Proceedings of the Twenty-Second Annual Symposium on Sea Turtle Biology and Conservation

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Twenty-Second Annual Symposium on Sea Turtle Biology and Conservation NOAA Technical Memorandum NMFS-SEFSC-503 PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SYMPOSIUM ON SEA TURTLE BIOLOGY AND CONSERVATION 4 to 7 April 2002 Miami, Florida, USA Compiled by: Jeffrey A. Seminoff U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, FL 33149 USA August 2003 NOAA Technical Memorandum NMFS-SEFSC-503 PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SYMPOSIUM ON SEA TURTLE BIOLOGY AND CONSERVATION 4 to 7 April 2002 Miami, Florida, USA Compiled by: Jeffrey A. Seminoff U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Conrad C. Lautenbacker, Jr., Administrator NATIONAL MARINE FISHERIES SERVICE William T. Hogarth, Assistant Administrator for Fisheries Technical Memoranda are used for documentation and timely communication of prelimi- nary results, interim reports, or special-purpose information, and have not received com- plete formal review, editorial control or detailed editing. ii 22nd Annual Symposium on Sea Turtle Biology and Conservation, Miami, Florida USA NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary produce or material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary produce or material herein or which has as its purpose any intent to cause directly or indirectly the adver- tised product to be used or purchased because of NMFS promotion. For bibliographic purposes, this document should be cited as follows: Seminoff, J.A., compiler. 2003. Proceedings of the Twenty-Second Annual Symposium on Sea Turtle Biology and Conservation. NOAA Technical Memorandum NMFS-SEFSC-503, 308 p. http://www.sefsc.noaa.gov Technical Editor: Wayne N. Witzell Copies of this report can be obtained from: National Marine Fisheries Service Miami Laboratory Sea Turtle Program 75 Virginia Beach Drive Miami, FL 33149 USA or National Technical Information Service 5258 Port Royal Road Springfield, VA 22161 (800) 553-6847 or (703) 605-6000 http://www.ntis.gov 22nd Annual Symposium on Sea Turtle Biology and Conservation, Miami, Florida USA iii PREFACE The 22nd Annual Symposium on Sea Turtle Biology and Conservation was held April 4-7, 2002 in Miami, Florida and hosted by the U.S. Fish and Wildlife Service. The 22nd symposium was the most globally diverse ever with 839 individuals from 73 countries attending the symposium and associated regional meetings. One third of the attendees were from outside the United States. This diverse attendance was made possible in large part because of substantial donations from The Packard Foundation, National Fish and Wildlife Foundation, National Marine Fisheries Ser- vice, U.S. Fish and Wildlife Service, Convention on Migratory Species, Oceanic Research Foun- dation, and the International Sea Turtle Society which supported travel grants for 170 interna- tional travelers. A special one day mini-symposium was held concurrently on the second day of the symposium to focus specifically on black sea turtle biology and conservation, with 16 invited papers presented. One hundred and eight oral papers and 321 posters were accepted for the main three-day sym- posium. Spanish bi-directional interpretation was available for the entire symposium including the black turtle mini-symposium. For the first time French bi-directional interpretation was avail- able for most of the three day symposium. Two workshops, one on beachfront lighting and the other on sea turtle anatomy were well attended. For two days preceding the symposium, The Wider Caribbean Sea Turtle Conservation Network (WIDECAST) held its annual meeting with country coordinators from 26 Caribbean countries and territories in attendance. Similarly, The