Biology and New Larval Descriptions for Three Cetoniine Beetles (Coleoptera: Scarabaeidae: Cetoniinae: Cetoniini: Cetoniina, Leucocelina)

Total Page:16

File Type:pdf, Size:1020Kb

Biology and New Larval Descriptions for Three Cetoniine Beetles (Coleoptera: Scarabaeidae: Cetoniinae: Cetoniini: Cetoniina, Leucocelina) SYSTEMATICS Biology and New Larval Descriptions for Three Cetoniine Beetles (Coleoptera: Scarabaeidae: Cetoniinae: Cetoniini: Cetoniina, Leucocelina) E. MICO´ AND E. GALANTE Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, 03080-Alicante, Spain Downloaded from https://academic.oup.com/aesa/article/96/2/95/27977 by guest on 24 September 2021 Ann. Entomol. Soc. Am. 96(2): 95Ð106 (2003) ABSTRACT The larval morphology of Tropinota squalida (Scopoli) and Aethiessa floralis (Fabricius) is described. The latter is the Þrst description of a larva in this genus. The third-instar larva of Oxythyrea funesta (Poda) is redescribed. These species are included in a revised key to the larvae of Palaearctic Cetoniinae. The life cycle and larval biology of these ßower chafers are described. RESUMEN Se describe la morfologõ´a larvaria de Tropinota squalida (Scopoli) y Aethiessa floralis (Fabricius). Esta u´ ltima constituye la primera descripcio´n larvaria de este ge´nero. Se redescribe la larva de O. funesta (Poda). Las mencionadas especies Se han incluido en una clave de identiÞcacio´n para las larvas de las especies Palea´rticas de Cetoniinae. se describe el ciclo biolo´gico y la biologõ´a larvaria de dichas especies. KEY WORDS Scarabaeidae, Cetoniinae, Tropinota squalida, Oxythyrea funesta, Aethiessa floralis, larval biology Oxythyrea MULSANT (Cetoniini: Leucocelina), Tropi- tae) species are abundant (Mico´ and Galante 1998). nota Mulsant, and Aethiessa (Cetoniini: Cetoniina) The morphology and biology of the immature stages of Burmeister are small genera (10, 10, and 7 species, the genus Aethiessa were unknown until now. respectively) that occur in the Palaearctic region. The aims of our study were: 1) to describe the Tropinota squalida (Scopoli, 1763) is distributed in the third-instar larva of T. squalida and A. floralis and to occidental Mediterranean basin, and Oxythyrea fun- redescribe the larva of O. funesta; 2) to provide a esta (Poda, 1761) occurs in the occidental Palaearctic revised key with the speciÞc diagnostic characters of region. Adults of both species have been considered the larvae of Palaearctic Cetoniinae; and (3) to con- occasional pests of crops and ornamental plants (Jans- tribute to the knowledge of the larval biology and life sens 1960, Balachowsky 1962, Molina 2001). Although cycles of these species. several experiments have tested the larval survival rates at different temperatures (Hurpin 1958, Bala- chowsky 1962), or by altering the substrate (Abdalla Materials and Methods 1991), larval morphology is little known. Golovjanko A total of 91 larvae of T. squalida, 36 larvae of O. (1936) and Korschefsky (1940) illustrated the venter funesta, and 7 larvae of A. floralis were reared from egg of the last abdominal segment of O. funesta. Medvedev to adults to study the life cycle of the species under (1952) illustrated the frontal view of the head and the laboratory conditions. These larvae were fed milled venter of the last abdominal segment with details of rabbit dung heaps, decaying vegetative matter, and the raster, including a short description of these struc- manure. The breeding cages were maintained in an tures. Janssens (1960) described some morphological environmental chamber at 25ЊC:20ЊC (L : D), 80 Ϯ characters of the larvae of T. squalida, but no illustra- 5% RH, with a photoperiod of 15:9(L:D).The tion was provided. None of these contributions rep- breeding cages were examined weekly, and the results resented a complete description, and the character- were recorded. Larvae used for morphological de- istics provided are insufÞcient to distinguish them scriptions were reared in the above laboratory con- from their congeners. Aethiessa floralis (Fabricius, ditions. The different larval instars of each