Top Ten Physics News Stories in 2014 Wanted: Input from Physicists on the Future of Computing

Total Page:16

File Type:pdf, Size:1020Kb

Top Ten Physics News Stories in 2014 Wanted: Input from Physicists on the Future of Computing January 2015 • Vol. 24, No. 1 Physicist nominated to be A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY Secretary of Defense WWW.APS.ORG/PUBLICATIONS/APSNEWS Page 3 APS April Meeting Heads to Charm City Incoming 2015 APS President: Q & A with Samuel Aronson This year’s April Meeting will Body Systems, Hadronic Physics, Samuel H. Aronson, former position that affects everybody, come to this country for graduate take place at the Hilton Baltimore and Precision Measurements & director of Brookhaven National like climate change. I would men- level education in physics. More Inner Harbor Hotel in Baltimore, Fundamental Constants. Laboratory and current director of tion education, starting with early frequently than in the past, they Maryland, from April 11 through The meeting will host several its RIKEN BNL Research Center, STEM education and going all the return to pursue scientific careers 14. The annual meeting is expected renowned plenary speakers weigh- will begin his term as President way up to graduate level scientific at home. I think therefore, we need to attract about 1,300 attendees and ing in on a variety of important of APS on January 1, 2015. In an training. Finally, the issue of main- to access the American population will feature 72 invited sessions, physics topics. Monday’s Kavli interview with APS News, he dis- in all of its diverse dimensions to more than 110 contributed ses- session will feature Nobel laureate cusses his goals for the coming year. find the best and brightest people to sions, three plenary sessions, poster John Mather commemorating the What do you see as the most fill the pipeline domestically. sessions, and a public lecture. The 50th anniversary of the discovery of pressing issues facing the physics What will be your main focus recipients of APS prizes and awards the cosmic microwave background. community right now? during your presidential year? will be honored at a special ceremo- Clifford Will from the University There are a number of issues, What approach will you take nial session on Sunday evening. of Florida will highlight the pre- one of which is federal research towards achieving these goals? The meeting will showcase cision tests that have confirmed budgets. We’re still in a chaotic and There are a number of APS the latest research from the APS general relativity. Stuart Shapiro fractious government funding land- issues. The Society is going through Divisions of Particles and Fields, of the University of Illinois at scape, so that remains a big issue. a transition in the way it conducts Astrophysics, Nuclear Physics, Urbana-Champaign will explore Another is the transition to open its work on behalf of the members, and Beam Physics, as well as the the origins and detection of gravi- access publishing, which affects and also perhaps in its response to Topical Group in Gravitation. In tational waves. the Society and other societies, and externalities, such as open access addition, the Forums on Educa- Speakers from government it will change the way which our Samuel H. Aronson publishing and open data. APS tion, Graduate Student Affairs, agencies will open the meeting on members and physicists in general needs to rethink the way it finances History of Physics, International Saturday and address the big scien- get access to scientific publications. taining and building the cohort of its work on behalf of the members Physics, and Physics and Society tific problems of the future. Secretary That’s something we have to focus physicists pursuing their careers in of the Society. There are issues will be participating, along with of Energy Ernest Moniz will lead off on within the Society. this country. It will be a different internal to the Society that are going the Topical Groups on Energy and John Grunsfeld, NASA’s associ- Other big issues are ones on mix than it has been in the past, due to take a lot of attention this year, Research and Applications, Few- MEETING continued on page 4 which the Society has a public to our ability to retain people who ARONSON continued on page 6 Top Ten Physics News Stories in 2014 Wanted: Input from Physicists on the Future of Computing Every year, APS News looks South Pole made the sensational the data from the satellite’s four- By Michael Lucibella priorities for the next five years.” back to see which physics news announcement that they had seen year run and had created the most The National Research Coun- He likened it to a smaller version stories grabbed the attention of the the first evidence of “B-mode” detailed map of the CMB. cil is developing a report for the of the surveys carried out every public. This list is not necessarily polarization in the cosmic micro- Intergalactic Neutrinos National Science Foundation on ten years by the astrophysics com- a compilation of the most