Ninth Reunion of Latin American Sea Turtle Specialists convened for two days prior to the symposium with 75 attendees from 15 countries. One day prior to the symposium, two other regional meetings convened at the symposium for the first time. These were the West African Sea Turtle Specialists Group, attended by 38 individuals from 12 West African and one East African country, and the Mediterranean Sea Turtle Specialists which had 23 participants and observers from 13 countries. The IUCN Marine Turtle Specialists Group also met following the symposium and was well attended as always. This symposium would not have been possible without the service of countless dedicated volun- teers who contributed thousands of hours during the year preceding the symposium, throughout the symposium, and until completion of the proceedings. To them on behalf of the entire sympo- sium community I express our gratitude and deep appreciation. As you reacquaint yourselves with the broad range of topical and informative papers in the pro- ceedings it will become self evident just how successful the 22nd Sea Turtle Symposium was in advancing the cause of sea turtle conservation. It has truly been a great honor and my pleasure to serve as President of the 22nd Annual Symposium on Sea Turtle Biology and Conservation. Earl Possardt iv 22nd Annual Symposium on Sea Turtle Biology and Conservation, Miami, Florida USA COMMITTEES, CHAIRS, AND KEY ORGANIZERS Registrar Sandy MacPherson Conference Coordination Donna Broadbent Program Committee Barbara Schroeder (Chair), Kristy Long, Therese Conant, Michael Coyne, Marydelle Donnelly, Patrick Opay Poster Presentations Mike Salmon Webmaster Michael Coyne Audio/Visual Dale Garbett Travel Committee Jeffrey Seminoff (Chair), Ana Barragan (Latin America), Karen Eckert (Caribbean), Fionna Glen, Brendan Godley, Annette Broderick (Europe), Angela Formia (Africa), Nicolas Pilcher (Asia/Pacific), Alan Bolten (USA/Canada) Historian Barbara Schroeder Parliamentarian Frank Paladino Logo Dawn Navarro-Ericson Auction Rod Mast, Lorna Patrick Resolutions Jack Frazier, Sali Bache Entertainment Donna Broadbent, Earl Possardt Thing Committee Blair Witherington Volunteer Coordination Allen Foley, Tony Redlow, Karrie Singel Field Trips J.B. Miller, Sandy MacPherson Vendor Arrangements Tom McFarland Nominations Committee Stephanie Presti (Chair), T. Todd Jones, Sebastian Troëng, Anabella Barrios Student Awards Jeanette Wyneken, Anders Rhodin Black Turtle Symposium Jeffrey Seminoff, Wallace J. Nichols Latin Reunion Ana Barragan, Anabella Barrios, Joanna Alfaro WIDECAST Meeting Karen Eckert Mediterranean Meeting Dimitris Margaritoulis West African Meeting Jacques Fretey Marine Turtle Specialist Meeting F. Alberto Abreu-Grobois Fund Raising Jack Frazier, Wallace J. Nichols, Barbara Schroeder, Earl Possardt, Jeffrey Seminoff, Donna Broadbent EXECUTIVE COMMITTEE Earl Possardt President Nicolas Pilcher President Elect James R. Spotila Past President Edwin B. Drane Treasurer Sheryan Epperly Secretary BOARD OF DIRECTORS Karen Eckert 2002 Anders G.J. Rhodin until 2004 Brendan Godley 2002 Hiroyuki Suganuma until 2005 Stephen J. Morreale 2002 Peter Dutton until 2005 Pamela Plotkin until 2003 Clara E. Padilla until 2006 Roderic B. Mast until 2003 Frank Paladino until 2006 22nd Annual Symposium on Sea Turtle Biology and Conservation, Miami, Florida USA v STUDENT AWARDS There were 122 student presentations - 28 papers and 94 posters with $US 3,250 awarded to eight recipi- ents. The awards committee was composed of Jeanette Wyneken (Chair), Ana R. Barragan, Stephen J. Morreale, Frank V. Paladino, Michael Salmon, Jeffrey A. Seminoff, Lisa Campbell, Molly Lutcavage, Wal- lace J. Nichols. The awards were financed by the Chelonian Research Foundation and the Sea Turtle Symposium. Oral Presentations