Keywords: fi fi 8-amino-7-oxononanoate synthase con guration and a decarboxylation with retention of con guration. This reaction mechanism is shared by the 7,8-diaminopelargonic acid aminotransferase homologous 5-aminolevulinate synthase and serine palmitoyltransferase. While the reaction catalyzed by Pyridoxal-5′-phosphate DAPA AT is a classical PLP-dependent transamination, the inactivation of this enzyme by amiclenomycin, a Enzyme reaction mechanism natural antibiotic that is active against Mycobacterium tuberculosis, involves the irreversible formation of an Inhibition adduct between PLP and amiclenomycin.
    [Show full text]
  • Large-Scale Domain Motions and Pyridoxal-5'-Phosphate Assisted Radical Catalysis in Coenzyme † B12-Dependent Aminomutases
    Int. J. Mol. Sci. 2014, 15, 3064-3087; doi:10.3390/ijms15023064 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Large-Scale Domain Motions and Pyridoxal-5'-Phosphate Assisted Radical Catalysis in Coenzyme † B12-Dependent Aminomutases Amarendra Nath Maity, Yung-Han Chen and Shyue-Chu Ke * Physics Department, National Dong Hwa University, Hualien 97401, Taiwan; E-Mails: [email protected] (A.N.M.); [email protected] (Y.-H.C.) † This paper is dedicated to Emeritus Professor Perry A. Frey (Biochemistry Department, University of Wisconsin at Madison, Madison, WI, USA) on the occasion of his 78th birthday. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +886-3863-3705; Fax: +886-3863-3690. Received: 27 November 2013; in revised form: 25 December 2013 / Accepted: 22 January 2014 / Published: 20 February 2014 Abstract: Lysine 5,6-aminomutase (5,6-LAM) and ornithine 4,5-aminomutase (4,5-OAM) are two of the rare enzymes that use assistance of two vitamins as cofactors. These enzymes employ radical generating capability of coenzyme B12 (5'-deoxyadenosylcobalamin, dAdoCbl) and ability of pyridoxal-5'-phosphate (PLP, vitamin B6) to stabilize high-energy intermediates for performing challenging 1,2-amino rearrangements between adjacent carbons. A large-scale domain movement is required for interconversion between the catalytically inactive open form and the catalytically active closed form. In spite of all the similarities, these enzymes differ in substrate specificities. 4,5-OAM is highly specific for D-ornithine as a substrate while 5,6-LAM can accept D-lysine and L-β-lysine.
    [Show full text]
  • Prediagnostic Plasma Pyridoxal 5 -Phosphate (Vitamin B6) Levels
    Published OnlineFirst August 9, 2012; DOI: 10.1158/1055-9965.EPI-12-0717-T Cancer Epidemiology, Research Article Biomarkers & Prevention Prediagnostic Plasma Pyridoxal 50-Phosphate (Vitamin B6) Levels and Invasive Breast Carcinoma Risk: The Multiethnic Cohort Galina Lurie1, Lynne R. Wilkens1, Yurii B. Shvetsov1, Nicholas J. Ollberding2, Adrian A. Franke1, Brian E. Henderson3, Laurence N. Kolonel1, and Marc T. Goodman1 Abstract Background: Evidence from experimental and epidemiologic studies suggests that vitamin B6 may reduce the risk of breast cancer. Methods: We examined the association of prediagnostic plasma concentrations of pyridoxal-50-phosphate (PLP), an active form of vitamin B6, with postmenopausal breast cancer risk in a case–control study nested in the multiethnic cohort in Hawaii and Southern California, including 706 cases and 706 controls matched on date of birth, ethnicity, study site, date of blood draw, time of blood draw, hours of fasting before blood draw, and use of menopausal hormones. OR and 95% confidence intervals (CI) were calculated using conditional logistic regression models. Results: Women with plasma PLP concentrations in the highest quartile had a 30% reduced risk of invasive breast cancer (CI: 0.50–0.98) as compared with the women in the lowest PLP quartile (P for trend ¼ 0.02). The association seemed to be limited in cases with hormone receptor-positive tumors (P for heterogeneity ¼ 0.04); and remained unchanged in the analysis restricted to women with blood samples collected more than one year before cancer diagnosis (OR ¼ 0.69; CI: 0.48–0.99; P for trend ¼ 0.03). Conclusions: These data suggest that higher circulating levels of vitamin B6 are associated with a reduced risk of invasive postmenopausal breast cancer.