impor- wave background (CMB) radiation. In 2013, the IceCube neu- advanced computing, and is looking munity to plan a decade’s worth tant advances or discoveries of the At the time it was held up as “the trino detector at the South Pole for input from the physics commu- of scientific projects. year, but rather the ones that seemed smoking gun” for evidence of observed additional highly ener- nity. The report, “Future Directions To help promote discussion in to garner the most headlines and getic neutrinos, which provided For NSF Advanced Computing the scientific community, the com- column-inches. In (roughly) chron- further evidence of neutrinos from Infrastructure to Support U.S. mittee released an interim version ological order, the top ten physics outside our galaxy. A new event Science and Engineering in 2017- of its report this summer, which stories of 2014 were: announced in April, dubbed “Big 2020,” will review what the NSF outlined the direction the full report Fusion Milestone Bird,” unseated the reigning champs is doing to get scientists access to will take. “It’s really a list of ques- Physicists at Lawrence Liver- “Bert” and “Ernie.” At more than the advanced computing hardware tions on topics we’re considering,” more National Laboratory Steffen Richter/Harvard two petaelectronvolts, it’s twice as and software they need, and what Harrison said. announced in February that they energetic as the previous record- can be improved. The NSF supports 16 sites reached an important milestone: holders, but because it’s not “This is an activity that the across the country that let research- At the National Ignition Facil- anything like an order of magnitude NSF conducts every five years ers use supercomputing hardware ity, 192 simultaneous laser pulses greater, investigators think that they or so,” said Robert Harrison, co- for computation-heavy research. blasted tiny hydrogen pellets, and BICEP2 searches for inflation. might be close to seeing the upper chair of the committee putting the The writers of the report are in the resulting fusion reactions emit- limit of cosmic neutrino energies. report together. “It assists them part looking to see how beneficial ted slightly more energy than was gravitational waves left over from in creating a roadmap, a set of INPUT continued on page 6 initially absorbed — a key first step a period of rapid inflation in the in inertial confinement fusion. How- early universe. However, soon ever, there is still a long way to go after the announcement, doubts LLNL before the machine produces a net about the data started to emerge, gain in energy, since the pellets and it was unclear if the team could absorbed only a small fraction of definitively rule out the effect of IceCube Collaboration the incoming laser energy. cosmic dust. In the resulting sci- entific paper, published in June, the team acknowledged that dust may have affected the observations, but nevertheless they still felt the IceCube's big find gravitational wave signal was real. In September a new report from the Physics in Movies ESA’s Planck satellite reinforced 2014 was a blockbuster year for concerns about the initial results, science on film and TV. Premiering but the two teams are continuing in March, Neil deGrasse Tyson’s to work together to resolve the highly anticipated follow-up to Carl Fusion first step discrepancies. Also in Decem- Sagan’s TV series Cosmos capti- vated audiences and took them on BICEP2 ber, independent of the BICEP2 a journey into the universe. Also in In March the scientific team research, Planck’s team announced Future of supercomputing: Top computers are funded by the behind the BICEP2 telescope at the that they had finished processing TOP TEN continued on page 6 Department of Energy. Should NSF chase the bleeding edge? 2 • January 2015 Members This Month in Physics History in the January 1, 1925: Cecilia Payne-Gaposchkin and the Day the Universe Changed Media By Richard Williams ecilia Payne made a long and lonely journey electron concentration, ionization potential, and “It’s an ordeal for anyone who’s with the IBM computer Watson, Cfrom her childhood in England to prominence other properties of the stellar atmosphere. Payne gone through it … . At the end of USA Today, November 25, 2014. in a scientific community that begrudged a place met Saha when he visited Harvard, just as his work the day, I was exhausted. I got my to women. She began her scientific career with a was becoming known to astronomers. first batch of candidates and I said, “In the old days, all of the scholarship to Cambridge University, where she took Payne’s thesis [3], finished on January 1, 1925, ‘Wow, for this I paid $85?’” knowledge was in a cathedral. … the course in physics. After meeting Harlow Shapley confirmed the view of Russell and Rowland on Neer Asherie, Yeshiva Univer- Now it’s here at CERN.” from Harvard, she moved to Massachusetts and the abundance of the heavier elements in stellar sity, on online dating, The New Steve Goldfarb, CERN, The pursued a doctoral degree in astronomy.
