Evidence for Metastable Photo-Induced Superconductivity in K3C60

Total Page:16

File Type:pdf, Size:1020Kb

Evidence for Metastable Photo-Induced Superconductivity in K3C60 ARTICLES https://doi.org/10.1038/s41567-020-01148-1 Evidence for metastable photo-induced superconductivity in K3C60 M. Budden1 ✉ , T. Gebert1, M. Buzzi 1, G. Jotzu 1, E. Wang1, T. Matsuyama1, G. Meier 1, Y. Laplace1, D. Pontiroli 2, M. Riccò2, F. Schlawin 3, D. Jaksch 3 and A. Cavalleri 1,3 ✉ Excitation of high-Tc cuprates and certain organic superconductors with intense far-infrared optical pulses has been shown to create non-equilibrium states with optical properties that are consistent with transient high-temperature superconductivity. These non-equilibrium phases have been generated using femtosecond drives, and have been observed to disappear imme- diately after excitation, which is evidence of states that lack intrinsic rigidity. Here we make use of a new optical device to drive metallic K3C60 with mid-infrared pulses of tunable duration, ranging between one picosecond and one nanosecond. The same superconducting-like optical properties observed over short time windows for femtosecond excitation are shown here to become metastable under sustained optical driving, with lifetimes in excess of ten nanoseconds. Direct electrical probing, which becomes possible at these timescales, yields a vanishingly small resistance with the same relaxation time as that esti- mated by terahertz conductivity. We provide a theoretical description of the dynamics after excitation, and justify the observed slow relaxation by considering randomization of the order-parameter phase as the rate-limiting process that determines the decay of the light-induced superconductor. on-equilibrium orders in complex materials include experiments reported have indicated the presence of states that photo-induced ferroelectricity1,2, magnetic polarization in disappear immediately after optical excitation (see optical proper- antiferromagnets3 and transient superconductivity in the ties measured at 5 ps time delay in Fig. 1d). These short lifetimes N 4–9 normal state of cuprates and organic conductors . Among these, would prevent most applications and have even raised controversy 18,19 much work has been dedicated to alkali-doped fullerides of the A3C60 over the data interpretation itself . family (Fig. 1a), which exhibit tunable high-temperature supercon- In this Article, we explore the possibility of longer-lived super- ductivity at equilibrium10–15 (Fig. 1b). The dynamical manipulation conductivity under a sustained optical drive. First, we modified the of superconductivity in these materials6,7 has been demonstrated by experimental set-up used for the experiments shown in Fig. 1 and using optical pulses at mid-infrared frequencies that are tuned in lengthened the 7.3 µm wavelength pump pulses by making them the vicinity of local vibrational resonances of the C60 molecules. propagate in a dispersive CaF2 rod (Fig. 2a). These chirped pump The evidence reported so far is summarized in Fig. 1c,d. K3C60 pow- pulses had a duration τp ≈ 1 ps, which enabled a sixfold increase in 2 ders were held at a base temperature of T 100 K Tc 20 K and the pulse energy density (up to 18 mJ cm− ) without a correspond- ¼ ¼ irradiated with 100-fs-long, 7.3- m-wavelengthI (ℏω 170 meV, ing increase in the peak electric field. This longer pulse duration µ where ħ is Planck’s constant and ω is angular frequency)I pulses at allowed us to conduct these experiments at pulse energy densities a fluence of 3 mJ cm−2, which yielded a short-lived transient state that would damage the sample at femtosecond pulse durations, and with large changes in the terahertz optical properties. The transient hence it enabled the exploration of a new regime of excitation. optical response was probed with phase-sensitive, time-domain The pump-induced changes in the low-frequency reflectiv- terahertz spectroscopy, which directly yields the real and imagi- ity and complex optical conductivity (Fig. 2b) were measured on nary part of the reflectance and hence can be used to retrieve the the same sample and at the same temperature T = 100 K as for the complex optical conductivity without the need of Kramers–Kronig experiments of Fig. 1. Representative reflectivity spectra R(ω) and 6,7 transformations (Supplementary Section 4 and refs. ). The tran- complex optical conductivity, σ1(ω)+iσ2(ω), measured for a 1 ps