Best Biology Oral Presentation Jennifer M. Keller, Margie Peden-Adams, M. Andrew Stamper, John R. Kucklick, and Patricia McClellan- Green. “Are contaminants affecting loggerhead health?” (Duke University, Coastal Systems Science and Policy, and Integrated Toxicology Program, Beaufort, North Carolina, USA). $500 Runner Up Biology Oral Presentation Larisa Avens and Kenneth J. Lohmann. “Orientation cues used by juvenile loggerhead sea turtles, Caretta caretta, from Core Sound, North Carolina, USA” (University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, USA). $250 Best Conservation Oral Presentation Kiki Dethmers and Damien Broderick. “Commercial turtle harvests in Australasia: assessing the extent of their impact using mtDNA markers” (Nijmegen University, P.O. Box 9010, 6500 GL, Nijmegen, GLD NL). $500 Poster Presentations Best Biology Poster T. Todd Jones, Richard Reina, and Peter L. Lutz. “A comparison of the ontogeny of oxygen consumption in leatherback, Dermochelys coriacea, and olive ridley, Lepidochelys olivacea, sea turtle hatchlings - Differ- ent strokes for different life styles” (Department of Biological Sciences, Florida Atlantic University, 777 Glades Rd., Boca Raton, Florida 33431, USA). $500 Runner Up Biology Poster Milagros Lopez Mendilaharsu, Susan C. Gardner, Jeffrey A. Seminoff, and Rafael Riosmena. “Feeding ecology of the East Pacific green turtle (Chelonia mydas agassizii), in Bahía Magdalena, B.C.S, Mexico” (Centro de Investigaciones Biologicas del Noroeste, S.C. La Paz, BCS 23090, Mexico). $250 Best Field-Based & Experimental Conservation Poster Christopher Makowski, Ryan Slattery, and Michael Salmon. “Shark fishing”: A technique for estimating the distribution of juvenile green turtles
Recommended publications
  • Flatback Turtles Along the Stunning Coastline of Western Australia
    PPRROOJJEECCTT RREEPPOORRTT Expedition dates: 8 – 22 November 2010 Report published: October 2011 Beach combing for conservation: monitoring flatback turtles along the stunning coastline of Western Australia. 0 BEST BEST FOR TOP BEST WILDLIFE BEST IN ENVIRONMENT TOP HOLIDAY © Biosphere Expeditions VOLUNTEERING GREEN-MINDED RESPONSIBLE www.biosphereVOLUNTEERING-expeditions.orgSUSTAINABLE AWARD FOR NATURE ORGANISATION TRAVELLERS HOLIDAY HOLIDAY TRAVEL Germany Germany UK UK UK UK USA EXPEDITION REPORT Beach combing for conservation: monitoring flatback turtles along the stunning coastline of Western Australia. Expedition dates: 8 - 22 November 2010 Report published: October 2011 Authors: Glenn McFarlane Conservation Volunteers Australia Matthias Hammer (editor) Biosphere Expeditions This report is an adaptation of “Report of 2010 nesting activity for the flatback turtle (Natator depressus) at Eco Beach Wilderness Retreat, Western Australia” by Glenn McFarlane, ISBN: 978-0-9807857-3-9, © Conservation Volunteers. Glenn McFarlane’s report is reproduced with minor adaptations in the abstract and chapter 2; the remainder is Biosphere Expeditions’ work. All photographs in this report are Glenn McFarlane’s copyright unless otherwise stated. 1 © Biosphere Expeditions www.biosphere-expeditions.org Abstract The nesting population of Australian flatback (Natator depressus) sea turtles at Eco Beach, Western Australia, continues to be the focus of this annual programme, which resumes gathering valuable data on the species, dynamic changes to the nesting environment and a strong base for environmental teaching and training of all programme participants. Whilst the Eco Beach population is not as high in density as other Western Australian nesting populations at Cape Domett, Barrow Island or the Pilbara region, it remains significant for the following reasons: The 12 km nesting beach and survey area is free from human development, which can impact on nesting turtles and hatchlings.
