(12) United States Patent (10) Patent No.: US 7,053,077 B1 Elger Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7,053,077 B1 Elger Et Al US007053077B1 (12) United States Patent (10) Patent No.: US 7,053,077 B1 Elger et al. (45) Date of Patent: May 30, 2006 (54) USE OF BIOGENIC ESTROGEN (56) References Cited SULFAMATES FOR HORMONE REPLACEMENT THERAPY U.S. PATENT DOCUMENTS 5,314,694. A * 5/1994 Gale et al. (75) Inventors: Walter Elger, Berlin (DE); Pekka 5,633,242 A 5, 1997 Oettel Lähteenmäki, Turku (FI); Matti FOREIGN PATENT DOCUMENTS Lehtinen, Pispanristi (FI): Gudrun Reddersen, Jena (DE); Holger WO 95 O1161 1, 1995 Zimmermann, Ilmenau-Roda (DE); WO WO-96,05216- * 2/1996 Michael Oettel, Jena (DE); Sigfrid OTHER PUBLICATIONS Schwarz, Jena (DE) Elger, W. et al.: "Sulfamates of various estrogens are (73) Assignee: Schering AG, Berlin (DE) prodrugs with increased systemic and reduces hepatic estrogenicity at oral application.” Journal of Steroid (*) Notice: Subject to any disclaimer, the term of this Biochemisty and Molecular Biology, Vol. 55, No. 3-4 pp. patent is extended or adjusted under 35 395-403. U.S.C. 154(b) by 0 days. Elger, Wet al. “Novel oestrogen sulfamates: a new approach to oral hormone therapy” vol. 7, No. 4, 1998 pp. 575-658. (21) Appl. No.: 09/744,574 * cited by examiner (22) PCT Filed: May 13, 1999 Primary Examiner Sreeni Padmanabhan Assistant Examiner Abigail M. Cotton (86). PCT No.: PCT/DE99/O1496 (74) Attorney, Agent, or Firm Millen, White, Zelano & S 371 (c)(1), Branigan, P.C. (2), (4) Date: Apr. 5, 2001 (57) ABSTRACT (87) PCT Pub. No.: WO00/06175 The invention relates to the use of biogenic estrogen Sulfa mates for the oral discontinuous application for hormone PCT Pub. Date: Feb. 10, 2000 replacement therapy (HRT). The discontinuous administra tion takes place in intervals ranging from 2 to 40 days. The (30) Foreign Application Priority Data invention also provides the additional application of Jul. 28, 1998 (DE) ................................ 19834. 931 gestagens, preferably continuously in the form of an implant or in the form of an intrauterine releasing system (IUD). (51) Int. Cl. Estrone sulfamate, estradiol sulfamate or an N-acyl sulfa A6 IK3I/56 (2006.01) mate of estrone, estradiol or estriol having up to 7 C-atoms (52) U.S. Cl. ...................... 514/177, 514/178; 514/182: in the acyl chain, or a combination comprised of two or more 5147874 of said active ingredients are used as biogenic estrogen (58) Field of Classification Search ................ 514/310, Sulfamates. 514/177, 178, 182 See application file for complete search history. 15 Claims, 6 Drawing Sheets U.S. Patent May 30, 2006 Sheet 1 of 6 US 7,053,077 B1 anX 3a N. 5 O) D. 92 S. S C N U.S. Patent May 30, 2006 Sheet 2 of 6 US 7,053,077 B1 D CN gss N 8 S. s 3 U.S. Patent May 30, 2006 Sheet 3 of 6 US 7,053,077 B1 g8 s N a. N s O g S. g S o 9 O O U.S. Patent May 30, 2006 Sheet 4 of 6 US 7,053,077 B1 e?ouo?Ins–?E (G660) U.S. Patent May 30, 2006 Sheet S of 6 US 7,053,077 B1 OZ/009 (puusoldluu/6u)e?og?nseuou?se U.S. Patent May 30, 2006 Sheet 6 of 6 US 7,053,077 B1 OZ|| (luu/6d)SLE US 7,053,077 B1 1. 2 USE OF BIOGENCESTROGEN substances from the blood is also problematical in nature. SULFAMATES FOR HORMONE Even in cases where an oral preparation is given daily, the REPLACEMENT THERAPY active ingredient and its relevant metabolites are eliminated to a large extent between two intakes, so that it cannot be CROSS-REFERENCE TO RELATED assumed that the latter does not result in a disruption of the APPLICATIONS estrogenic action. In studies by Kuhnz et al. (Kuhnz, W.; Gansau, C.; Mahler, M.: "Pharmacokinetics of Estradiol, This application is a 371 of PCT/DE99/01496, filed May Free and Total Estrone, in Young Women. Following Single 13, 1999. Intravenous and Oral Administration of 17 BEstradiol.” Arz The invention relates to the use of biogenic estrogen 10 neim-Forsch/Drug Res. 43 (2), 9,966–973 (1993)), it was Sulfamates for oral, intermittent administration for hormone found that the estradiol and estrone values 24 hours after replacement therapy (HRT). administration of different doses of estradiol (2, 4 and 8 mg Estrogens are formed in the ovary predominantly by as a one-time administration) had dropped to less than 50% vesicular ovarian follicles and corpora lutea. In addition, of the maximum level. This observation shows that dose many organs and tissues are able to generate estrogens, for 15 increase is by no means able to eliminate the problem of example from androstenedione and dehydroepiandroster strong fluctuations of the hormone level in the 24-hour