sient low-frequency optical conductivity induced by femtosecond pump-pulse duration and 18 mJ cm−2 fluence are reported for time excitation was almost indistinguishable from that of the equi- delays of –5 ps, 10 ps, 300 ps and 12 ns. These plots indicate a simi- librium superconducting state measured in the same material at lar response to that shown in Fig. 1d (perfect reflectivity (R = 1), T Tc 20 K (compare to Fig. 1c). Such ‘superconducting-like’ gapped ( ) and a divergent ( )), although with a far longer ¼ σ1 ω σ2 ω opticalI properties consist of a perfect low-energy reflectance (R = 1), relaxation time of at least 300 ps. a vanishingly small real part of the optical conductivity σ1(ω) for all A more comprehensive exploration of sustained optical driving, photon energies lower than the energy gap 2Δ and an imaginary beyond the limited pulse-width tunability of the set-up shown in conductivity σ2(ω) that diverges toward low frequencies as 1/ω, Fig. 2, is shown in Figs. 3, 4 and 5. These measurements made use which itself is indicative of a large zero-frequency conductivity. of a newly developed optical device, based on a CO2-gas laser that These observations have generated interest, as they may make was optically synchronized to a femtosecond Ti:Al2O3 laser, and that it possible to achieve photo-induced superconducting states4–7,9,16,17 delivered 10.6 µm wavelength pulses with durations that could be at or in the vicinity of room temperature. However, all of the tuned between 5 ps and 1.3 ns (Fig. 3a). 1Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany. 2Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parma, Italy. 3Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK. ✉e-mail: [email protected]; [email protected] NatURE PHysICS | www.nature.com/naturephysics ARTICLES NATURE PHYSICS a b Cs3C60 Rb3C60 K3C60 100 Metal ature (K) r Insulator empe T 10 Superconductor 1/Vcell c Equilibrium 900 900 1.0 ) 600 ) 600 y t –1 –1 cm cm 0.5 –1 –1 Ω Ω ( ( eflectivi 1 2 R σ σ 300 300 T > TC T < TC 0 0 0 4 10 20 40 4 10 20 40 4 10 20 40 Energy (meV) Energy (meV) Energy (meV) d Photoexcited 900 1.0 900 T = 100 K Δt = 1 ps Δt = 5 ps ) 600 ) 600 y t –1 –1 cm cm 0.5 –1 –1 Ω Ω ( ( eflectivi 1 2 R σ σ 300 300 0 0 0 6 10 20 40 6 10 20 40 6 10 20 40 Energy (meV) Energy (meV) Energy (meV) Fig. 1 | Crystal structure, phase diagram, equilibrium phase transition and short-lived, light-induced phase in K3C60. a, Crystal structure of the molecular superconductor K3C60. C60 molecules are arranged in a face-centred cubic lattice. Potassium atoms (red) occupy the interstitial voids. b, Phase diagram of the A3C60 alkali-doped fullerene family as a function of the inverse unit cell volume 1/Vcell. The ground state of the material can be tuned by chemical or physical pressure. The solid grey line indicates the boundary between the insulating and metallic/superconducting phases. The blue dashed line highlights the dependence of the superconducting transition temperature Tc as a function of 1/Vcell. The star indicates the K3C60 compound investigated in the present work, which becomes superconducting for T < Tc = 20 K. c, Equilibrium reflectivity (sample–diamond interface), real and imaginary part of the optical conductivity of K3C60 measured upon cooling across the equilibrium superconducting transition. The blue shading indicates the change of spectral weight in these quantities across the thermally driven superconducting transition. d, Same quantities measured at equilibrium (red lines), 1 ps (blue filled dots) and 5 ps (light blue triangles) after photoexcitation. The blue shading indicates the change of spectral weight in these quantities induced by photoexcitation. The light and dark blue lines are Drude–Lorentz fits to the transient optical data (Supplementary Section 6). These data were acquired at a base temperature T = 100 K with a fluence of 3 mJ cm−2 and a pulse duration of 100 fs. Near-infrared femtosecond pulses from a Ti:Al2O3 laser were The ‘front’ and the ‘back’ of the 1-ns-long CO2 pulses were ‘sliced’ converted to a wavelength of 10.6 µm with an optical parametric using a pair of photoexcited semiconductor wafers as plasma mir- 20 21–23 amplifier and were used to seed a CO2 laser oscillator . The oscilla- rors . As the wafers were set at Brewster’s angle and their band- tor emitted trains of nanosecond-long pulses, out of which the most gap was much larger than the 117 meV photon energy of the CO2 intense