    [Show full text]
  • 'Camouflage' Their Nests but Avoid Them and Create a Decoy Trail
    Buried treasure—marine turtles do not ‘disguise’ or royalsocietypublishing.org/journal/rsos ‘camouflage’ their nests but avoid them and create a Research Cite this article: Burns TJ, Thomson RR, McLaren decoy trail RA, Rawlinson J, McMillan E, Davidson H, Kennedy — MW. 2020 Buried treasure marine turtles do not † ‘disguise’ or ‘camouflage’ their nests but avoid Thomas J. Burns , Rory R. Thomson, Rosemary them and create a decoy trail. R. Soc. Open Sci. 7: 200327. A. McLaren, Jack Rawlinson, Euan McMillan, http://dx.doi.org/10.1098/rsos.200327 Hannah Davidson and Malcolm W. Kennedy Institute of Biodiversity, Animal Health and Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, Received: 27 February 2020 University of Glasgow, Glasgow G12 8QQ, UK Accepted: 6 April 2020 TJB, 0000-0003-0408-8014; MWK, 0000-0002-0970-5264 After laying their eggs and refilling the egg chamber, sea Subject Category: turtles scatter sand extensively around the nest site. This is presumed to camouflage the nest, or optimize local conditions Organismal and Evolutionary Biology for egg development, but a consensus on its function is Subject Areas: lacking. We quantified activity and mapped the movements of hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys behaviour coriacea) turtles during sand-scattering. For leatherbacks, we also recorded activity at each sand-scattering position. Keywords: For hawksbills, we recorded breathing rates during nesting as hawksbill turtle, Eretmochelys imbricata, leatherback an indicator of metabolic investment and compared with turtle, Dermochelys coriacea, nesting behaviour published values for leatherbacks. Temporal and inferred metabolic investment in sand-scattering was substantial for both species.
    [Show full text]
  • This Month, the Year of the Turtle Extends Its Hand to You, the Reader
    Get involved in a citizen science program in your neighborhood, community, or around the world! Citizen science programs place people of all backgrounds and ages in partnerships with organizations and scientists to collect important biological data. There are many great programs focused on turtles available to the public. Below we highlight citizen science programs from North America and around the world with which you can become involved. We thank everyone who has contributed information on their citizen science programs to the Year of the Turtle thus far. We also greatly thank Dr. James Gibbs’ Herpetology course at SUNY-ESF, especially students Daren Card, Tim Dorr, Eric Stone, and Selena Jattan, for their contributions to our growing list of citizen science programs. Are you involved with a turtle citizen science program or have information on a specific project that you would like to share? Please send information on your citizen science programs to [email protected] and make sure your project helps us get more citizens involved in turtle science! Archelon, Sea Turtle Protection Society of Greece This volunteer experience takes place on the islands of Zakynthos, Crete, and the peninsula of Peloponnesus, Greece. Volunteers work with the Management Agency of the National Marine Park of Zakynthos (NMPZ), the first National Marine Park for sea turtles in the Mediterranean. Their mission is to “implement protection measures for the preservation of the sea turtles.” Volunteers assist in protecting nests from predation and implementing a management plan for nesting areas. Volunteers also have the opportunity to assist in the treatment of rescued sea turtles that may have been caught in fishing gear or help with public awareness at the Sea Turtle Rescue Centre.