cycle one, which are secreted in Substantial amounts by the with daily intake. The relevance of this assumption can also adrenal glands of the human. Under certain circumstances, be supported by other observations. In postmenopausal several enzymes, and at the end of the chain, ultimately the women, estriol was not osteoporectively effective even at aromatase are involved in the corresponding conversion. very high oral dosages (Lindsay, R.; Hart, D. M.; Maclean, Another method for development of estrogens in the tissue A. Garwood, J.; Clark, A. C.; Kraszewski, A.: "Bone Loss is the hydrolytic cleavage of conjugates of the natural During Estriol Therapy in Postmenopausal Women’ Matu estrogens, primarily that of the estrone Sulfate. It has to be ritas Jun 1 (4), 279-285 (1979)). In women, it has an assumed that estrogens that are produced in the tissue locally especially short half-life of about 1.5–5.3 hours (Heithecker, play an important role in physiological and pathological 25 R.: Aedo, A. R.; Landgren, B. M.: Cekan, S. Z.: “Plasma processes. They are not able to prevent the estrogen defi Estriol Levels after Intramuscular Injection of Estriol and ciency in the overall organism, however, which occurs Two of its Esters' Horm. Res. 35, 234-238 (1991)). It was around age 50 upon the cessation of the ovarian function. demonstrated that this estrogen has a protective action in the Estrogens play an essential role in hormonal contracep bone after ovariectomy, if uniform active ingredient levels tion and in the menopausal hormone replacement therapy 30 are maintained in the blood (Elger, W.; Schneider, B.: Oettel, (HRT) as well as in the treatment of gynecological (e.g., M.: Ernst, M. Hübler, D.; Dittgen, M.: “Use of Estradiol for breast cancer) and andrological (e.g., prostate cancer) clini Treatment of Menopausal Osteoporosis' Patent DE-A 42 09 cal pictures. In the case of contraception, estrogens are 295). required one time to Suppress follicular maturation and In recent years, transdermal therapy processes were ovulation reliably; on the other hand they then substitute the 35 developed. The processes reduce the fluctuations of the largely Suppressed endogenic, ovarian secretion of estradiol. estrogen levels in the blood, but cannot quite avoid the latter. This Substitution is essential for preserving an artificial The essential drawback of this administration technology menstrual cycle and other functions of the sexual organs, presumably lies in the complicated use in comparison to which is not accomplished satisfactorily with a gestagen by simple oral administration. Oral preparations still predomi itself. In addition, endogenic and exogenic estrogens have 40 nate on the HRT market despite their discussed drawbacks. important central nervous and metabolic functions in the Transdermal forms of administration are abandoned by their female organism. Normal estrogen levels decisively contrib users, moreover, on average earlier than is the case for oral ute to well-being. Its presence counteracts the development preparations. of cardiovascular diseases by various mechanisms: produc The latter are rejected by medical science, citing their tion of “advantageous' lipoprotein patterns in the blood, 45 metabolic effects for the field of application of HRT. The inhibition of lipid retention in the vascular wall, lowering of most important synthetically modified estrogenic steroid is the blood pressure by advantageous influencing of Vasoto ethinylestradiol (EE). This estrogen is dominant in oral nia, reduction of perfusion resistance in important vascular hormonal contraception. In addition to EE, mestranol, which Zones, attenuation of contractile stimuli on vascular muscle. is a “prodrug, is used in a few products, and is metabolized Under the action of estrogens, the vascular inner walls 50 into EE in the organism. In the case of oral administration release factors that counteract the development of blood (human), EE is much more bio-available than the above clots. In women, estrogens are essential for preserving the mentioned natural estrogens, but the oral bio-availability bone structure. Its loss can produce the development of bone individually varies in an extraordinarily great manner. Dif destruction (osteoporosis). The last-mentioned “central ner ferent authors have pointed out this fact and the partially vous” and “metabolic effects of estrogens are essential 55 irregular behavior of the blood level plots after this sub considerations of HRT. stance is administered orally (Goldzieher, J. W.: Pharmacol In all positive aspects of estrogen therapy, there are ogy of Contraceptive Steroids: A Brief Review, “Am. f. unsolved problems that limit the therapeutic use of estrogens Obstet. Gynaecol. 