was selected by a Pockels cell and amplified to an energy laser, these were almost perfectly transparent when unexcited. of 10 mJ in a second, multi-pass CO2 laser amplifier. The dura- Pairs of femtosecond optical pulses struck each wafer at adjustable tion of these amplified pulses was then tuned as shown in Fig. 3a. time delays, making these reflective owing to the injection of dense NatURE PHysICS | www.nature.com/naturephysics NATURE PHYSICS ARTICLES a EOS Ti:Sa amplifier THz gen. Ti:Sa oscillator THz probe ~100 fs ~1 ps OPA DFG Ti:Sa amplifier CaF2 rod MIR pump b High-fluence photoexcitation 900 900 1.0 T = 100 K Δt = 10 ps 600 ) ) 600 y t –1 –1 cm cm 0.5 –1 –1 Ω Ω ( ( eflectivi 1 2 R σ σ 300 300 Equilibrium Photoexcited 0 0 0 4 10 20 40 4 10 20 40 4 10 20 40 900 900 1.0 Δt = 300 ps 600 ) ) 600 y t –1 –1 cm cm 0.5 –1 –1 Ω Ω ( ( eflectivi 1 2 R σ σ 300 300 0 0 0 4 10 20 40 4 10 20 40 4 10 20 40 900 900 1.0 Δt = 12 ns 600 ) ) 600 y t –1 –1 cm cm 0.5 –1 –1 Ω Ω ( ( eflectivi 1 2 R σ σ 300 300 0 0 0 4 10 20 40 4 10 20 40 4 10 20 40 Energy (meV) Energy (meV) Energy (meV) Fig.
Recommended publications
  • The Nature Index Journals
    The Nature Index journals The current 12-month window on natureindex.com includes data from 57,681 primary research articles from the following science journals: Advanced Materials (1028 articles) American Journal of Human Genetics (173 articles) Analytical Chemistry (1633 articles) Angewandte Chemie International Edition (2709 articles) Applied Physics Letters (3609 articles) Astronomy & Astrophysics (1780 articles) Cancer Cell (109 articles) Cell (380 articles) Cell Host & Microbe (95 articles) Cell Metabolism (137 articles) Cell Stem Cell (100 articles) Chemical Communications (4389 articles) Chemical Science (995 articles) Current Biology (440 articles) Developmental Cell (204 articles) Earth and Planetary Science Letters (608 articles) Ecology (259 articles) Ecology Letters (120 articles) European Physical Journal C (588 articles) Genes & Development (193 articles) Genome Research (184 articles) Geology (270 articles) Immunity (159 articles) Inorganic Chemistry (1345 articles) Journal of Biological Chemistry (2639 articles) Journal of Cell Biology (229 articles) Journal of Clinical Investigation (298 articles) Journal of Geophysical Research: Atmospheres (829 articles) Journal of Geophysical Research: Oceans (493 articles) Journal of Geophysical Research: Solid Earth (520 articles) Journal of High Energy Physics (2142 articles) Journal of Neuroscience (1337 articles) Journal of the American Chemical Society (2384 articles) Molecular Cell (302 articles) Monthly Notices of the Royal Astronomical Society (2946 articles) Nano Letters
    [Show full text]
  • Self-Peeling of Impacting Droplets
    LETTERS PUBLISHED ONLINE: 11 SEPTEMBER 2017 | DOI: 10.1038/NPHYS4252 Self-peeling of impacting droplets Jolet de Ruiter†, Dan Soto† and Kripa K. Varanasi* Whether an impacting droplet1 sticks or not to a solid formation, 10 µs, is much faster than the typical time for the droplet surface has been conventionally controlled by functionalizing to completely crash22, 2R=v ∼1ms. These observations suggest that the target surface2–8 or by using additives in the drop9,10. the number of ridges is set by a local competition between heat Here we report on an unexpected self-peeling phenomenon extraction—leading to solidification—and fluid motion—opposing that can happen even on smooth untreated surfaces by it through local shear, mixing, and convection (see first stage of taking advantage of the solidification of the impacting drop sketch in Fig. 2c). We propose that at short timescales (<1 ms, and the thermal properties of the substrate. We control top row sketch of Fig. 2c), while the contact line of molten tin this phenomenon by tuning the coupling of the short- spreads outwards, a thin liquid layer in the immediate vicinity of timescale fluid dynamics—leading to interfacial defects upon the surface cools down until it forms a solid crust. At that moment, local freezing—and the longer-timescale thermo-mechanical the contact line pins, while the liquid above keeps spreading on a stresses—leading to global deformation. We establish a regime thin air film squeezed underneath. Upon renewed touchdown of map that predicts whether a molten metal drop impacting the liquid, a small air ridge remains trapped, forming the above- onto a colder substrate11–14 will bounce, stick or self-peel.