species 1787) occurs in the occidental Mediterranean basin were Þxed in KAAD solution (Carne 1951) for 24 h mainly in formerly cultivated areas characterized by and preserved in 70% ethanol. Specimens are depos- nitrophilous vegetation where Carduinae (Composi- ited in the Entomological Collection of the University 0013-8746/03/0095Ð0106$04.00/0 ᭧ 2003 Entomological Society of America 96 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 96, no. 2 of Alicante, Spain (CEUA). In the description of lar- six sensilla. Lateral lobe with seven to eight setae on vae, the terminology of Ritcher (1966) and Mico´ et al. each side. Antenna (Fig. 5). Four segmented. Apical (2001) was used. For the suprageneric nomenclature, segment with two dorsal and three ventral sensory we have followed the scarab classiÞcation of Krikken spots. (1984). Thorax. Spiracles (Fig. 4). Respiratory plate of tho- Phenology of adults was based on the labeled spec- racic spiracles with 10Ð16 holes across diameter; lobes imens provided by CEUA, the National Natural Sci- unequal. Legs (Fig. 3). Tarsunguli short (0.5 times the ence Museum (MNCN, Madrid, Spain), the Zoology preceding segment), cylindrical, bearing 12Ð13 setae. Museum (Barcelona, Spain), and the National Natural Abdomen. Spiracles of abdominal segments II-VII History Museum (MNHN, Paris, France), as well as similar in size; those of I and VIII conspicuously our direct and indirect (baited trap) captures. smaller. Dorsa of abdominal segments I-VIII with three to four rows of short setae, each posterior row with long to short setae. Abdominal segments IX-X Downloaded from https://academic.oup.com/aesa/article/96/2/95/27977 by guest on 24 September 2021 Results and Discussion fused, densely setose with short setae and single row of long to short setae at the middle and apex (Fig. 1). T. squalida (Scopoli, 1763) Third-Instar Larva Tegilla and lower anal lip composed of short and long (Figs. 1Ð13) setae (Fig. 6). Raster with pair of palidia diverging The larval description is based on two third-instar posteriorly, each palidium consisting of 17Ð21 short, larvae reared from eggs laid by adults collected at “La acute pali (Fig. 7). Granadella,” Alicante (Spain), IV-1997, Mico´ and Diagnosis. One of the most remarkable diagnostic Verdu´ leg.; one third-instar larva reared from eggs laid characters of T. squalida is the wide stridulatory area by adults collected at “Sierra de Aixorta´,” Alicante of the mandibles (Fig. 11). This area is conspicuously (Spain), V-1996, Mico´ and Verdu´ leg.; one third-instar wider than in other known larvae of Palaearctic Ce- larva collected at “La Mata,” Torrevieja, Alicante toniini (Mico´ and Galante 2003). The short tarsungu- (Spain), IV-1995, Mico´ and Verdu´ leg.; one third-instar lus of this species is also noticeable, being 0.5 times the larva collected at “Palacio de Don˜ ana,” Huelva length of the previous segment (Fig. 3). (Spain), VIII-1999, Mico´ and Verdu´ leg. Head. Maximum width of head capsule, 3.2 mm. O. funesta (Poda, 1761) Third-Instar Larva Cranium (Fig. 2). Color, light yellow. Frons sparsely (Figs. 14Ð26) punctate, with one anterior seta, one posterior seta, one external seta, and one anterior angle seta on each The larval description is based on six third-instar side. Frontal suture widely sinuated. Labrum (Fig. 2). larvae reared from eggs laid by adults collected at Trilobed, narrower than clypeus; clithra present. “Arenales del Sol,” Alicante (Spain), Mico´ leg.; three Epipharynx (Fig. 8). Plegmatium absent. Corypha third-instar larvae collected at Boren, Le´rida, (Spain), with four long setae ßanked by one to two sensilla on 5-VIII-1998, Mico´ and Verdu´ leg. each side. Acanthoparia with 10Ð12 setae decreasing Head. Maximum width of head capsule 2.7 mm. in size posteriorly. Right chaetoparia more developed Cranium (Fig. 15). Color, light yellow. Frons with one than left chaetoparia, covered with longitudinal rows posterior seta and one anterior angle seta on each side; of setae. Pedium reduced. Laeotorma short with pter- anterior and external setae reduced to single