Pest Risk Analysis for Coleosporium Asterum STAGE 1: INITIATION 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. -
Toronto Master Gardeners Ask Plant Id Questions
TORONTO MASTER GARDENERS ASK PLANT ID QUESTIONS Image Question Answer Growing in ditches beside a gravel road It is challenging to identify a plant from a single leaf, and I consulted our team in Township of Perry 25 minutes north of Master Gardeners, several of whom feel that the plant is likely some sort of Huntsville. Cant find it in any of our of dock. Consider the following: reference books. Leaves are emerging from ground singly and veins are deep ñ Rumex sanguineus var.sanguineus (red-veined or bloody red. dock). See the Missouri Botanical Garden monograph ñ Rumex obtusifolius (broadleaved dock/ bitter dock). See Illinois Wildflowers – Bitter Dock ñ Rumex aquaticus (Scottish dock). See Nature Gate’s Scottish Dock Another suggestion was this might be pokeweed (Phytolacca Americana). See Ohio State University’s Ohio Perennial and Biennial Weed May 2019 Guide – Common PokeweedClick on the above links and you'll see photos that show that these plants have leaves that resemble those of your mystery plant, in many respects. However, with docks and the common pokeweed, leaves generally emerge from the same clump, not singly. As well, these plants have lance-shaped leaves, which seem to differ quite a bit from the oblong-shaped leaf of shown in the photo you submitted.Finally, it is possible that the plant is related to dock, but is a sorrel (Rumex acetosa) - some sorrels have leaves that are shaped more like the leaf in your photo. For example, see Nature Gate's Common sorrel My neighbour gave me this plant, that I Your neighbour gave you a Bergenia cordifolia, commonly called Bergenia or planted las year. -
Exotic Pests of Concern for Ornamental Plants Introduction
Exotic Pests of Concern for Ornamental Plants Introduction • Exotic Arthropod Pests • Exotic Diseases – Red palm weevil – Red ring disease of – Daylily leaf miner palms – Japanese maple scale – Boxwood blight – Passionvine mealybug – Impatiens downy mildew – Red palm mites – Chrysanthemum white – Tremex wood wasp rust – Sirex wood wasp – Texas Phoenix palm decline – Brown marmorated stink bug – Bleeding canker of horse chestnut – European pepper moth Exotic Arthropods Has been found and Red Palm Weevil eradicated • Rhynchophorus ferrugineus – Distribution • Native to Asia, spread to Middle East, Portugal, Spain • First detected in US in California in 2010 – Hosts • Palms, American Agave, sugarcane • Attracted to wounded plants Image Credit: John Kabashima, University of California Bugwood.org, #5444382 Has been found and Red Palm Weevil eradicated Image Credit: Top Left: Mike Lewis, Center for Invasive Species Research, Bugwood.org, # 5430201 Bottom Left: Amy Roda, USDA-APHIS Right: Christina Hoddle, University of California, Bugwood.org, # 5430200 Has been found and Red Palm Weevil eradicated Image Credit; Amy Roda, USDA-APHIS Has been found and Red Palm Weevil eradicated Image Credit; Amy Roda, USDA-APHIS). Has been found and Red Palm Weevil eradicated • Management – Monitoring – Cultural • Sanitation • Sealants • Groundcover Monitoring bucket. – Chemical* Image Credit; Amy Roda, USDA-APHIS). • Carbaryl, chlorpyrifos, diazinon, endosulfan, fipronil, imidacloprid, malathion, acephate, azinphos-methyl, methidathion, demethoate, trichlorfon *Be sure to check with your local county agent to find out which chemicals are certified for use in your state, on what crop it is allowed to be used, if it is allowed to be used post-harvest or pre-harvest, and if it should be applied by a licensed applicator. -
The Relation Between Road Crack Vegetation and Plant Biodiversity in Urban Landscape
Int. J. of GEOMATE, June, 2014, Vol. 6, No. 2 (Sl. No. 12), pp. 885-891 Geotech., Const. Mat. & Env., ISSN:2186-2982(P), 2186-2990(O), Japan THE RELATION BETWEEN ROAD CRACK VEGETATION AND PLANT BIODIVERSITY IN URBAN LANDSCAPE Taizo Uchida1, JunHuan Xue1,2, Daisuke Hayasaka3, Teruo Arase4, William T. Haller5 and Lyn A. Gettys5 1Faculty of Engineering, Kyushu Sangyo University, Japan; 2Suzhou Polytechnic Institute of Agriculture, China; 3Faculty of Agriculture, Kinki University, Japan; 4Faculty of Agriculture, Shinshu University, Japan; 5Center for Aquatic and Invasive Plants, University of Florida, USA ABSTRACT: The objective of this study is to collect basic information on vegetation in road crack, especially in curbside crack of road, for evaluating plant biodiversity in urban landscape. A curbside crack in this study was defined as a linear space (under 20 mm in width) between the asphalt pavement and curbstone. The species composition of plants invading curbside cracks was surveyed in 38 plots along the serial National Route, over a total length of 36.5 km, in Fukuoka City in southern Japan. In total, 113 species including native plants (83 species, 73.5%), perennial herbs (57 species, 50.4%) and woody plants (13 species, 11.5%) were recorded in curbside cracks. Buried seeds were also obtained from soil in curbside cracks, which means the cracks would possess a potential as seed bank. Incidentally, no significant differences were found in the vegetation characteristics of curbside cracks among land-use types (Kolmogorov-Smirnov Test, P > 0.05). From these results, curbside cracks would be likely to play an important role in offering habitat for plants in urban area. -