Recommended publications
  • The Nature Index Journals
    The Nature Index journals The current 12-month window on natureindex.com includes data from 57,681 primary research articles from the following science journals: Advanced Materials (1028 articles) American Journal of Human Genetics (173 articles) Analytical Chemistry (1633 articles) Angewandte Chemie International Edition (2709 articles) Applied Physics Letters (3609 articles) Astronomy & Astrophysics (1780 articles) Cancer Cell (109 articles) Cell (380 articles) Cell Host & Microbe (95 articles) Cell Metabolism (137 articles) Cell Stem Cell (100 articles) Chemical Communications (4389 articles) Chemical Science (995 articles) Current Biology (440 articles) Developmental Cell (204 articles) Earth and Planetary Science Letters (608 articles) Ecology (259 articles) Ecology Letters (120 articles) European Physical Journal C (588 articles) Genes & Development (193 articles) Genome Research (184 articles) Geology (270 articles) Immunity (159 articles) Inorganic Chemistry (1345 articles) Journal of Biological Chemistry (2639 articles) Journal of Cell Biology (229 articles) Journal of Clinical Investigation (298 articles) Journal of Geophysical Research: Atmospheres (829 articles) Journal of Geophysical Research: Oceans (493 articles) Journal of Geophysical Research: Solid Earth (520 articles) Journal of High Energy Physics (2142 articles) Journal of Neuroscience (1337 articles) Journal of the American Chemical Society (2384 articles) Molecular Cell (302 articles) Monthly Notices of the Royal Astronomical Society (2946 articles) Nano Letters
    [Show full text]
  • Self-Peeling of Impacting Droplets
    LETTERS PUBLISHED ONLINE: 11 SEPTEMBER 2017 | DOI: 10.1038/NPHYS4252 Self-peeling of impacting droplets Jolet de Ruiter†, Dan Soto† and Kripa K. Varanasi* Whether an impacting droplet1 sticks or not to a solid formation, 10 µs, is much faster than the typical time for the droplet surface has been conventionally controlled by functionalizing to completely crash22, 2R=v ∼1ms. These observations suggest that the target surface2–8 or by using additives in the drop9,10. the number of ridges is set by a local competition between heat Here we report on an unexpected self-peeling phenomenon extraction—leading to solidification—and fluid motion—opposing that can happen even on smooth untreated surfaces by it through local shear, mixing, and convection (see first stage of taking advantage of the solidification of the impacting drop sketch in Fig. 2c). We propose that at short timescales (<1 ms, and the thermal properties of the substrate. We control top row sketch of Fig. 2c), while the contact line of molten tin this phenomenon by tuning the coupling of the short- spreads outwards, a thin liquid layer in the immediate vicinity of timescale fluid dynamics—leading to interfacial defects upon the surface cools down until it forms a solid crust. At that moment, local freezing—and the longer-timescale thermo-mechanical the contact line pins, while the liquid above keeps spreading on a stresses—leading to global deformation. We establish a regime thin air film squeezed underneath. Upon renewed touchdown of map that predicts whether a molten metal drop impacting the liquid, a small air ridge remains trapped, forming the above- onto a colder substrate11–14 will bounce, stick or self-peel.
    [Show full text]
  • Three-Component Fermions with Surface Fermi Arcs in Tungsten Carbide
    LETTERS https://doi.org/10.1038/s41567-017-0021-8 Three-component fermions with surface Fermi arcs in tungsten carbide J.-Z. Ma 1,2, J.-B. He1,3, Y.-F. Xu1,2, B. Q. Lv1,2, D. Chen1,2, W.-L. Zhu1,2, S. Zhang1, L.-Y. Kong 1,2, X. Gao1,2, L.-Y. Rong2,4, Y.-B. Huang 4, P. Richard1,2,5, C.-Y. Xi6, E. S. Choi7, Y. Shao1,2, Y.-L. Wang 1,2,5, H.-J. Gao1,2,5, X. Dai1,2,5, C. Fang1, H.-M. Weng 1,5, G.-F. Chen 1,2,5*, T. Qian 1,5* and H. Ding 1,2,5* Topological Dirac and Weyl semimetals not only host quasi- bulk valence and conduction bands, which are protected by the two- particles analogous to the elementary fermionic particles in dimensional (2D) topological properties on time-reversal invariant high-energy physics, but also have a non-trivial band topol- planes in the Brillouin zone (BZ)24,26. ogy manifested by gapless surface states, which induce In addition to four- and two-fold degeneracy, it has been shown exotic surface Fermi arcs1,2. Recent advances suggest new that space-group symmetries in crystals may protect other types of types of topological semimetal, in which spatial symmetries degenerate point, near which the quasiparticle excitations are not protect gapless electronic excitations without high-energy the analogues of any elementary fermions described in the standard analogues3–11. Here, using angle-resolved photoemission model. Theory has proposed three-, six- and eight-fold degener- spectroscopy, we observe triply degenerate nodal points near ate points at high-symmetry momenta in the BZ in several specific the Fermi level of tungsten carbide with space group P 62m̄ non-symmorphic space groups3,4,10,11, where the combination of non- (no.