micro- notorma present. Dexiotorma long, one-thirds length seta on each side. Frontal suture slightly sinuated. of the base of epipharynx, pternotorma present. Hap- Labrum (Fig. 15). Trilobed, narrower and shorter than tomeral region with slightly curved, transverse row of clypeus; clithra present. Epipharynx (Fig. 21). Pleg- 12Ð13 heli and three to four sensilla over the row. matium absent. Corypha with four long setae ßanked Haptolachus with four sensilla (two at base and two at by one to two sensilla on each side. Acanthoparia with left margin). Sensorial cone acute at apex. Sclerotized Þve to six short setae. Chaetoparia covered with four plate and crepis absent. Mandibles (Figs. 10Ð12). to Þve longitudinal rows of setae. Laeotorma short Asymmetrical, with two scissorial teeth anterior to with pternotorma present. Dexiotorma long, one- notch; two posterior to notch at left mandible; and one thirds length of the base of epipharynx, pternotorma posterior to notch at right mandible. Scissorial teeth of present. Haptomeral region with slightly curved, left mandible S3 and S4 well developed, parallel to S1 transverse row of 12Ð13 heli and three to four sensilla and S2. Stridulatory area oval, well developed, with over the row. Haptolachus with four sensilla (two at Ϸ20 stridulatory ridges (Fig. 12). Dorsal surface with base and two at left margin). Middle of haptolachus two setae near proximal end of the scissorial area. with slightly sclerotized longitudinal area. Sensorial Basomedial angle with brustia of short setae. Maxilla cone present. Sclerotized plate and crepis absent. (Fig. 13). Galea and lacinia fused forming mala. Mala Mandibles (Figs. 23, 24, 25). Asymmetrical, with two with large uncus at apex and two subterminal unci scissorial teeth anterior to notch; two posterior to fused at base. Stridulatory area consisting of a row of notch at left mandible, and one posterior to notch at four to Þve acute teeth and one small anterior conical right mandible. Scissorial teeth of left mandible S3 and process. Labium (Fig. 9). Hypopharyngeal sclerome S4 well developed, parallel to S1 and S2. Stridulatory with well-developed truncate process on right side. area elongated-oval, with 9Ð11 stridulatory ridges Glossa with three to Þve setae set in two rows on each (Fig.
Recommended publications
  • Faune De Belgique: Insectes Coléoptères Lamellicornes
    Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie, 151 (2015): 107-114 Can Flower chafers be monitored for conservation purpose with odour traps? (Coleoptera: Cetoniidae) Arno THOMAES Research Institute for Nature and Forest (INBO), Kliniekstraat 25, B-1070 Brussels (email: [email protected]) Abstract Monitoring is becoming an increasingly important for nature conservation. We tested odour traps for the monitoring of Flower chafers (Cetoniidae). These traps have been designed for eradication or monitoring the beetles in Mediterranean orchards where these beetles can be present in large numbers. Therefore, it is unclear whether these traps can be used to monitor these species in Northern Europe at sites where these species have relatively low population sizes. Odour traps for Cetonia aurata Linnaeus, 1761 and Protaetia cuprea Fabricius, 1775 were tested in five sites in Belgium and odour traps for Oxythyrea funesta Poda, 1761 and Tropinota hirta (Poda, 1761) at one site. In total 5 C. aurata , 17 Protaetia metallica (Herbst, 1782) and 2 O. funesta were captured. Furthermore, some more common Cetoniidae were found besides 909 non-Cetoniidae invertebrates. I conclude that the traps are not interesting to monitor C. aurata when the species is relatively rare. However, the traps seem to be useful to monitor P. metallica and to detect O. funesta even if it is present in low numbers. However, it is important to lower the high mortality rate of predominantly honeybee and bumblebees by adapting the trap design. Keywords: Cetoniidae, monitoring, odour traps, Cetonia aurata, Protaetia metallica, Oxythyrea funesta. Samenvatting Monitoring wordt in toenemende mate belangrijk binnen het natuurbehoud.