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry. -
Occurrence of Rust on Solidago Canadensis, a New Host Record for Coleosporium Asterum from India
Plant Pathology & Quarantine 6(1): 43–46 (2016) ISSN 2229-2217 www.ppqjournal.org Article PPQ Copyright © 2016 Online Edition Doi 10.5943/ppq/6/1/6 Occurrence of rust on Solidago canadensis, a new host record for Coleosporium asterum from India Thite SV, Hande PR and Kore BA* Department of Botany, Yashvantrao Chavan Institute of Science, Satara – 415 001, (M.S), India Thite SV, Hande PR, Kore BA 2016 – Occurrence of rust on Solidago canadensis, a new host record for Coleosporium asterum from India. Plant Pathology & Quarantine 6(1), 43–46, Doi 10.5943/ppq/6/1/6 Abstract In September 2012, leaves of Solidago canadensis with typical symptoms of rust were collected in the Botanical Garden of Yashvantrao Chavan Institute of Science, Satara (MS, India). The rust was identified as Coleosporium asterum. This rust is recorded on S. canadensis in India for the first time. Key words – Asteraceae – Coleosporiaceae – Coleosporium asterum – Solidago canadensis. Introduction Solidago canadensis L. (Asteraceae) (cf. The Plant List, 2014) (Fig. 1A), commonly called Canadian goldenrod, is native to North America (Hegi 1979). It often occurs as a weed in abandoned fields and roadsides, grasslands, forest edges and human-influenced habitats in urban areas and settlements (Walck et al. 1999). It is also cultivated as an ornamental in botanical gardens and home gardens in various parts of the world. The plant is exotic to India and was introduced for its ornamental value. The inflorescence of the plant forms a broad pyramidal panicle with a central axis and recurving branches giving it a gorgeous look. Its golden yellow attractive inflorescence is largely used in bouquets. -
Checklist of the Vascular Plants of Redwood National Park
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks. -
Patterns of Resource Allocation in Different Habitats of Kalimeris Intergrifolia in Northeast China Z
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Spanish Journal of Agricultural Research 2011 9(4), 1224-1232 Available online at www.inia.es/sjar ISSN: 1695-971-X doi: http://dx.doi.org/10.5424/sjar/20110904-162-11 eISSN: 2171-9292 Patterns of resource allocation in different habitats of Kalimeris intergrifolia in Northeast China Z. N. Yuan1,2, J. M. Lu1*, J. Y. Chen1 and S. Z. Jiang2 1College of Life Sciences, Northeast Normal University. Changchun 130024. P. R. China 2 Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province; College of life Sciences and Technology, Harbin Normal University. Harbin 150025. P. R. China Abstract Understanding parameters that drive plant resource allocation for reproduction in potentially economically and environ- mentally important species, such as Kalimeris intergrifolia, is essential to maximize production rates. Hence, this study evaluates the characteristics in reproductive resource allocation of two K. intergrifolia communities at a saline-alkali open meadow and at a semi-enclosed secondary broad-leaved forest fringe, in the Songnen plains region of northeast China. Ramets from each habitat type were sampled at three intervals during the ripening stage (June-October). Relative resource distribution was quantified by measuring the dry weight of the above-ground ramet components, including the stem, leaf, corymb and seeds. The results indicated high variability in the distribution of resource allocation for both types, with larger phenotypic plasticity being recorded for the forest fringe than the open meadow. However, the allocation of re- sources into reproductive organs was higher in the open meadow than in the forest fringe, demonstrating that the open community was advantageous to the reproduction. -
Systematic Studies of Parasenecio (Asteraceae-Senecioneae) I