    [Show full text]
  • Publications of Electronic Structure Group at UIUC
    List of Publications and Theses Richard M. Martin January, 2013 Books Richard M. Martin, "Electronic Structure: Basic theory and practical methods," Cambridge University Press, 2004, Reprinted 2005, and 2008. Japanese translation in two volumes, 2010 and 2012. Richard M. Martin, Lucia Reining and David M. Ceperley, "Interacting Electrons," – in progress -- to be published by Cambridge University Press. Theses Directed Beaudet, Todd D., 2010, “Quantum Monte Carlo Study of Hydrogen Storage Systems” Yu, M., 2010, “Energy density method for solids, surfaces, and interfaces.” Vincent, Jordan D., 2006, “Quantum Monte Carlo calculations of the optical gaps of Ge nanoclusters” Das, Dyutiman, 2005, "Quantum Monte Carlo with a Stochastic Poisson Solver" Romero, Nichols, 2005, "Density Functional Study of Fullerene-Based Solids: Crystal Structure, Doping, and Electron-Phonon Interaction" Tsolakidis, Argyrios, 2003, "Optical response of finite and extended systems" Mattson, William David, 2003, "The complex behavior of nitrogen under pressure: ab initio simulation of the properties of structures and shock waves" Wilkens, Tim James, 2001, "Accurate treatments of Electronic Correlation: Phase Transitions in an Idealized 1D Ferroelectric and Modelling Experimental Quantum Dots" Souza, Ivo Nuno Saldanha Do Rosário E, 2000, "Theory of electronic polarization and localization in insulators with applications to solid hydrogen" Kim, Yong-Hoon , 2000, "Density-Functional Study of Molecules, Clusters, and Quantum Nanostructures: Developement of
    [Show full text]
  • Machine Learning for Condensed Matter Physics
    Review Article Machine Learning for Condensed Matter Physics Edwin A. Bedolla-Montiel1, Luis Carlos Padierna1 and Ram´on Casta~neda-Priego1 1 Divisi´onde Ciencias e Ingenier´ıas,Universidad de Guanajuato, Loma del Bosque 103, 37150 Le´on,Mexico E-mail: [email protected] Abstract. Condensed Matter Physics (CMP) seeks to understand the microscopic interactions of matter at the quantum and atomistic levels, and describes how these interactions result in both mesoscopic and macroscopic properties. CMP overlaps with many other important branches of science, such as Chemistry, Materials Science, Statistical Physics, and High-Performance Computing. With the advancements in modern Machine Learning (ML) technology, a keen interest in applying these algorithms to further CMP research has created a compelling new area of research at the intersection of both fields. In this review, we aim to explore the main areas within CMP, which have successfully applied ML techniques to further research, such as the description and use of ML schemes for potential energy surfaces, the characterization of topological phases of matter in lattice systems, the prediction of phase transitions in off-lattice and atomistic simulations, the interpretation of ML theories with physics- inspired frameworks and the enhancement of simulation methods with ML algorithms. We also discuss in detial the main challenges and drawbacks of using ML methods on CMP problems, as well as some perspectives for future developments. Keywords: machine learning, condensed matter physics Submitted
    [Show full text]
  • Making Sense of Integrated Science: a Guide for High Schools. INSTITUTION Biological Sciences Curriculum Study, Colorado Springs