    [Show full text]
  • (Epicometis) Hirta (PODA) (Coleoptera: Cetoniidae) in Bulgaria
    ACTA ZOOLOGICA BULGARICA Acta zool. bulg., 63 (3), 2011: 269-276 Employing Floral Baited Traps for Detection and Seasonal Monitoring of Tropinota (Epicometis) hirta (PODA ) (Coleoptera: Cetoniidae) in Bulgaria Mitko A. Subchev1, Teodora B. Toshova1, Radoslav A. Andreev2, Vilina D. Petrova3, Vasilina D. Maneva4, Teodora S. Spasova5, Nikolina T. Marinova5, Petko M. Minkov, Dimitar I. Velchev6 1 Institute of Biodiversity and Ecosystem Research, 2 Gagarin str., 1113 Sofia, Bulgaria 2 Agricultural University, 12Mendeleev str., 4000 Plovdiv, Bulgaria 3 Institute of Agriculture, Sofijsko shoes, 2500 Kyustendil, Bulgaria 4 Institute of Agriculture, 1 Industrialna str., 8400 Karnobat, Bulgaria 5 Institute of Mountainous Animal Breeding and Agriculture, 281 Vasil Levski str, 5600 Troyan, Bulgaria 6 Maize Research Institute, 5835 Knezha, Bulgaria Abstract: The potential of commercially available light blue VARb3k traps and baits for T. hirta (Csalomon®, Plant Protection Institute, Budapest, Hungary) as a new tool for detection and describing the seasonal flight pat- terns of Tropinota (Epicometis) hirta (PODA ) was proved in eight sites in Bulgaria in 2009 and 2010. The traps showed very high efficiency in both cases of high and low population level of the pest. Significant catches of T. hirta were recorded in Dryanovo, Karnobat, Knezha, Kyustendil, Petrich and Plovdiv. As a whole the beetles appeared in the very end of March – beginning of April and reached their peak flight in the second half of April – beginning of May; catches were recorded up to the middle of July. The bait/traps system used in our field work showed very high species selectivity. In nine out of ten cases the catches of T.
    [Show full text]
  • A New Cetoniinae for the French Polynesia Fauna (Coleoptera, Scarabaeidae)
    Bulletin de la Société entomologique de France, 120 (3), 2015 : 379-381. A new Cetoniinae for the French Polynesia fauna (Coleoptera, Scarabaeidae) by Thibault RAMAGE 9 quartier de la Glacière, F – 29900 Concarneau <[email protected]> Abstract. – The Cetoniinae fauna of French Polynesia was restricted until now to a single introduced species, Protaetia fusca (Herbst, 1790). A second species is here reported from Tahiti, Glycyphana stolata (Fabricius, 1781). P. fusca is also reported from the Marquesas Islands for the first time. Résumé. – Une nouvelle Cétoine pour la faune de Polynésie française (Coleoptera, Scarabaeidae). La faune des Cetoniinae de Polynésie française, qui ne comprenait jusqu’à présent qu’une espèce introduite, Protaetia fusca (Herbst, 1790), compte désormais une seconde espèce, connue en Polynésie pour l’instant de Tahiti seulement, Glycyphana stolata (Fabricius, 1781). P. fusca est également citée pour la première fois des Marquises. Keywords. – Glycyphana stolata, Protaetia fusca, Cetoniini, French Polynesia. _________________ Until now only one species of Cetoniinae was known in French Polynesia, Protaetia fusca (Herbst, 1790) (PAULIAN, 1998). This species was reported only from the Society Islands, and it appears that it is also present in the Marquesas Islands. A second Cetoniinae, Glycyphana stolata (Fabricius, 1781), has been collected recently on Tahiti. It seems that G. stolata is now settled in French Polynesia and will probably spread in the different archipelagoes. Abbreviations. – CTR, Thibault Ramage’s personal collection, Concarneau ; MNHN, Muséum national d’Histoire naturelle, Paris. Family Scarabaeidae Latreille, 1802 Subfamily Cetoniinae Leach, 1815 Tribe Cetoniini Leach, 1815 Genus Glycyphana Burmeister, 1842 Glycyphana (Glycyphaniola) stolata (Fabricius, 1781) Cetonia stolata Fabricius, 1781 : 58.