J. Jpn. Bot. 90: 92–97 (2015) Systematic Studies of Parasenecio (Asteraceae-Senecioneae) I. Parasenecio katoanus, a New Species from Yamagata Prefecture, Northern Honshu, Japan Yuichi KADOTA Department of Botany, National Museum of Nature and Science, 4–1–1, Amakubo, Tsukuba, 305-0005 JAPAN E-mail: [email protected] (Accepted on November 1, 2014) A new species of Parasenecio (Asteraceae-Senecioneae), P. katoanus Kadota, is described from the Shônai region, Yamagata Pref., northern Honshu, Japan. Parasenecio katoanus is distinguished from P. nikomontanus (Matsum.) H. Koyama by having 1) triangular-pentagonal, somewhat fleshy, dimly lustrous, usually glabrous leaf blades, 2) longer involucres with acute involucral phyllaries, 3) longer achenes, and 4) ascending peduncles at an acute angle. It was found that the flowers were fragrant in the midst of flowering time. Parasenecio katoanus is hitherto known only from the Shônai area of Yamagata Pref. Key words: Asteraceae, Japan, new species, Parasenecio katoanus, the Shônai region, Yamagata Prefecture. This is the first part of a series of systematic blades and is commonly distributed on the studies of the genus Parasenecio (Asteraceae- Japan Sea side of Honshu Island ranging from Senecioneae). The genus consists of more Akita Pref. to Shimane Pref. (Koyama 1995, than 60 species (Chen 1999). It shows an East Kadota unpubl.). The Japanese vernacular name Asian and Eastern North American disjunct ‘Ô-kani-kômori’ is derived from the shape of distribution pattern and its considerable number leaf blades, of which ‘Kani’ means the shape of of species are recognized in the Sino-Japanese crab carapace. floristic region (Koyama 1983, Chen 1999, Parasenecio nikomontanus also occurs Kadota 2009). -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
First Report of Coleosporium Sp. on Clematis Gouriana in India Article
Plant Pathology & Quarantine 6(1): 1–3 (2016) ISSN 2229-2217 www.ppqjournal.org Article PPQ Copyright © 2016 Online Edition Doi 10.5943/ppq/6/1/1 First report of Coleosporium sp. on Clematis gouriana in India Hande PR, Thite SV and Kore BA* Department of Botany, Yashvantrao Chavan Institute of Science, Satara – 415 001, (M.S), India * [email protected] Hande PR, Thite SV, Kore BA 2016 – First report of Coleosporium sp. on Clematis gouriana in India. Plant Pathology & Quarantine 6(1), 1–3, Doi 10.5943/ppq/6/1/1 Abstract In December 2014 leaves of Clematis gouriana with typical symptoms of rust were collected from different localities of Satara district. Based on its morphological characters, the pathogen was identified as Coleosporium sp. This is the first report of rust on C. gouriana in India. Key words – Clematis gouriana – Coleosporium sp. – rust Introduction Clematis gouriana (Fig. 1 A) is a common climber overtopping shrubs and low trees along forest boarders of ranges of Sahyadri. Flowers are very fragrant. The leaves are used as a remedy for treating wounds in cattle. The plant is also used as a medicine for leprosy and fevers (Yadav & Sardesai 2012). During a survey executed in 2014, this plant was found to be severely infected with rust. The severity of disease was high during winter. Many leaves were covered with bright yellow- orange coloured uredinia on the lower surface (Fig. 1 B, C). There were irregular yellow patches on the upper surface of leaves corresponding to the position of the uredinia. The patches turn dark brown and there is premature leaf fall. -
Current Status of Research on Rust Fungi (Pucciniales) in India
Asian Journal of Mycology 4(1): 40–80 (2021) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/4/1/5 Current status of research on Rust fungi (Pucciniales) in India Gautam AK1, Avasthi S2, Verma RK3, Devadatha B 4, Sushma5, Ranadive KR 6, Bhadauria R2, Prasher IB7 and Kashyap PL8 1School of Agriculture, Abhilashi University, Mandi, Himachal Pradesh, India 2School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, India 3Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India 4 Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, India 5Department of Biosciences, Chandigarh University Gharuan, Punjab, India 6Department of Botany, P.D.E.A.’s Annasaheb Magar Mahavidyalaya, Mahadevnagar, Hadapsar, Pune, Maharashtra, India 7Department of Botany, Mycology and Plant Pathology Laboratory, Panjab University Chandigarh, India 8ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, India Gautam AK, Avasthi S, Verma RK, Devadatha B, Sushma, Ranadive KR, Bhadauria R, Prasher IB, Kashyap PL 2021 – Current status of research on Rust fungi (Pucciniales) in India. Asian Journal of Mycology 4(1), 40–80, Doi 10.5943/ajom/4/1/5 Abstract Rust fungi show unique systematic characteristics among all fungal groups. A single species of rust fungi may produce up to five morphologically and cytologically distinct spore-producing structures thereby attracting the interest of mycologist for centuries. In India, the research on rust fungi started with the arrival of foreign visiting scientists or emigrant experts, mainly from Britain who collected fungi and sent specimens to European laboratories for identification. Later on, a number of mycologists from India and abroad studied Indian rust fungi and contributed a lot to knowledge of the rusts to the Indian Mycobiota.