160, 1260–1264 (1989); Goldzieher, J. or contain undesirable actions; the latter are discussed in the W.: “Selected Aspects of the Pharmacokinetics and Metabo following chapters with respect to the subject of the inven 60 lism of Ethinyl Estrogens and their Clinical Implications' tion. Am. J. Obstet. Gynaecol. 163, 318–322 (1990); Hümpel, Natural estrogens (estradiol, estrone, estrone sulfate, M.; Tauber, U. Kuhn, W. Pfeffer, M.; Brill, K.: Heithekker, esters of estradiol, estriol) are bio-available to only a very R.: Louton, T.; Steinberg, B.: “Comparison of Serum Ethinyl small extent when administered orally.
Recommended publications
  • Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals
    Journal of Clinical Medicine Review Hormonal Treatment Strategies Tailored to Non-Binary Transgender Individuals Carlotta Cocchetti 1, Jiska Ristori 1, Alessia Romani 1, Mario Maggi 2 and Alessandra Daphne Fisher 1,* 1 Andrology, Women’s Endocrinology and Gender Incongruence Unit, Florence University Hospital, 50139 Florence, Italy; [email protected] (C.C); jiska.ristori@unifi.it (J.R.); [email protected] (A.R.) 2 Department of Experimental, Clinical and Biomedical Sciences, Careggi University Hospital, 50139 Florence, Italy; [email protected]fi.it * Correspondence: fi[email protected] Received: 16 April 2020; Accepted: 18 May 2020; Published: 26 May 2020 Abstract: Introduction: To date no standardized hormonal treatment protocols for non-binary transgender individuals have been described in the literature and there is a lack of data regarding their efficacy and safety. Objectives: To suggest possible treatment strategies for non-binary transgender individuals with non-standardized requests and to emphasize the importance of a personalized clinical approach. Methods: A narrative review of pertinent literature on gender-affirming hormonal treatment in transgender persons was performed using PubMed. Results: New hormonal treatment regimens outside those reported in current guidelines should be considered for non-binary transgender individuals, in order to improve psychological well-being and quality of life. In the present review we suggested the use of hormonal and non-hormonal compounds, which—based on their mechanism of action—could be used in these cases depending on clients’ requests. Conclusion: Requests for an individualized hormonal treatment in non-binary transgender individuals represent a future challenge for professionals managing transgender health care. For each case, clinicians should balance the benefits and risks of a personalized non-standardized treatment, actively involving the person in decisions regarding hormonal treatment.
    [Show full text]
  • Vaginal Delivery System
    (19) & (11) EP 2 062 568 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 27.05.2009 Bulletin 2009/22 A61K 9/00 (2006.01) (21) Application number: 07397042.8 (22) Date of filing: 22.11.2007 (84) Designated Contracting States: • Hanes, Vladimir AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tarrytown, NY 10591 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • Keinänen, Antti SI SK TR 20540 Turku (FI) Designated Extension States: • Holmberg, Svante AL BA HR MK RS 20900 Turku (FI) • Nikander, Hannu (71) Applicant: Bayer Schering Pharma Oy 21330 Paattinen (FI) 20210 Turku (FI) (74) Representative: Matilainen, Mirja Helena et al (72) Inventors: Oy Jalo Ant-Wuorinen AB, • Talling, Christine Iso Roobertinkatu 4-6 A 20610 Turku (FI) 00120 Helsinki (FI) (54) Vaginal delivery system (57) The present invention is related to an intravag- brane (3) encasing the core, said core and membrane inal delivery system for the controlled release of a pro- essentially consisting of a same or different polymer com- gestogen and an estrogen, comprising additionally a position, wherein at cast one of the cores comprises a therapeutically active or a health-promoting substance progestogen or a mixture of a progestogen and an es- (1) capable of giving and/or enhancing the protection trogen, and another core may comprise an estrogen or against bacterial and fungal infections, and/or enhancing a progestogen, and wherein the membrane or the surface the protection against sexually transmitted diseases. The of the membrane or at least one of the cores comprises delivery system consists of one or more compartments said therapeutically active or a health-promoting sub- (2,4,5), one of each comprising a core (7) and a mem- stance.