    [Show full text]
  • Article History Keywords Cantaloupe, Natural Enemies, Diptera
    Egypt. J. Plant Prot. Res. Inst. (2020), 3 (2): 571 - 579 Egyptian Journal of Plant Protection Research Institute www.ejppri.eg.net Dipteran and coleopteran natural enemies associated with cantaloupe crop in Qalyubiya Governorate, Egypt El-Torkey, A.M. 1; Younes, M. W. F.², Mohi-Eldin, A. I. 1 and Abd Allah, Y.N.M. 1 1Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt. ²Zoology Department, Faculty of Science, Menofia University, Egypt. ARTICLE INFO Abstract: Article History Studying diversity of natural enemies associated with their pests Received: 21/ 4 /2020 in agro ecosystems is urgent for the integrated pest management. Two Accepted: 17 / 5 /2020 sampling techniques (i.e. water traps (pit-fall traps) and direct count of _______________ insects in the field) were used to survey pests, natural enemies and Keywords pollinators on six cantaloupe cultivars in Qaha region of Qalyubiya Cantaloupe, Governorate, Egypt over 2006 and 2007 summer plantation seasons. natural enemies, Thirty-two species belonging to two insects in Diptera and Coleoptera Diptera, orders presented by 18 superfamilies and 23 families and 22 genera. Coleoptera, They were recorded on Ideal, E81-065, Mirella, Vicar, E81-013 and Qalyubiya Magenta cantaloupe cultivars. Diptera was represented by eighteen Governorate and species belonging to 13 families (Sepsidae, Phoridae, Scenophilidae, Egypt. Dolichpodidae, Otitidae, Agromyzidae, Ephydridae, Drosophilidae, Tachinidae, Anthomyiidae, Muscidae, Syrohidae and Cecidomyiidae). Field observations indicated that Liriomyza trifolii (Burg), Agromyzidae infested cantaloupe leaves in moderate populations, while Melanogromyza cuntans (Meign) infested leaves in low populations. The present study revealed that the parasite Tachina larvarum L. (Tachinidae) and the predator Syrphus corolla F.
    [Show full text]
  • Coleoptera: Scarabaeidae: Cetoniinae) in the New World, with a Species Checklist and Descriptions of Two New Genera and Species from Mexico and Martinique
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2019 KEYS TO ADULTS OF ALL GENERA AND LARVAE OF 19 SPECIES OF GYMNETINI (COLEOPTERA: SCARABAEIDAE: CETONIINAE) IN THE NEW WORLD, WITH A SPECIES CHECKLIST AND DESCRIPTIONS OF TWO NEW GENERA AND SPECIES FROM MEXICO AND MARTINIQUE Brett C. Ratcliffe Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Coleopterists Bulletin, 73(1): 1–26. 2019. KEYS TO ADULTS OF ALL GENERA AND LARVAE OF 19 SPECIES OF GYMNETINI (COLEOPTERA:SCARABAEIDAE:CETONIINAE) IN THE NEW WORLD, WITH A SPECIES CHECKLIST AND DESCRIPTIONS OF TWO NEW GENERA AND SPECIES FROM MEXICO AND MARTINIQUE BRETT C. RATCLIFFE Systematics Research Collections, University of Nebraska State Museum W-436 Nebraska Hall, University of Nebraska Lincoln, NE 68588-0514, USA [email protected] ABSTRACT Keys to adults of all 27 genera and larvae of 19 species in 10 genera of Gymnetini that occur in the New World are presented. Supplementing the key to adults is a checklist of all species, their synonyms, and all literature citations associated with the nomenclatural epithets. Two new genera, Gymnephoria Ratcliffe and Madiana Ratcliffe and Rom´e,with one new species each, are described from Mexico and Martinique, respectively. Key Words: flower chafers, taxonomy, new species, identification, nomenclature, synonyms DOI.org/10.1649/0010-065X-73.1.1 Zoobank.org/urn:lsid:zoobank.org:pub:DABCC591-6424-4546-A8D0-32B5DE6B69AA Our generation is the first to fully appreciate the key is provided for 19 species in 10 genera of the threats facing millions of species, known New World larval Gymnetini.