    [Show full text]
  • Three-Component Fermions with Surface Fermi Arcs in Tungsten Carbide
    LETTERS https://doi.org/10.1038/s41567-017-0021-8 Three-component fermions with surface Fermi arcs in tungsten carbide J.-Z. Ma 1,2, J.-B. He1,3, Y.-F. Xu1,2, B. Q. Lv1,2, D. Chen1,2, W.-L. Zhu1,2, S. Zhang1, L.-Y. Kong 1,2, X. Gao1,2, L.-Y. Rong2,4, Y.-B. Huang 4, P. Richard1,2,5, C.-Y. Xi6, E. S. Choi7, Y. Shao1,2, Y.-L. Wang 1,2,5, H.-J. Gao1,2,5, X. Dai1,2,5, C. Fang1, H.-M. Weng 1,5, G.-F. Chen 1,2,5*, T. Qian 1,5* and H. Ding 1,2,5* Topological Dirac and Weyl semimetals not only host quasi- bulk valence and conduction bands, which are protected by the two- particles analogous to the elementary fermionic particles in dimensional (2D) topological properties on time-reversal invariant high-energy physics, but also have a non-trivial band topol- planes in the Brillouin zone (BZ)24,26. ogy manifested by gapless surface states, which induce In addition to four- and two-fold degeneracy, it has been shown exotic surface Fermi arcs1,2. Recent advances suggest new that space-group symmetries in crystals may protect other types of types of topological semimetal, in which spatial symmetries degenerate point, near which the quasiparticle excitations are not protect gapless electronic excitations without high-energy the analogues of any elementary fermions described in the standard analogues3–11. Here, using angle-resolved photoemission model. Theory has proposed three-, six- and eight-fold degener- spectroscopy, we observe triply degenerate nodal points near ate points at high-symmetry momenta in the BZ in several specific the Fermi level of tungsten carbide with space group P 62m̄ non-symmorphic space groups3,4,10,11, where the combination of non- (no.
    [Show full text]
  • Publications of Electronic Structure Group at UIUC
    List of Publications and Theses Richard M. Martin January, 2013 Books Richard M. Martin, "Electronic Structure: Basic theory and practical methods," Cambridge University Press, 2004, Reprinted 2005, and 2008. Japanese translation in two volumes, 2010 and 2012. Richard M. Martin, Lucia Reining and David M. Ceperley, "Interacting Electrons," – in progress -- to be published by Cambridge University Press. Theses Directed Beaudet, Todd D., 2010, “Quantum Monte Carlo Study of Hydrogen Storage Systems” Yu, M., 2010, “Energy density method for solids, surfaces, and interfaces.” Vincent, Jordan D., 2006, “Quantum Monte Carlo calculations of the optical gaps of Ge nanoclusters” Das, Dyutiman, 2005, "Quantum Monte Carlo with a Stochastic Poisson Solver" Romero, Nichols, 2005, "Density Functional Study of Fullerene-Based Solids: Crystal Structure, Doping, and Electron-Phonon Interaction" Tsolakidis, Argyrios, 2003, "Optical response of finite and extended systems" Mattson, William David, 2003, "The complex behavior of nitrogen under pressure: ab initio simulation of the properties of structures and shock waves" Wilkens, Tim James, 2001, "Accurate treatments of Electronic Correlation: Phase Transitions in an Idealized 1D Ferroelectric and Modelling Experimental Quantum Dots" Souza, Ivo Nuno Saldanha Do Rosário E, 2000, "Theory of electronic polarization and localization in insulators with applications to solid hydrogen" Kim, Yong-Hoon , 2000, "Density-Functional Study of Molecules, Clusters, and Quantum Nanostructures: Developement of
    [Show full text]
  • Machine Learning for Condensed Matter Physics
    Review Article Machine Learning for Condensed Matter Physics Edwin A. Bedolla-Montiel1, Luis Carlos Padierna1 and Ram´on Casta~neda-Priego1 1 Divisi´onde Ciencias e Ingenier´ıas,Universidad de Guanajuato, Loma del Bosque 103, 37150 Le´on,Mexico E-mail: [email protected] Abstract. Condensed Matter Physics (CMP) seeks to understand the microscopic interactions of matter at the quantum and atomistic levels, and describes how these interactions result in both mesoscopic and macroscopic properties. CMP overlaps with many other important branches of science, such as Chemistry, Materials Science, Statistical Physics, and High-Performance Computing. With the advancements in modern Machine Learning (ML) technology, a keen interest in applying these algorithms to further CMP research has created a compelling new area of research