    [Show full text]
  • Nandrolone Technical Document July 04 V1.0
    WADA Technical Document – TD2004NA Document Number: TD2004NA Version Number: 1.0 Written by: WADA Laboratory Committee Approved by: WADA Executive Committee Date: 28 May, 2004 Effective Date: 13 August, 2004 REPORTING NORANDROSTERONE FINDINGS 1. Introduction: This document has been established to harmonize analysis and reporting of norandrosterone Adverse Analytical Findings by Laboratories. The administration of 19-norsteroids such as 19-nortestosterone (nandrolone), 19-norandrostene-3,17- dione and 19-norandrostene-3,17-diol (delta-4 and -5 isomers) has been shown to lead mainly to the excretion of 19-norandrosterone (NA), 19-noretiocholanolone (NE) and 19-norepiandrosterone (NEA). The latter is found exclusively as its sulfoconjugate while the others are usually excreted as their glucuronide derivative. The sulfate derivatives, generally persistent, may be prevalent at the end of the excretion period. After the i.m. administration of the long-lasting preparations of nandrolone, the metabolites may be detected for months, but metabolites formed after the oral ingestion are excreted massively in the first hours and remain detectable for only a few days. The excretion of 19-norandrosterone generally predominates that of the 5b-isomer but inversed proportions have been reported in some individuals after oral administration either at the end of the excretion period or when ? 5-isomers of related norsteroids were taken (1). Norandrosterone is excreted during pregnancy and2010 as a minor metabolite of norethisterone (2). Special procedures such as more sensitive instrumentation, larger volumes of urine and more extensive sample clean-up were needed to detect, identify and quantify endogenous 19-norandrosterone (with limits of detection needing to be ten times lower than routine testing i.e.
    [Show full text]
  • Steroids – Basic Science
    STEROIDS – BASIC SCIENCE Edited by Hassan Abduljabbar Steroids – Basic Science Edited by Hassan Abduljabbar Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Bojan Rafaj Technical Editor Teodora Smiljanic Cover Designer InTech Design Team Image Copyright loriklaszlo, 2011. DepositPhotos First published December, 2011 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Steroids – Basic Science, Edited by Hassan Abduljabbar p.
    [Show full text]
  • Substrate Inhibition of 17 Beta-Hydroxysteroid Dehydrogenase Type 1 in Living Cells and Regulation Among the Steroid-Converting Enzymes in Breast Cancers
    Substrate inhibition of 17 beta-hydroxysteroid dehydrogenase type 1 in living cells and regulation among the steroid-converting enzymes in breast cancers Thèse Hui Han Doctorat en médecine moléculaire Philosophiæ doctor (Ph. D.) Québec, Canada © Hui Han, 2018 Substrate inhibition of 17 beta-hydroxysteroid dehydrogenase type 1 in living cells and regulation among the steroid-converting enzymes in breast cancers Thèse Hui Han Sous la direction de : Sheng-xiang Lin, directeur de recherche RÉSUMÉ Cette étude a permis de démontrer les fonctions et les mécanismes de la 17bêta- hydroxystéroïde déshydrogénase de type 1 (17β-HSD1) et de la stéroïde sulfatase (STS) au niveau du cancer du sein, y compris la cinétique moléculaire et cellulaire, la liaison du ligand étudiée par la titration de fluorescence, la régulation des stéroïdes et la régulation mutuelle entre les enzymes stéroïdiennes et les cellules cancéreuses du sein. 1), L’inhibition de la 17β-HSD1 par son substrat a été démontrée par la cinétique enzymatique au niveau cellulaire pour la première fois, soutenant ainsi la fonction biologique de l’inhibition produite par le substrat. 2), En tant qu’inhibiteur, la dihydrotestostérone (DHT) n’a pas affecté la concentration du substrat estrone (E1) à laquelle l’activité enzymatique a commencé à diminuer, mais certaines augmentations de vitesse ont été observées, suggérant une diminution significative de l’inhibition par le substrat. 3), Les résultats de la modulation de l’ARNm ont démontré que la transcription du gène codant la 17β-HSD7 diminuait en réponse à l’inhibition de la 17β-HSD1 ou au knockdown dans les cellules du cancer du sein par la modification estradiol (E2).