    DOCUMENT RESUME ED 470 926 SE 066 714 TITLE Making Sense of Integrated Science: A Guide for High Schools. INSTITUTION Biological Sciences Curriculum Study, Colorado Springs. SPONS AGENCY National Science Foundation, Arlington, VA. PUB DATE 2000-00-00 NOTE 242p. CONTRACT ESI-9730727 AVAILABLE FROM BSCS, 5415 Mark Dabling Blvd., Colorado Springs, CO 80918. For full text: http://www.bscs.org. PUB TYPE Collected Works General (020) Guides Non-Classroom (055) Tests/Questionnaires (160) EDRS PRICE EDRS Price MF01/PC10 Plus Postage. DESCRIPTORS *Curriculum Development; High Schools; *Integrated Curriculum; Program Implementation; Science Education ABSTRACT This guide outlines the initial work and includes recommendations for schools and districts on how to implement an integrated science program. Chapters include: (1) "What Is Integrated Science and What Does It Look Like at the High School Level?"; (2) "Coherence in High School Science" (F. James Rutherford); (3) "Thinking about Change: What Will It Take' to Implement an Integrated Science Program?";(4) "Supporting Change through Professional Development" (Rodger W. Bybee and Susan Loucks-Horsley); (5) "How Do We Assess Learning in Integrated Science?" (Kathy Comfort); (6) "Thinking about Implementation: The Road Ahead"; (7) "How Have Others Done It ? "; (8) "California Scenario" (Marilyn Perron); (9) "Utah Scenario" (Sue Faibisch); and (10) "Florida Scenario" (Ginger Davis and Raul Montes). Appendices include: (1) "Using the Concerns-Based Adoption Model When Implementing Integrated Science Programs"; (2) "A Short Cut for Model IV"; (3) "A Needs Assessment for Integrated Science"; (4) "Next Step Questions to Consider Before Making a Decision "; (5) "The Integrated Science Program at Your School: Guidelines for Writers";(6) "Frequently Asked Questions about Integrated Science at the High School Level"; (7) "List of Curriculum Materials for Integrated Science and Survey Results." (Contains 50 references.) (YDS) Reproductions supplied by EDRS are the best that can be made from the original document.
    [Show full text]
  • Department of Physics Review
    The Blackett Laboratory Department of Physics Review Faculty of Natural Sciences 2008/09 Contents Preface from the Head of Department 2 Undergraduate Teaching 54 Academic Staff group photograph 9 Postgraduate Studies 59 General Departmental Information 10 PhD degrees awarded (by research group) 61 Research Groups 11 Research Grants Grants obtained by research group 64 Astrophysics 12 Technical Development, Intellectual Property 69 and Commercial Interactions (by research group) Condensed Matter Theory 17 Academic Staff 72 Experimental Solid State 20 Administrative and Support Staff 76 High Energy Physics 25 Optics - Laser Consortium 30 Optics - Photonics 33 Optics - Quantum Optics and Laser Science 41 Plasma Physics 38 Space and Atmospheric Physics 45 Theoretical Physics 49 Front cover: Laser probing images of jet propagating in ambient plasma and a density map from a 3D simulation of a nested, stainless steel, wire array experiment - see Plamsa Physics group page 38. 1 Preface from the Heads of Department During 2008 much of the headline were invited by, Ian Pearson MP, the within the IOP Juno code of practice grabbing news focused on ‘big science’ Minister of State for Science and (available to download at with serious financial problems at the Innovation, to initiate a broad ranging www.ioppublishing.com/activity/diver Science and Technology Facilities review of physics research under sity/Gender/Juno_code_of_practice/ Council (STFC) (we note that some the chairmanship of Professor Bill page_31619.html). As noted in the 40% of the Department’s research Wakeham (Vice-Chancellor of IOP document, “The code … sets expenditure is STFC derived) and Southampton University). The stated out practical ideas for actions that the start-up of the Large Hadron purpose of the review was to examine departments can take to address the Collider at CERN.