    [Show full text]
  • Effects of Entomopathogenic Nematodes on Suppressing Hairy Rose Beetle, Tropinota Squalida Scop. (Coleoptera: Scarabaeidae) Population in Cauliflower Field in Egypt
    World Academy of Science, Engineering and Technology International Journal of Bioengineering and Life Sciences Vol:7, No:7, 2013 Effects of Entomopathogenic Nematodes on Suppressing Hairy Rose Beetle, Tropinota squalida Scop. (Coleoptera: Scarabaeidae) Population in Cauliflower Field in Egypt A. S. Abdel-Razek and M. M. M. Abd-Elgawad The control recommendation for populations of this insect Abstract—The potential of entomopathogenic nematodes in pest over the years has been done using chemical insecticides suppressing T. squalida population on cauliflower from transplanting such as Hostathion (40%) and Lannate (90%). to harvest was evaluated. Significant reductions in plant infestation Due to all the various problems and side effects associated percentage and population density (/m2) were recorded throughout the plantation seasons, 2011 and 2012 before and after spraying the with the synthetic insecticides, bioinsecticides are being plants. The percent reduction in numbers/m2 was the highest in recommended as an alternative. The entomopathogenic March for the treatments with Heterorhabditis indica Behera and nematodes of the family Heterorhaditidae are one of the Heterorhabditis bacteriophora Giza during the plantation season potential alternatives. Entomopathogenic nematodes are 2011, while at the plantation season 2012, the reduction in population obligate parasites kill insects with the aid of a mutualistic density was the highest in January for Heterorhabditis Indica Behera bacterium, which is carried in their intestine [5]. The and in February for H . bacteriophora Giza treatments. In a comparison test with conventional insecticides Hostathion and nematodes complete 2-3 generations within the host, after Lannate, there were no significant differences in control measures which free living infective juveniles (IJs) emerge to seek new resulting from treatments with H.
    [Show full text]
  • Taxonomie Und Verbreitung Von Valgus Hemipterus (Linnaeus, 1758) (Insecta: Coleoptera: Scarabaeidae: Cetoniinae: Valgini) 197-219 VERNATE 33/2014 S
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Veröffentlichungen des Naturkundemuseums Erfurt (in Folge VERNATE) Jahr/Year: 2014 Band/Volume: 33 Autor(en)/Author(s): Rössner Eckehard Artikel/Article: Taxonomie und Verbreitung von Valgus hemipterus (Linnaeus, 1758) (Insecta: Coleoptera: Scarabaeidae: Cetoniinae: Valgini) 197-219 VERNATE 33/2014 S. 197-219 Taxonomie und Verbreitung von Valgus hemipterus (Linnaeus, 1758) (Insecta: Coleoptera: Scarabaeidae: Cetoniinae: Valgini) ECKEHARD RÖSSNER Zusammenfassung Einleitung Bei der Untersuchung umfangreichen Materials von Der im deutschsprachigen Raum als Stolperkäfer oder Valgus hemipterus (Linnaeus, 1758) aus dem gesam- Bohrscharrkäfer bezeichnete Valgus hemipterus (Lin- ten bis heute bekannt gewordenen Verbreitungsgebiet naeus, 1758) gehört zu den Rosenkäfern im weiteren stellte sich heraus, dass die Art in zwei Unterarten auf- Sinne (Unterfamilie Cetoniinae) und ist im paläarkti- gespalten werden muss. Valgus hemipterus meridiona- schen Faunengebiet die populärste Art des Tribus Val- lis n. ssp. unterscheidet sich von der nominotypischen gini. Dies liegt an der weiten Verbreitung der Art, die Unterart vor allem im männlichen Genital. Die Unterart fast ganz Europa einschließt, an der relativ hohen Fund- kommt im Iran (Zagros- und Elburs-Gebirge), in der häufigkeit, und nicht zuletzt an ihrem etwas skurrilen Süd-Türkei (Taurus-Gebirge) und in der Levante (Sy- Aussehen. Die Oberseite des Käfers ist beschuppt, das rien, Libanon, Israel) vor und erreicht Höhenlagen bis Pronotum sehr uneben und die Elytren lassen Propygi- 2300 m. Dabei sind die Unterschiede in der externen dium und Pygidium frei. Hinzu kommt ein auffallen- Morphologie zwischen Populationen der neuen Unter- der Geschlechtsdimorphismus: Das Weibchen besitzt art aus dem Iran und denen der nominotypische Unter- einen Legestachel, der fast ein Fünftel der gesamten art besonders deutlich.