at the intersection of both fields. In this review, we aim to explore the main areas within CMP, which have successfully applied ML techniques to further research, such as the description and use of ML schemes for potential energy surfaces, the characterization of topological phases of matter in lattice systems, the prediction of phase transitions in off-lattice and atomistic simulations, the interpretation of ML theories with physics- inspired frameworks and the enhancement of simulation methods with ML algorithms. We also discuss in detial the main challenges and drawbacks of using ML methods on CMP problems, as well as some perspectives for future developments. Keywords: machine learning, condensed matter physics Submitted
    [Show full text]
  • Department of Physics Review
    The Blackett Laboratory Department of Physics Review Faculty of Natural Sciences 2008/09 Contents Preface from the Head of Department 2 Undergraduate Teaching 54 Academic Staff group photograph 9 Postgraduate Studies 59 General Departmental Information 10 PhD degrees awarded (by research group) 61 Research Groups 11 Research Grants Grants obtained by research group 64 Astrophysics 12 Technical Development, Intellectual Property 69 and Commercial Interactions (by research group) Condensed Matter Theory 17 Academic Staff 72 Experimental Solid State 20 Administrative and Support Staff 76 High Energy Physics 25 Optics - Laser Consortium 30 Optics - Photonics 33 Optics - Quantum Optics and Laser Science 41 Plasma Physics 38 Space and Atmospheric Physics 45 Theoretical Physics 49 Front cover: Laser probing images of jet propagating in ambient plasma and a density map from a 3D simulation of a nested, stainless steel, wire array experiment - see Plamsa Physics group page 38. 1 Preface from the Heads of Department During 2008 much of the headline were invited by, Ian Pearson MP, the within the IOP Juno code of practice grabbing news focused on ‘big science’ Minister of State for Science and (available to download at with serious financial problems at the Innovation, to initiate a broad ranging www.ioppublishing.com/activity/diver Science and Technology Facilities review of physics research under sity/Gender/Juno_code_of_practice/ Council (STFC) (we note that some the chairmanship of Professor Bill page_31619.html). As noted in the 40% of the Department’s research Wakeham (Vice-Chancellor of IOP document, “The code … sets expenditure is STFC derived) and Southampton University). The stated out practical ideas for actions that the start-up of the Large Hadron purpose of the review was to examine departments can take to address the Collider at CERN.
    [Show full text]
  • Nature Physics
    nature physics GUIDE TO AUTHORS ABOUT THE JOURNAL Aims and scope of the journal Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features. Research areas covered in the journal include: • Quantum physics • Atomic and molecular physics • Statistical physics, thermodynamics and nonlinear dynamics • Condensed-matter physics • Fluid dynamics • Optical physics • Chemical physics • Information theory and computation • Electronics, photonics and device physics • Nanotechnology • Nuclear physics • Plasma physics • High-energy particle physics • Astrophysics and cosmology • Biophysics • Geophysics Nature Physics is committed to publishing top-tier original research in physics through a fair and rapid review process. The journal features two research paper formats: Letters and Articles. In addition to publishing original research, Nature Physics serves as a central source for top- quality information for the physics community through the publication of Commentaries, Research Highlights, News & Views, Reviews and Correspondence. Editors and contact information Like the other Nature titles, Nature Physics has no external editorial board. Instead, all editorial decisions are made by a team of full-time professional editors, who are PhD-level physicists. Information about the scientific background of the editors is available at <http://www.nature.com/nphys/team.html>. A full list of journal staff appears on the masthead. Relationship to other Nature journals Nature Physics is editorially independent, and its editors make their own decisions, independent of the other Nature journals.