    [Show full text]
  • Nature Physics
    nature physics GUIDE TO AUTHORS ABOUT THE JOURNAL Aims and scope of the journal Nature Physics publishes papers of the highest quality and significance in all areas of physics, pure and applied. The journal content reflects core physics disciplines, but is also open to a broad range of topics whose central theme falls within the bounds of physics. Theoretical physics, particularly where it is pertinent to experiment, also features. Research areas covered in the journal include: • Quantum physics • Atomic and molecular physics • Statistical physics, thermodynamics and nonlinear dynamics • Condensed-matter physics • Fluid dynamics • Optical physics • Chemical physics • Information theory and computation • Electronics, photonics and device physics • Nanotechnology • Nuclear physics • Plasma physics • High-energy particle physics • Astrophysics and cosmology • Biophysics • Geophysics Nature Physics is committed to publishing top-tier original research in physics through a fair and rapid review process. The journal features two research paper formats: Letters and Articles. In addition to publishing original research, Nature Physics serves as a central source for top- quality information for the physics community through the publication of Commentaries, Research Highlights, News & Views, Reviews and Correspondence. Editors and contact information Like the other Nature titles, Nature Physics has no external editorial board. Instead, all editorial decisions are made by a team of full-time professional editors, who are PhD-level physicists. Information about the scientific background of the editors is available at <http://www.nature.com/nphys/team.html>. A full list of journal staff appears on the masthead. Relationship to other Nature journals Nature Physics is editorially independent, and its editors make their own decisions, independent of the other Nature journals.
    [Show full text]
  • 4 Jun 2021 Cosmic Tangle: Loop Quantum Cosmology and CMB Anomalies
    Cosmic tangle: Loop quantum cosmology and CMB anomalies Martin Bojowald Institute for Gravitation and the Cosmos, The Pennsylvania State University, 104 Davey Lab, University Park, PA 16802, USA Abstract Loop quantum cosmology is a conflicted field in which exuberant claims of observ- ability coexist with serious objections against the conceptual and physical viability of its current formulations. This contribution presents a non-technical case study of the recent claim that loop quantum cosmology might alleviate anomalies in observations of the cosmic microwave background. 1 Introduction “Speculation is one thing, and as long as it remains speculation, one can un- derstand it; but as soon as speculation takes on the actual form of ritual, one experiences a proper shock of just how foreign and strange this world is.” [1] Quantum cosmology is a largely uncontrolled and speculative attempt to explain the origin of structures that we see in the universe. It is uncontrolled because we do not have a complete and consistent theory of quantum gravity from which cosmological models could be obtained through meaningful restrictions or approximations. It is speculative because we do not have direct observational access to the Planck regime in which it is expected to arXiv:2106.02481v1 [gr-qc] 4 Jun 2021 be relevant. Nevertheless, quantum cosmology is important because extrapolations of known physics and observations of the expanding universe indicate that matter once had a density as large as the Planck density. Speculation is necessary because it can suggest possible indirect effects that are implied by Planck-scale physics but manifest themselves on more accessible scales.
    [Show full text]
  • Phys. Rev. Lett. 30, 1343 (1973)
    Publications of Frank Wilczek 1. Ultraviolet Behavior of Non-Abelian Gauge Theories (with D. Gross), Phys. Rev. Lett. 30, 1343 (1973). 2. Asymptotically Free Gauge Theories, I (with D. Gross), Phys. Rev. D8, 3633 (1973). 3. Asymptotically Free Gauge Theories, II (with D. Gross), Phys. Rev. D9, 980 (1974). 4. Gauge Dependence of Renormalization Group Parameters (with W. Caswell), Phys. Lett. B49, 291 (1974). 5. Possible Non-Regge Behavior of Electroproduction Structure Functions (with A. DeRujula, S.L. Glashow, H.D. Politzer, S.B. Treiman and A. Zee), Phys. Rev. D10, 1649 (1974). 6. Scaling Deviations for Neutrino Reactions in Asymptotically Free Field Theories (with S. Treiman and A. Zee) Phys. Rev. D10, 2881 (1974). 7. Implications of Anomalous Lorentz Structure in Neutral Weak Processes (with R. Kingsley and A. Zee), Phys. Rev. D10, 2216 (1974). 8. Scaling Properties of a Gauge Theory with Han-Nambu Quarks and Charged Vector Gluons (with T.P. Cheng), Phys. Lett. 53B, 269 (1974) . 9. Some Experimental Consequences of Asymptotic Freedom, Proceedings: AIP Conference #23, 596, AIP Press, (1975). 10. Tests of Coupling Types in Weak Muonless Reactions (with R.L. Kingsley, R. Shrock and S.B. Treiman), Phys. Rev. D11, 1043 (1975). 11. Remarks on the New Resonances at 3.1GeV and 3.7GeV (with C.G. Callan, R.L. Kingsley, S.B. Treiman and A. Zee), Phys. Rev. Lett. 34, 52 (1975). 12. Weak Decays of Charmed Hadrons (with R.L. Kingsley, S.B. Treiman and A. Zee), Phys. Rev. D11, 1919 (1975). 13. Weak Decays of Charmed Hadrons, II: Soft Meson Theorems (with R.L.