    [Show full text]
  • Summary Report
    Pyridoxal 5-Phosphate: Summary Report Item Type Report Authors Gianturco, Stephanie L.; Pavlech, Laura L.; Storm, Kathena D.; Yoon, SeJeong; Yuen, Melissa V.; Mattingly, Ashlee N. Publication Date 2019-12 Keywords Pyridoxal; Compounding; Food, Drug, and Cosmetic Act, Section 503B; Food and Drug Administration; Outsourcing facility; Drug compounding; Legislation, Drug; United States Food and Drug Administration; Pyridoxal Phosphate Rights Attribution-NoDerivatives 4.0 International Download date 02/10/2021 21:53:32 Item License http://creativecommons.org/licenses/by-nd/4.0/ Link to Item http://hdl.handle.net/10713/12348 Summary Report Pyridoxal 5-Phosphate Prepared for: Food and Drug Administration Clinical use of bulk drug substances nominated for inclusion on the 503B Bulks List Grant number: 2U01FD005946 Prepared by: University of Maryland Center of Excellence in Regulatory Science and Innovation (M-CERSI) University of Maryland School of Pharmacy December 2019 This report was supported by the Food and Drug Administration (FDA) of the U.S. Department of Health and Human Services (HHS) as part of a financial assistance award (U01FD005946) totaling $2,342,364, with 100 percent funded by the FDA/HHS. The contents are those of the authors and do not necessarily represent the official views of, nor an endorsement by, the FDA/HHS or the U.S. Government. 1 Table of Contents REVIEW OF NOMINATION ..................................................................................................... 4 METHODOLOGY ...................................................................................................................
    [Show full text]
  • Nutrition Journal of Parenteral and Enteral
    Journal of Parenteral and Enteral Nutrition http://pen.sagepub.com/ Micronutrient Supplementation in Adult Nutrition Therapy: Practical Considerations Krishnan Sriram and Vassyl A. Lonchyna JPEN J Parenter Enteral Nutr 2009 33: 548 originally published online 19 May 2009 DOI: 10.1177/0148607108328470 The online version of this article can be found at: http://pen.sagepub.com/content/33/5/548 Published by: http://www.sagepublications.com On behalf of: The American Society for Parenteral & Enteral Nutrition Additional services and information for Journal of Parenteral and Enteral Nutrition can be found at: Email Alerts: http://pen.sagepub.com/cgi/alerts Subscriptions: http://pen.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Aug 27, 2009 OnlineFirst Version of Record - May 19, 2009 What is This? Downloaded from pen.sagepub.com by Karrie Derenski on April 1, 2013 Review Journal of Parenteral and Enteral Nutrition Volume 33 Number 5 September/October 2009 548-562 Micronutrient Supplementation in © 2009 American Society for Parenteral and Enteral Nutrition 10.1177/0148607108328470 Adult Nutrition Therapy: http://jpen.sagepub.com hosted at Practical Considerations http://online.sagepub.com Krishnan Sriram, MD, FRCS(C) FACS1; and Vassyl A. Lonchyna, MD, FACS2 Financial disclosure: none declared. Preexisting micronutrient (vitamins and trace elements) defi- for selenium (Se) and zinc (Zn). In practice, a multivitamin ciencies are often present in hospitalized patients. Deficiencies preparation and a multiple trace element admixture (containing occur due to inadequate or inappropriate administration, Zn, Se, copper, chromium, and manganese) are added to par- increased or altered requirements, and increased losses, affect- enteral nutrition formulations.
    [Show full text]
  • BIOPAR DELTA-FORTE- 1 Nf Units, 50 Mcg Cbl, 2.5 Mg F-Thf, 1
    BIOPAR DELTA-FORTE- 1 nf units, 50 mcg cbl, 2.5 mg f-thf, 1 mg pteglu-, 7 mg me- thf capsule Jaymac Pharmacueticals LLC Disclaimer: This drug has not been found by FDA to be safe and effective, and this labeling has not been approved by FDA. For further information about unapproved drugs, click here. ---------- BioparTM delta-FORTE DESCRIPTION [1 NF Units] [50 mcg CBl] [2.5 mg F-THf] [1 mg PteGlu-] [7 mg Me-THf] Prescription Hematopoietic Preparation For Therapeutic Use Multiphasic Softgels (30ct carton) NDC 64661-793-30 Rx ONLY BioparTMdelta-FORTE is an orally administered prescription hematopoietic preparation for therapeutic use formulated for adult macrocytic anemia patients – specifically including pernicious anemia patients, ages 12 and up, who are under specific direction and monitoring of cobalamin and folate status by a physician. A recent study+ suggested that BioparTM delta-FORTE was effective in lowering homocysteine levels in patients that are positive for MTHFR (methylenetetrahydrofolate reductase polymorphism). BioparTM delta-FORTE may be taken by women of childbearing age. BioparTM delta- FORTE may be taken by geriatric patients where compliance is an issue. + ClinicalTrials.gov identifier: NCT02709668, Correlation of Clinical Response With Homocysteine Reduction During Therapy With Reduced B Vitamins in Patients with MDD Who Are Positive for MTHFR C677T or A1298C Polymorphism. INGREDIENTS Cobalamin-intrinsic factor concentrate (non-inhibitory)1 .............................................................................................