    [Show full text]
  • Using Odour Traps for Population Monitoring and Dispersal Analysis of the Threatened Saproxylic Beetles Osmoderma Eremita and Elater Ferrugineus in Central Italy
    J Insect Conserv (2014) 18:801–813 DOI 10.1007/s10841-014-9687-8 ORIGINAL PAPER Using odour traps for population monitoring and dispersal analysis of the threatened saproxylic beetles Osmoderma eremita and Elater ferrugineus in central Italy Agnese Zauli • Stefano Chiari • Erik Hedenstro¨m • Glenn P. Svensson • Giuseppe M. Carpaneto Received: 7 March 2014 / Accepted: 8 August 2014 / Published online: 17 August 2014 Ó Springer International Publishing Switzerland 2014 Abstract Pheromone-based monitoring could be a very lure compared to racemic c-decalactone in detecting its efficient method to assess the conservation status of rare presence. The population size at the two sites were esti- and elusive insect species, but there are still few studies for mated to 520 and 1,369 individuals, respectively. Our which pheromone traps have been used to obtain infor- model suggests a sampling effort of ten traps checked for mation on presence, abundance, phenology and movements 3 days being sufficient to detect the presence of E. ferru- of such insects. We performed a mark-recapture study of gineus at a given site. The distribution of dispersal dis- two threatened saproxylic beetles, Osmoderma eremita tances for the predator was best described by the negative (Scarabaeidae) and its predator Elater ferrugineus (Ela- exponential function with 1 % of the individuals dispersing teridae), in two beech forests of central Italy using phero- farther than 1,600 m from their natal site. In contrast to mone baited window traps and unbaited pitfall traps. Two studies on these beetles in Northern Europe, the activity lures were used: (1) the male-produced sex pheromone of pattern of the two beetle species was not influenced by O.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Descripción De Una Nueva Especie De Tropinota Mulsant, 1842 Del Subgénero Epicometis Burmeister, 1842 Del Norte De Marruecos (Coleoptera: Scarabaeidae, Cetoniinae)
    Graellsia, 71(1): e019 enero-junio 2015 ISSN-L: 0367-5041 http://dx.doi.org/10.3989/graellsia.2015.v71.122 DESCRIPCIÓN DE UNA NUEVA ESPECIE DE TROPINOTA MULSANT, 1842 DEL SUBGÉNERO EPICOMETIS BURMEISTER, 1842 DEL NORTE DE MARRUECOS (COLEOPTERA: SCARABAEIDAE, CETONIINAE) José L. Ruiz Instituto de Estudios Ceutíes, Paseo del Revellín, 30. 51001 Ceuta, España. E-mail: [email protected] urn:lsid:zoobank.org:author:D633356A-58DA-442D-B726-F3EF7B53D4BF RESUMEN Se describe una especie nueva del género Tropinota Mulsant, 1842 a partir de ejemplares del noroeste de Marruecos (región de Tánger-Tetuán): T. iec sp. n. Esta nueva especie se adscribe al subgénero Epicometis Burmeister, 1842 por presentar los principales caracteres diagnósticos del mismo: pronoto sin áreas lisas y la 5ª interestría no fuertemente elevada a modo de costilla ni bifurcada en la base. Se definen los rasgos diagnósti- cos de T. iec sp. n. y se discuten los caracteres diferenciales respecto a las demás especies de Epicometis. La especie morfológicamente más afín a T. iec sp. n. es Tropinota (Epicometis) hirta (Poda von Neuhaus, 1761), de la que se segrega principalmente por el brillo del tegumento, la densidad de la pilosidad corporal, el punteado del pronoto y élitros, la longitud de los tarsos y el punteado de la placa mesosternal, así como por la estructura del edeago, con los parámeros marcadamente ensanchados en la región apical en la primera. De igual forma, se señalan las principales diferencias morfológicas entre la nueva especie y las otros dos taxones específicos del género presentes en el norte de África: T.