    [Show full text]
  • Estriol Therapy for Autoimmune and Neurodegenerative Diseases and Disorders
    (19) TZZ¥Z__T (11) EP 3 045 177 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 20.07.2016 Bulletin 2016/29 A61K 31/565 (2006.01) A61K 31/566 (2006.01) A61K 31/568 (2006.01) A61K 45/06 (2006.01) (2006.01) (2006.01) (21) Application number: 16000349.7 A61K 31/785 A61P 25/00 (22) Date of filing: 26.09.2006 (84) Designated Contracting States: (72) Inventor: Voskuhl, Rhonda R. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Los Angeles, CA 90024 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (74) Representative: Müller-Boré & Partner Patentanwälte PartG mbB (30) Priority: 26.09.2005 US 720972 P Friedenheimer Brücke 21 26.07.2006 US 833527 P 80639 München (DE) (62) Document number(s) of the earlier application(s) in Remarks: accordance with Art. 76 EPC: This application was filed on 11-02-2016 as a 13005320.0 / 2 698 167 divisional application to the application mentioned 06815626.4 / 1 929 291 under INID code 62. (71) Applicant: The Regents of the University of California Oakland, CA 94607 (US) (54) ESTRIOL THERAPY FOR AUTOIMMUNE AND NEURODEGENERATIVE DISEASES AND DISORDERS (57) The present invention relates to a dosage from comprising estriol and glatiramer acetate polymer-1 for use in the treatment of multiple sclerosis (MS), as well as to a kit comprising estriol and glatiramer acetate polymer-1. EP 3 045 177 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 045 177 A1 Description [0001] This invention was made with Government support under Grant No.
    [Show full text]
  • Inhibition of Estrone Sulfate-Induced Uterine Growth by Potent Nonestrogenic Steroidal Inhibitors of Steroid Sulfatase1
    [CANCER RESEARCH 63, 6442–6446, October 1, 2003] Inhibition of Estrone Sulfate-induced Uterine Growth by Potent Nonestrogenic Steroidal Inhibitors of Steroid Sulfatase1 Liviu C. Ciobanu, Van Luu-The, Ce´line Martel, Fernand Labrie, and Donald Poirier2 Medicinal Chemistry Division, Oncology and Molecular Endocrinology Research Center, Centre Hospitalier Universitaire de Que´bec-Pavillon CHUL, and Universite´ Laval, Que´bec, G1V 4G2, Canada ABSTRACT thetic pathway accounts for the transformation of DHEAS into the estrogenic C19 steroid 5-diol. Thus, inhibition of steroid sulfatase, the The present study describes the biological in vitro and in vivo evaluation enzyme responsible for the conversion of DHEAS to dehydroepi- of 2-methoxy derivatives of estrogenic inhibitors of steroid sulfatase, androsterone and E StoE , may allow reduction of estrogen levels in namely 3-sulfamoyloxy-17␣-p-tert-butylbenzyl(or benzyl)-1,3,5 (10)- 1 1 estratrien-17␤-ols. The addition of the 2-methoxy group conserves the tumors and could represent a promising approach for the treatment of estrogen-sensitive breast cancer. potent inhibitory effect on steroid sulfatase activity (IC50s of 0.024 and 0.040 nM) while removing the estrogenic action. Using an ovariectomized Some of the most efficient steroid sulfatase inhibitors developed were mouse model, we show that the first generation of steroid sulfatase inhib- sulfamate derivatives (10–12). The first reported inhibitor in this series, itors tested, 3-sulfamoyloxy-17␣-p-tert-butylbenzyl(or benzyl)estra-1,3,5 estrone sulfamate (EMATE; Ref. 25, 26) is a very potent irreversible (10)-trien-17␤-ols and estrone-3-O-sulfamate, are estrogenic compounds inhibitor, but it is also an estrogenic compound (27), thus having less than stimulating estrogen-sensitive uterine growth.