    [Show full text]
  • The Australian Flatback by M. A. Cohen
    September | October 2016 the Tortuga Gazette Volume 52, Number 5 California Turtle & Tortoise Club founded in 1964 and dedicated to Turtle & Tortoise Preservation, Conservation and Education Nesting female Australian flatback turtle, Natator depressus, photographed in habitat in Bowen, Queensland, Australia. Photo © 2009 by Stephen Zozaya. Reprinted with permission from the photographer. Flatback Sea Turtle, Natator depressus The Australian Flatback by M. A. Cohen he Australian flatback is a mem- covers the carapace of the flatback tur- museum specimens that went undiscov- ber of the Cheloniidae, the tle. Ordinarily, keratinized scutes cover ered for decades. superfamily of sea turtles, which the carapace of sea turtles species. In the 1980s, Rainer Zangerl and Colin Tis collectively the most endangered fam- The species was first described by Limpus concluded, through indepen- ily of turtles on the planet. Least studied American ichthyologist/herpetologist dent studies, that the Australian flatback of the seven living sea turtle species, the Samuel W. Garman (1843-1927) in 1880. was a unique species and not a relative Australian flatback turtle, Natator depres- Originally Garman assigned the Aus- of C. mydas (Spotila, 2004). sus, is unusual in several respects. tralian flatback to the genus Chelonia, The flatback was officially described It is the only sea turtle that is endemic, thinking it was a type of green turtle, and as a separate species in 1988 (Flatback, i.e., restricted to a certain area (Flatback, he gave it the name C. depressa. n.d.). Consequently, it was assigned to n.d.). The Australian flatback is the only Historically, there have been differ- the genus Natator, the name which was sea turtle that does not migrate extensive ences of opinion about how to classify first given it by McCulloch in 1908.
    [Show full text]
  • Download Book (PDF)
    HANDBOOK INDIAN TESTUDINES HANDBOOK INDIAN TESTUDINES B. K. TIKADER Zoological Survey of India, Calcutta R. C. SHARMA Desert Regional Station, Zoological Survey of India, Jodhpur Edited by the Director ZOOLOGICAL SURVEY OF INDIA, CALCUTTA © Government of India, 1985 Published: November, 1985 Price: Indian Rs. 150/00 Foreign : £ 20/00 $ 30/00 Printed at The Radiant Process Private Limited, Calcutta, India and Published by the Director, Zoological Survey of India, Calcutta FOREWORD One of the objectives of Zoological Survey of India is to provide comprehensive systematic accounts on various groups of the Indian fauna. To achieve this objective, the Zoological Survey of India undertakes faunistic survey programmes and publishes the results in the form of research papers and reports and under the series "Fauna of India", "The Handbooks" and "Technical Monographs" The present contribution on the Turtles and Tortoises is the sixth in the series of "Handbooks" This is a very primitive group of animals which have a role in the conservation of Nature and are an important protein source. While studies on this group of animals began at the turn of this century, intensive studies were taken up only recently. The present "Handbook" gives a comprehensive taxonomic account of all the marine, freshwater and land turtles and tortoises of India, along with their phylogeny, distribution and keys for easy identification. It includes other information, wherever known, about their biology, ecology, conservation and captive breeding. A total of 32 species and subspecies distributed over sixteen genera and five families are dealt with here. I congratulate the authors for undertaking this work which I am sure will prove useful to students and researchers in the field of Herpetology both in India and abroad.