    [Show full text]
  • 2008 NSF-Sponsored Report: the Future of Materials Science And
    THE FUTURE OF MATERIALS SCIENCE AND MATERIALS ENGINEERING EDUCATION A report from the Workshop on Materials Science and Materials Engineering Education sponsored by the National Science Foundation September 18-19, 2008 in Arlington, VA TABLE OF CONTENTS Summary . 5. Summary of the Recommendations . 9. Public Education and Outreach Recommendations . 9. Kindergarten through 12th Grade (K-12) Education Recommendations . 9. Undergraduate Education Recommendations . 10. Graduate Education Recommendations . 10. 1. Public Education and Outreach . 13. 1 .1 Introduction . 13. 1 .2 What Does the Public Know? . 13. 1 .3 What Should the Public Know? . 14. 1 .4 How Does the Public Learn About Materials Science and Materials Engineering? . 17. 1 5. How Can the Materials Community Promote Learning Using Informal Science Education? . 20. 1 .6 What is the Impact of Outreach Activities on the Career Development of Faculty? . 21. 1 .7 Recommendations . 22. 2. Kindergarten Through 12th Grade (K-12) Education . 23. 2 .1 Introduction . 23. 2 .2 Materials Education Standards and Curricula for K-12 Students . 24. 2 .3 Professional Development of K-12 Teachers . 27. 2 .4 Career Awareness for K-12 Students . 28. 2 .5 Recommendations . 29. 3. Undergraduate Education . 31. 3 .1 Introduction . 31. 3 .2 Curriculum Development . 32. 3 .3 Recruiting and Retaining Students in MSME . 34. 3 .4 Recommendations . 35. 4. Graduate Education . 37. 4 .1 Introduction . 37. 4 .2 Course Curriculum . 39. 4 .3 Interdisciplinary Training . 41. 4 .4 Career Preparation . 43. 4 .5 Recommendations . 44. 5. Cross-Cutting Theme: Use of Information Technology in MSME Education and Research . 45. 6. Workshop Program . 47. 7.
    [Show full text]
  • Superconductivity and Strong Correlations in Moiré Flat Bands
    FOCUS | PERSPECTIVE FOCUShttps://doi.org/10.1038/s41567-020-0906-9 | PERSPECTIVE https://doi.org/10.1038/s41567-020-0906-9 Superconductivity and strong correlations in moiré flat bands Leon Balents1,2 ✉ , Cory R. Dean 3, Dmitri K. Efetov 4 ✉ and Andrea F. Young 5 ✉ Strongly correlated systems can give rise to spectacular phenomenology, from high-temperature superconductivity to the emergence of states of matter characterized by long-range quantum entanglement. Low-density flat-band systems play a vital role because the energy range of the band is so narrow that the Coulomb interactions dominate over kinetic energy, putting these materials in the strongly-correlated regime. Experimentally, when a band is narrow in both energy and momentum, its filling may be tuned in situ across the whole range, from empty to full. Recently, one particular flat-band system—that of van der Waals heterostructures, such as twisted bilayer graphene—has exhibited strongly correlated states and superconductivity, but it is still not clear to what extent the two are linked. Here, we review the status and prospects for flat-band engineering in van der Waals heterostructures and explore how both phenomena emerge from the moiré flat bands. trongly correlated quantum many-body systems have provided disorder to avoid trivial localization of electrons, which suppresses the setting for many paradigm-shifting experimental discover- correlation physics. ies; for example, the discovery of the fractional quantum Hall Van der Waals heterostructures consist of layered stacks of S 1 effect led to a conceptual revolution, introducing the notion of topo- two-dimensional atomic crystals such as graphene, hexagonal boron logical order to characterize states of matter2.
    [Show full text]