    [Show full text]
  • 4 Jun 2021 Cosmic Tangle: Loop Quantum Cosmology and CMB Anomalies
    Cosmic tangle: Loop quantum cosmology and CMB anomalies Martin Bojowald Institute for Gravitation and the Cosmos, The Pennsylvania State University, 104 Davey Lab, University Park, PA 16802, USA Abstract Loop quantum cosmology is a conflicted field in which exuberant claims of observ- ability coexist with serious objections against the conceptual and physical viability of its current formulations. This contribution presents a non-technical case study of the recent claim that loop quantum cosmology might alleviate anomalies in observations of the cosmic microwave background. 1 Introduction “Speculation is one thing, and as long as it remains speculation, one can un- derstand it; but as soon as speculation takes on the actual form of ritual, one experiences a proper shock of just how foreign and strange this world is.” [1] Quantum cosmology is a largely uncontrolled and speculative attempt to explain the origin of structures that we see in the universe. It is uncontrolled because we do not have a complete and consistent theory of quantum gravity from which cosmological models could be obtained through meaningful restrictions or approximations. It is speculative because we do not have direct observational access to the Planck regime in which it is expected to arXiv:2106.02481v1 [gr-qc] 4 Jun 2021 be relevant. Nevertheless, quantum cosmology is important because extrapolations of known physics and observations of the expanding universe indicate that matter once had a density as large as the Planck density. Speculation is necessary because it can suggest possible indirect effects that are implied by Planck-scale physics but manifest themselves on more accessible scales.
    [Show full text]
  • Top Ten Physics News Stories in 2014 Wanted: Input from Physicists on the Future of Computing
    January 2015 • Vol. 24, No. 1 Physicist nominated to be A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY Secretary of Defense WWW.APS.ORG/PUBLICATIONS/APSNEWS Page 3 APS April Meeting Heads to Charm City Incoming 2015 APS President: Q & A with Samuel Aronson This year’s April Meeting will Body Systems, Hadronic Physics, Samuel H. Aronson, former position that affects everybody, come to this country for graduate take place at the Hilton Baltimore and Precision Measurements & director of Brookhaven National like climate change. I would men- level education in physics. More Inner Harbor Hotel in Baltimore, Fundamental Constants. Laboratory and current director of tion education, starting with early frequently than in the past, they Maryland, from April 11 through The meeting will host several its RIKEN BNL Research Center, STEM education and going all the return to pursue scientific careers 14. The annual meeting is expected renowned plenary speakers weigh- will begin his term as President way up to graduate level scientific at home. I think therefore, we need to attract about 1,300 attendees and ing in on a variety of important of APS on January 1, 2015. In an training. Finally, the issue of main- to access the American population will feature 72 invited sessions, physics topics. Monday’s Kavli interview with APS News, he dis- in all of its diverse dimensions to more than 110 contributed ses- session will feature Nobel laureate cusses his goals for the coming year. find the best and brightest people to sions, three plenary sessions, poster John Mather commemorating the What do you see as the most fill the pipeline domestically.