    [Show full text]
  • References for Life History
    Literature Cited Adler, K. 1979. A brief history of herpetology in North America before 1900. Soc. Study Amphib. Rept., Herpetol. Cir. 8:1-40. 1989. Herpetologists of the past. In K. Adler (ed.). Contributions to the History of Herpetology, pp. 5-141. Soc. Study Amphib. Rept., Contrib. Herpetol. no. 5. Agassiz, L. 1857. Contributions to the Natural History of the United States of America. 2 Vols. Little, Brown and Co., Boston. 452 pp. Albers, P. H., L. Sileo, and B. M. Mulhern. 1986. Effects of environmental contaminants on snapping turtles of a tidal wetland. Arch. Environ. Contam. Toxicol, 15:39-49. Aldridge, R. D. 1992. Oviductal anatomy and seasonal sperm storage in the southeastern crowned snake (Tantilla coronata). Copeia 1992:1103-1106. Aldridge, R. D., J. J. Greenshaw, and M. V. Plummer. 1990. The male reproductive cycle of the rough green snake (Opheodrys aestivus). Amphibia-Reptilia 11:165-172. Aldridge, R. D., and R. D. Semlitsch. 1992a. Female reproductive biology of the southeastern crowned snake (Tantilla coronata). Amphibia-Reptilia 13:209-218. 1992b. Male reproductive biology of the southeastern crowned snake (Tantilla coronata). Amphibia-Reptilia 13:219-225. Alexander, M. M. 1943. Food habits of the snapping turtle in Connecticut. J. Wildl. Manag. 7:278-282. Allard, H. A. 1945. A color variant of the eastern worm snake. Copeia 1945:42. 1948. The eastern box turtle and its behavior. J. Tenn. Acad. Sci. 23:307-321. Allen, W. H. 1988. Biocultural restoration of a tropical forest. Bioscience 38:156-161. Anonymous. 1961. Albinism in southeastern snakes. Virginia Herpetol. Soc. Bull.
    [Show full text]
  • Green Sea Turtle Chelonia Mydas
    Green Sea Turtle Chelonia mydas Distribution Biological Information The green sea turtle’s lifespan is estimated to last between 15 to 30 years, although there is evidence that suggests that they can live for as many as 50 years. Sea turtles are especially adapted for life at sea. Because they are ectothermic (cold-blooded, with a body temperature regulated by the environment), they have slow metabolism, which translates into less oxygen consumption used for its cellular functions. A green sea turtle can remain underwater for up to 5 hours. It can accomplish this by slowing its heartbeats, with up to 9 minutes between palpitations, thus Family: Chelonidae preserving oxygen. Order: Chelonia (Testudinata) Reproduction Description In the Caribbean, green sea turtle’s mating season is from June to September. Males visit nesting sites The green sea turtle is a marine species. It is the every year, although females only mate every 2 to 4 biggest of the hard-shelled sea turtles. It has a pair of years. After mating in the water, females will climb to prefrontal scales on its head, and its jaw is serrated. shore, going past the high-tide line. Once she is on dry This turtle also has claws on the front flippers. Adult sand, she digs a hole with her back flippers and lays turtles can measure up to 39 inches (1 meter) long, and her eggs. A clutch can contain over 100 eggs. Finally, weigh approximately 350 pounds (159 kilograms). she covers the eggs with sand and returns to the sea. An adult specimen’s carapace is light brown with After an incubation period which can last between 45 irregular, dark splotches; it is smooth and uniform and to 75 days, the eggs hatch during the night and the does not have overlapping scutes like its close relative, hatchlings will instinctively head towards the sea.
    [Show full text]
  • Proceedings of the Twenty-Eighth Annual Symposium on Sea Turtle Biology and Conservation
    NOAA Technical Memorandum NMFS-SEFSC-602 PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL SYMPOSIUM ON SEA TURTLE BIOLOGY AND CONSERVATION 22 to 26 January 2008 Loreto, Baja California Sur, México Compiled by: Kama Dean & Melania C. López Castro U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Southeast Fisheries Science Center 75 Virginia Beach Drive Miami, Florida 33149 March 2010 NOAA Technical Memorandum NMFS-SEFSC-602 PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL SYMPOSIUM ON SEA TURTLE BIOLOGY AND CONSERVATION 22 to 26 January 2008 Loreto, Baja California Sur, México Compiled by: Kama Dean & Melania C. López Castro U.S. DEPARTMENT OF COMMERCE Gary Locke, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Dr. Jane Lubchenco, Under Secretary for Oceans and Atmosphere NATIONAL MARINE FISHERIES SERVICE Eric C. Schwaab, Assistant Administrator for Fisheries March 2010 This Technical Memorandum series is used for documentation and timely communication of preliminary results, interim reports, or similar special-purpose information. Although the memoranda are not subject to complete formal review, editorial control or detailed editing, they are expected to reflect sound professional work. NOTICE The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or material mentioned in this publication. No references shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would imply that NMFS approves, recommends or endorses any proprietary product or proprietary material herein which has as its purpose any intent to cause directly or indirectly the advertised product to be use or purchased because of NMFS publication.