    [Show full text]
  • A Simplified Method for Determination of Pyridoxal Phosphate in Biological Samples
    Upsala J Med Sci 91: 105-109, 1986 A Simplified Method for Determination of Pyridoxal Phosphate in Biological Samples Arne Hamfelt Department of Clinical Chemistry, Central Hospital Sundsvall, Sundsvall, Sweden ABSTRACT A new method for the determination of pyridoxal phosphate in plasma and in cerebrospinal fluid is described. It is based on the generally accepted apotyrosine decarboxylase method, but, in stead of following the decarboxylation rate using I4C- och 7 H-labelled tyrosine, a high performance liquid chromatography (HPLC) method for separation of tyrosine and tyramine is used. This procedure is recommended as it is less time consuming and avoids utilizing radioactive material. INTRODUCTION The level of pyridoxal phosphate in plasma and in cerebrospinal fluid lies in lower nanomolar range per liter, hence sensitive assay procedures must be utilized. These have most often been based on using pyridoxal phosphate as coenzyme in a pyridoxal phosphate dependent enzymatic reaction. The apoenzyme has been prepared and the conversion of the substrate traced. By adding varying amounts of pyridoxal phosphate the rate of enzymatic reaction has been calculated and a calibration curve obtained. The enzyme used has often been tyrosine decarboxylase, the apoenzyme of which is rather easily prepared. The first description of this enzyme reaction for this purpose was by Boxer and al. in 1957 (2), who followed the reaction rate by measuring the carbon dioxide produced in a Warburg equipment. The method was made more sensitive by using tyr~sine-l-’~C (3), later changed to a mixture of tyr~sine-l-’~Cand 3H-tyrosine, determining the I4C and 7 H activity at different time intervals in a dual channel liquid scintillation counter.
    [Show full text]
  • Comparison of Dietary Vitamin B6 and Niacin on Fattenning Performance of Quails
    Comparison of dietary vitamin b6 and niacin on fattenning performance of quails C. GUL¹* and O. OZTURKCAN²** ¹ /Vocational School of Yildizeli , Cumhuriyet University, Sivas-TURKEY. *e-mail: [email protected] ² Deparment of Animal Science, Faculty of Agriculture, Cukurova University, Adana- TURKEY. **e-mail: [email protected] The present study was conducted to determine whether dietary vitamin B6 and niacin could increase weight gain and reduce fat content of japanese quail (Coturnix coturnix japonica) two experiments were carried out during the experimental study. The first experiment was performed using 60 japanese quails age of 5 weeks. The chicks were divided into 4 groups of equal number and fed experimental diets supplemented with 0, 2.53, 2.76 or 3.22 mg/kg vitamin B6. At the end of the experiment, feed consumption, feed efficiency, carcass weight, carcass yield and abdominal fat weight were not significantly improved by B6 supplementation (P>0.05). In the second experiment, sixty 1-day-old japanese quails were divided into 4 groups, comprising 15 birds each and fed experimental diets supplemented with 0, 44, 48 or 56 mg/kg niacin. Dietary niacin levels did not affect body weight, body weight gain, feed consumption, feed efficiency, abdominal fat deposition and carcass weight (P>0.05). The result of this study demonstrated that chicks receiving vitamin B6 and niacin supplementation did not affect performance, abdominal fat deposition and carcass weight. Key Words: Japanese Quail; Niacin; Vitamin B6; Abdominal Fat Introduction Quails and poultry have similar nutrition physiology. Due to their metabolism rate, feed intake and energy requirements are high (Zucker and Groop, 1967).
    [Show full text]
  • Effects of Vitamin B6 Metabolism on Oncogenesis, Tumor Progression and Therapeutic Responses
    Oncogene (2013) 32, 4995–5004 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc REVIEW Effects of vitamin B6 metabolism on oncogenesis, tumor progression and therapeutic responses L Galluzzi1,2,8, E Vacchelli2,3,4, J Michels2,3,4, P Garcia2,3,4, O Kepp2,3,4, L Senovilla2,3,4, I Vitale2,3,4 and G Kroemer1,4,5,6,7,8 Pyridoxal-50-phosphate (PLP), the bioactive form of vitamin B6, reportedly functions as a prosthetic group for 44% of classified enzymatic activities of the cell. It is therefore not surprising that alterations of vitamin B6 metabolism have been associated with multiple human diseases. As a striking example, mutations in the gene coding for antiquitin, an evolutionary old aldehyde dehydrogenase, result in pyridoxine-dependent seizures, owing to the accumulation of a metabolic intermediate that inactivates PLP. In addition, PLP is required for the catabolism of homocysteine by transsulfuration. Hence, reduced circulating levels of B6 vitamers (including PLP as well as its major precursor pyridoxine) are frequently paralleled by hyperhomocysteinemia, a condition that has been associated with an increased risk for multiple cardiovascular diseases. During the past 30 years, an intense wave of clinical investigation has attempted to dissect the putative links between vitamin B6 and cancer. Thus, high circulating levels of vitamin B6, as such or as they reflected reduced amounts of circulating homocysteine, have been associated with improved disease outcome in patients bearing a wide range of hematological and solid neoplasms. More recently, the proficiency of vitamin B6 metabolism has been shown to modulate the adaptive response of tumor cells to a plethora of physical and chemical stress conditions.
    [Show full text]