    [Show full text]
  • Effect of Gibberellic Acid (Ga3)
    527 Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 15(2), 527-533, 2007 EVALUATION OF SOME WATER TRAPS FOR CONTROLLING HAIRY ROSE BEETLE ADULTS, TROPINOTA SQUALIDA SCOP. (COLEOPTERA: SCARABAEIDAE) [45] Hanafy1, H.E.M. 1- Department of Plant Protection, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt Keywords: Evaluation, Hairy rose beetle, Water chards (Ali and Ibrahim, 1988). In newly re- traps, Tropinota squalida, Control claimed areas, T. squalida beetles were attracted to wide range of plant flowers, causing considerable ABSTRACT damage to them. The flowers of field crops, i.e. broad bean, lupine and wheat; fruit trees, i.e. ap- Different coloured plastic buckets (yellow, red, ple, pear, citrus; vegetables, i.e. cabbage, radish, blue and white), filled with water were used as turnip and rocket and weeds between wild mustard traps for adults of Tropinota squalida Scop. in and wild radish are severely attacked by this pest apple orchards at El-Khatatba (El-Behaira Gover- (Sherief et al 2003). Adults of T. squalida also norate) during seasons 2005 and 2006. The gen- feed on grape buds and young shoots, preventing eral mean numbers of adults/ trap were 6.0, 8.1, or deforming growth of fruit and reducing crop 14.4 and 24.1 in 2005 and 4.7, 6.7, 10.5 and 18.7 yield (Ortu et al 2001). in 2006 seasons for white, red, yellow and blue Using the water traps for the control of T. traps, respectively. The general means for trap squalida adults started to decrease slowly in the efficiency (two seasons) were 9.8, 13.7, 23.2 and last 15 years in such areas (Sherief et al 2003).
    [Show full text]
  • Coleoptera: Cetoniidae) and Their Damages on Peach Fruits in Orchards of Northern Dalmatia, Croatia
    CORE Metadata, citation and similar papers at core.ac.uk Entomol. Croat. 2009, Vol. 13. Num. 2: 7-20 ISSN 1330-6200 IzvORNI zNANSTvENI čLANCI ORIGINAL SCIENTIfIC PAPER Fauna Of THE Cetoniid BEETLES (Coleoptera: Cetoniidae) AND THEIR DAMAGES ON PEACH fRUITS IN ORCHARDS Of NorthERN Dalmatia, Croatia Josip RAžOV¹, Božena BARIĆ² & Moreno DUTTO³ ¹ University of Zadar, Department of Mediterranean Agriculture and Aquaculture, Mihovila Pavlinovica bb, 23000 Zadar, Croatia; e-mail: [email protected] ² Faculty of Agronomy, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; e-mail: [email protected] ³ Sezione Entomologia Museo Civico Storia Naturale, Carmagnola, Italy; e-mail: [email protected] Accepted: June 29th 2009 The beetles Cetonia aurata and Potosia cuprea belonging to the subfamily Cetoniinae (Coleoptera: Cetoniidae) are present in peach orchards in Northern Dalmatia, Ravni kotari region. They are often described as flower pest (“Rose chafers, flower beetles”), and are thought not to be significant as fruit pests. However, during the last ten years some serious damage to fruit has been observed. Since this damage occurs when the fruits are ripening, insecticides cannot be used. There are no literature data about the amount of the damage or how to monitor the damage. This paper describes our monitoring of the population dynamics of the Cetonia aurata and Potosia cuprea, and the method for calculating the damage to fruit suitable for the orchards in this area. The study was conducted during the spring and summer of the year 2005, 2006 and 2007 in the Ravni kotari region, near the villages of Prkos and Smilčić. We used Csalomon® VARb3k funnel traps.
    [Show full text]