    [Show full text]
  • Genetics and Molecular Biology, 43, 4, E20200213 (2020) Copyright © Sociedade Brasileira De Genética
    Genetics and Molecular Biology, 43, 4, e20200213 (2020) Copyright © Sociedade Brasileira de Genética. DOI: https://doi.org/10.1590/1678-4685-GMB-2020-0213 Research Article Animal Genetics Heterochromatin and microsatellites detection in karyotypes of four sea turtle species: Interspecific chromosomal differences Caroline Regina Dias Machado1, Camila Domit2, Marcela Baer Pucci3, Camilla Borges Gazolla1, Larissa Glugoski4, Viviane Nogaroto5 and Marcelo Ricardo Vicari1,5 1Universidade Federal do Paraná, Centro Politécnico, Departamento de Genética, Programa de Pós-Graduação em Genética, Curitiba, Ponta Grossa, PR, Brazil. 2Universidade Federal do Paraná, Laboratório de Ecologia e Conservação, Pontal do Paraná, PR, Brazil. 3Universidade Nove de Julho, Departamento de Saúde II, Bauru, SP, Brazil. 4Universidade Federal de São Carlos, Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, São Carlos, SP, Brazil. 5Universidade Estadual de Ponta Grossa, Departamento de Biologia Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil. Abstract The wide variation in size and content of eukaryotic genomes is mainly attributed to the accumulation of repetitive DNA sequences, like microsatellites, which are tandemly repeated DNA sequences. Sea turtles share a diploid number (2n) of 56, however recent molecular cytogenetic data have shown that karyotype conservatism is not a rule in the group. In this study, the heterochromatin distribution and the chromosomal location of microsatellites (CA)n, (GA)n, (CAG)n, (GATA)n, (GAA)n, (CGC)n and (GACA)n in Chelonia mydas, Caretta caretta, Eretmochelys imbricata and Lepidochelys olivacea were comparatively investigated. The obtained data showed that just the (CA)n, (GA)n, (CAG)n and (GATA)n microsatellites were located on sea turtle chromosomes, preferentially in heterochromatic regions of the microchromosomes (mc).
    [Show full text]
  • Reproductive Biology of the Flatback Turtle Natator Depressus in Western Australia
    Vol. 23: 115–123, 2014 ENDANGERED SPECIES RESEARCH Published online February 28 doi: 10.3354/esr00569 Endang Species Res FREEREE ACCESSCCESS Reproductive biology of the flatback turtle Natator depressus in Western Australia Kellie L. Pendoley*, Catherine D. Bell, Rebecca McCracken, Kirsten R. Ball, Jarrad Sherborne, Jessica E. Oates, Patrick Becker, Anna Vitenbergs, Paul A. Whittock Pendoley Environmental Pty Ltd, 2/1 Aldous Place, Booragoon, WA 6154, Australia ABSTRACT: In contrast to the circumglobal nesting distributions and well-described reproductive biology of most marine turtle species, all known records of flatback turtle Natator depressus nest- ing have occurred within Australia and are relatively underreported; the species is listed as ‘Data Deficient’ by the International Union for the Conservation of Nature (IUCN). We report important baseline data on the breeding biology of flatback turtles at 3 rookeries in the Pilbara region of Western Australia, an area subject to increasing coastal development due to rapid expansion of the resources sector. Barrow Island and Mundabullangana support substantial reproductive pop- ulations; over the 6 season sampling period from 2005/06 to 2010/11, ~4000 and ~3500 turtles were tagged at each location, respectively. Over 2 seasons of monitoring in 2009/10 and 2011/12 at Cemetery Beach, a smaller rookery in Port Hedland, ~350 flatback turtles were tagged. We detected variation in parameters of reproductive biology between island and mainland rookeries. Mean remigration interval at Barrow Island (1.9 yr) was significantly shorter than at mainland Mundabullangana (2.2 yr) and may reflect differences in location and characteristics of remote foraging habitats in turtles returning to mainland versus offshore rookeries.