    [Show full text]
  • INTERRELATIONSHIPS of the ESTROGEN-PRODUCING ENZYMES NETWORK in BREAST CANCER DISSERTATION Presented in Partial Fulfillment Of
    INTERRELATIONSHIPS OF THE ESTROGEN-PRODUCING ENZYMES NETWORK IN BREAST CANCER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Wendy L. Rich, M.S. ∗∗∗∗∗ The Ohio State University 2009 Dissertation Committee: Approved by Pui-Kai Li, Ph.D., Adviser Robert W. Brueggemeier, Ph.D. Karl A. Werbovetz, Ph.D. Adviser Graduate Program in Pharmacy Charles L. Shapiro M.D. ABSTRACT In the United States, breast cancer is the most common non-skin malignancy and the second leading cause of cancer-related death in women. However, earlier detection and new, more effective treatments may be responsible for the decrease in overall death rates. Approximately 60% of breast tumors are estrogen receptor (ER) positive and thus their cellular growth is hormone-dependent. Elevated levels of estrogens, even in post- menopausal women, have been implicated in the development and progression of hormone-dependent breast cancer. Hormone therapies seek to inhibit local estrogen action and biosynthesis, which can be produced by pathways utilizing the enzymes aromatase or steroid sulfatase (STS). Cyclooxygenase-2 (COX-2), typically involved in inflammation processes, is a major regulator of aromatase expression in breast cancer cells. STS, COX-2, and aromatase are critical for estrogen biosynthesis and have been shown to be over-expressed in breast cancer. While there continues to be extensive study and successful design of potent aromatase inhibitors, much remains unclear about the regulation of STS and the clinical applications for its selective inhibition. Further studies exploring the relationships of STS with COX-2 and aromatase enzymes will aid in the understanding of its role in cancer cell growth and in the development of future hormone- dependent breast cancer therapies.
    [Show full text]
  • WO 2015/054658 Al 16 April 2015 (16.04.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/054658 Al 16 April 2015 (16.04.2015) P O P C T (51) International Patent Classification: (74) Agents: PATHAK, Rahul et al; Squire Patton Boggs C07D 401/12 (2006.01) A61K 39/395 (2006.01) (US) LLP, 275 Battery Street, Suite 2600, San Francisco, C07D 409/12 (2006.01) A61K 47/48 (2006.01) California 941 11 (US). C07D 257/08 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US20 14/060 169 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 10 October 2014 (10.10.2014) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 61/890,1 18 11 October 2013 ( 11. 10.2013) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,446,070 Mantelle (45) Date of Patent: "Aug
    USOO544607OA United States Patent 19 11 Patent Number: 5,446,070 Mantelle (45) Date of Patent: "Aug. 29, 1995 54 COMPOST ONS AND METHODS FOR 4,659,714 4/1987 Watt-Smith ......................... 514/260 TOPCAL ADMNSTRATION OF 4,675,009 6/1987 Hymes .......... ... 604/304 PHARMACEUTICALLY ACTIVE AGENTS 4,695,465 9/1987 Kigasawa .............................. 424/19 4,748,022 5/1988 Busciglio. ... 424/195 75 Inventor: Juan A. Mantelle, Miami, Fla. 4,765,983 8/1988 Takayanagi. ... 424/434 4,789,667 12/1988 Makino ............ ... 514/16 73) Assignee: Nover Pharmaceuticals, Inc., Miami, 4,867,970 9/1989 Newsham et al. ... 424/435 Fla. 4,888,354 12/1989 Chang .............. ... 514/424 4,894,232 1/1990 Reul ............. ... 424/439 * Notice: The portion of the term of this patent 4,900,552 2/1990 Sanvordeker .... ... 424/422 subsequent to Aug. 10, 2010 has been 4,900,554 2/1990 Yanagibashi. ... 424/448 disclaimed. 4,937,078 6/1990 Mezei........... ... 424/450 Appl. No.: 112,330 4,940,587 7/1990 Jenkins ..... ... 424/480 21 4,981,875 l/1991 Leusner ... ... 514/774 22 Filed: Aug. 27, 1993 5,023,082 6/1991 Friedman . ... 424/426 5,234,957 8/1993 Mantelle ........................... 514/772.6 Related U.S. Application Data FOREIGN PATENT DOCUMENTS 63 Continuation-in-part of PCT/US92/01730, Feb. 27, 0002425 6/1979 European Pat. Off. 1992, which is a continuation-in-part of Ser. No. 0139127 5/1985 European Pat. Off. 813,196, Dec. 23, 1991, Pat. No. 5,234,957, which is a 0159168 10/1985 European Pat.