    [Show full text]
  • Phys. Rev. Lett. 30, 1343 (1973)
    Publications of Frank Wilczek 1. Ultraviolet Behavior of Non-Abelian Gauge Theories (with D. Gross), Phys. Rev. Lett. 30, 1343 (1973). 2. Asymptotically Free Gauge Theories, I (with D. Gross), Phys. Rev. D8, 3633 (1973). 3. Asymptotically Free Gauge Theories, II (with D. Gross), Phys. Rev. D9, 980 (1974). 4. Gauge Dependence of Renormalization Group Parameters (with W. Caswell), Phys. Lett. B49, 291 (1974). 5. Possible Non-Regge Behavior of Electroproduction Structure Functions (with A. DeRujula, S.L. Glashow, H.D. Politzer, S.B. Treiman and A. Zee), Phys. Rev. D10, 1649 (1974). 6. Scaling Deviations for Neutrino Reactions in Asymptotically Free Field Theories (with S. Treiman and A. Zee) Phys. Rev. D10, 2881 (1974). 7. Implications of Anomalous Lorentz Structure in Neutral Weak Processes (with R. Kingsley and A. Zee), Phys. Rev. D10, 2216 (1974). 8. Scaling Properties of a Gauge Theory with Han-Nambu Quarks and Charged Vector Gluons (with T.P. Cheng), Phys. Lett. 53B, 269 (1974) . 9. Some Experimental Consequences of Asymptotic Freedom, Proceedings: AIP Conference #23, 596, AIP Press, (1975). 10. Tests of Coupling Types in Weak Muonless Reactions (with R.L. Kingsley, R. Shrock and S.B. Treiman), Phys. Rev. D11, 1043 (1975). 11. Remarks on the New Resonances at 3.1GeV and 3.7GeV (with C.G. Callan, R.L. Kingsley, S.B. Treiman and A. Zee), Phys. Rev. Lett. 34, 52 (1975). 12. Weak Decays of Charmed Hadrons (with R.L. Kingsley, S.B. Treiman and A. Zee), Phys. Rev. D11, 1919 (1975). 13. Weak Decays of Charmed Hadrons, II: Soft Meson Theorems (with R.L.
    [Show full text]
  • Superconductivity and Strong Correlations in Moiré Flat Bands
    FOCUS | PERSPECTIVE FOCUShttps://doi.org/10.1038/s41567-020-0906-9 | PERSPECTIVE https://doi.org/10.1038/s41567-020-0906-9 Superconductivity and strong correlations in moiré flat bands Leon Balents1,2 ✉ , Cory R. Dean 3, Dmitri K. Efetov 4 ✉ and Andrea F. Young 5 ✉ Strongly correlated systems can give rise to spectacular phenomenology, from high-temperature superconductivity to the emergence of states of matter characterized by long-range quantum entanglement. Low-density flat-band systems play a vital role because the energy range of the band is so narrow that the Coulomb interactions dominate over kinetic energy, putting these materials in the strongly-correlated regime. Experimentally, when a band is narrow in both energy and momentum, its filling may be tuned in situ across the whole range, from empty to full. Recently, one particular flat-band system—that of van der Waals heterostructures, such as twisted bilayer graphene—has exhibited strongly correlated states and superconductivity, but it is still not clear to what extent the two are linked. Here, we review the status and prospects for flat-band engineering in van der Waals heterostructures and explore how both phenomena emerge from the moiré flat bands. trongly correlated quantum many-body systems have provided disorder to avoid trivial localization of electrons, which suppresses the setting for many paradigm-shifting experimental discover- correlation physics. ies; for example, the discovery of the fractional quantum Hall Van der Waals heterostructures consist of layered stacks of S 1 effect led to a conceptual revolution, introducing the notion of topo- two-dimensional atomic crystals such as graphene, hexagonal boron logical order to characterize states of matter2.
    [Show full text]
  • And Its Sister Journals)
    Updating image To update the background image, click on the picture placeholder icon 1. Windows Explorer or Finder will open 2. Find your required image and click ‘Insert’ 3. When cover image inserted, right-click in the grey area directly below this text box and select ‘Reset slide’ NOTE: If an image is already in place and you want to change it: 1. Select the image, and hit your delete key 2. Follow steps 1-4 above How to get published in Nature (and its sister journals) Ed Gerstner orcid.org/0000-0003-0369-0767 Regional Scientific Director, Springer Nature March 2018 1 Updating footer To update the footer: • Click into the text box on the slide master page and update the In the beginning… information Checking updates • The text updates may not flow … there was Nature through to all the slide layouts as some have been placed manually. Therefore you may need to check and manually update other slides • Founded in 1869 • The world’s leading, global, scientific journal Updating image To update the background image, click on • Across the full range of the picture placeholder icon scientific disciplines • Nature’s mission: 1. Windows Explorer or Finder will open 2. Find your required image and click ‘Insert’ 3. When cover image inserted, right-click in To communicate the world’s the grey area directly below this text box best and most important and select ‘Reset slide’ science to scientists across NOTE: If an image is already in place and you want the world and to the wider to change it: community interested in 1.
    [Show full text]