    [Show full text]
  • Flatback Sea Turtle (Natator Depressus) Eggs by Varanid Lizards in Northern Australia
    Chekntitu Contemiliut tiltd Biolog)', 2003. l(31:557-5r O 2003 by Chelonian Research Foundation Influence of Nest Site Selection on Predation of Flatback Sea Turtle (Natator depressus) Eggs by Varanid Lizards in Northern Australia Snan J. Br,Arunnsr, Mrcnlnl L. GunvnazrAND RoBEnr I.T. PnrNcn3 tHeydon-l,aurence Building A08, School of Biological Science, Universi^, of Sydney, New South Wales 2006, Austalia I E-mail : s _blamires@ hotmail.cottt] ; 2 F ac ulty of S c i e nc e, I nfo rmat i on Te c hno I o gt' and Educ at i on, Northern Territory Universiq', Darwin, Northern Tenitom 0909, Australia I E-mail : michael. guine a@ ntu. e du. au ] : tDepartment of Conservation and Land Management, Wildlife Research Cente, P.O. Box 51, Wanneroo, Western Austalia 6946, Australia I E-mail : bobp @ c alm.wa. gov. au ] Ansrnlcr. - We examined nest site selection of flatback sea turtles (Natator depressrs) at two sites: Fog Bay, Northern Territory, and Mundabullangana, Western Australia. Nesting at Fog Bay occurred predominantly at the dune base. The dunes at Fog Bay are tall and steep, while the dune slopes at Mundabullangana are less severe and their crests are more accessible. Apart from afternoon nesting at Mundabullangana, N. depressus nesting procedure was similar at both sites: nesting around high tide, with reasonably direct crawls up the beach and the choice of nesting site unaffected by turtle size. At Fog Bay attempts to climb the dune usually resulted in no nesting and gradient of the dunes appeared to confine nesting to the dune base.
    [Show full text]
  • Water Turtles
    WATER TURTLES Range Bog Turtle Bog Turtle • North America’s smallest turtle (3” to 4.5”); NC’s rarest • Have noticeable bright orange, yellow or red blotch on each side of face • Live in isolated spring-fed fen, sphagnum bogs, marshy meadows and wet pastures • Eat beetles, insect larvae, snails, seeds and millipedes • Females mature from 5-8 years and mate from May to Yellow-bellied Slider June Range • Deposit 2-6 eggs from June to July which hatch after 42 -56 days of incubation • Placed on NC’s threatened list in 1989 ENDANGERED 1 Yellow-bellied Slider • Yellow patch on side of head – on females and juveniles • 5 to 8 inches • Underside of shell is yellow • Males smaller than females with longer, thicker tail and long fingernails • Juveniles eat more carnivorous diet Redbelly Turtle • Adults are omnivores – feeding = underwater • Males mature between 3-5 yrs • 5-7 year old females lay 4 to 23 eggs from May to July • Eggs incubate 2-2.5 months and hatch between July- September • Help control invertebrate and vegetation populations • Live in fresh water Range Red Belly Turtle • 10-15” in length • Like deep water • Eat both plants and animals-insect larvae, crayfish, worms and tadpoles • Active from May thru October Snapping Turtle • Females lay 10-12 eggs in June-July which hatch Range sometime in late summer. • Young sometimes winter over in the nest until spring • Like to bask in the sun 2 Snapping Turtle • 8-14 inches weighing from 10 to 50 lbs • Large head, small plastron, long tail & strong limbs • Males larger than females Range
    [Show full text]