    [Show full text]
  • Powerpoint Sunusu
    PRODRUGS OF ALCOHOLS AND PHENOLS • Acylation or alkylation of alcohols or phenols could lead to a less polar prodrug while phosphorylation can lead to a more water soluble prodrug. A. Aliphatic and Aromatic Esters • Drugs containing hydroxyl groups, including alcohols and phenols can have a variety of physical/chemical properties that have advantages and disadvantages. • Esterification of the hydroxyl group has been one of the preferred prodrug strategies to mask polar groups within a drug molecule and thereby promote membrane permeability. • Acyl groups that have been incorporated to form promoieties for the hydroxyl group range from lower alkyl groups to long-chain fatty acids. • Valacyclovir is a water soluble L-valine ester prodrug of the HIV reverse transcriptase inhibitor acyclovir. • Valacyclovir was developed to increase the oral absorption and plasma levels of acyclovir. Increased plasma concentrations of acyclovir are important to maintain antiviral activity, especially in immunocompromissed patients and in the treatment of less sensitive viruses such as cytomegalovirus (CMV) and varicella zoster virus (VZV). • Valacyclovir is rapidly absorbed and converted to acyclovir by enzymatic hydrolysis in the intestine and liver. • It is hydrolysed by a valacyclovir hydrolase to produce acyclovir and L-valine. • A series of alkyl, cycloalkyl, and aryl ester prodrugs of the nonselective -adrenergic antagonist timolol have been prepared by esterifying the hydroxyl group of timolol. • All the prodrugs studied were more lipophilic than timolol and the most promising examples penetrated the cornea substantially better than timolol. • The rate of ester hydrolysis of alkyl, cycloalkyl, and aryl ester- prodrug was about equal in plasma and phosphate buffer, making it difficult to design a prodrug which is stable in vitro but will convert quickly to an active drug in vivo.
    [Show full text]
  • Metabolic Activation of Proestrogenic Diphenyl and Related Compounds by Rat Liver Microsomes
    298 Journal of Health Science, 49(4) 298–310 (2003) Metabolic Activation of Proestrogenic Diphenyl and Related Compounds by Rat Liver Microsomes Shigeyuki Kitamura,*, a Seigo Sanoh,a Ryuki Kohta,a Tomoharu Suzuki,a Kazumi Sugihara,a Nariaki Fujimoto,b and Shigeru Ohtaa aGraduate School of Biomedical Sciences and bResearch Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1–2–3, Minami-ku, Hiroshima 734–8551, Japan (Received April 14, 2003; Accepted April 24, 2003) In this study, liver microsome-mediated activation of diphenyl (DP), diphenylmethane (DPM) and 2,2- diphenylpropane (DPP) to estrogens was demonstrated. These three compounds were negative in estrogen reporter assay using estrogen-responsive human breast cancer cell line MCF-7. However, they exhibited estrogenic activity after incubation with liver microsomes of 3-methylcholanthrene-treated rats in the cases of DP and DPM, or of phenobarbital-treated rats in the cases of DP and DPP, in the presence of NADPH. When these compounds were incubated with liver microsomes in the presence of NADPH, monohydroxyl and dihydroxyl derivatives were formed. These hydroxylated metabolites, 4-hydroxydiphenyl, 3-hydroxydiphenyl, 2-hydroxydiphenyl, 4-hydroxydiphenyl- methane, 2-(4-hydroxyphenyl)-2-phenylpropane (4-OH-DPP), 4,4′-dihydroxydiphenyl, 4,4′-dihydroxydiphenyl- methane and 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), all exhibited estrogenic activity in MCF-7 cells. Binding assay of these hydroxylated compounds with rat uterus estrogen receptor was also positive. These results suggest that the estrogenic activities of DP, DPM and DPP were due to the formation of hydroxylated metabolites by the liver cytochrome P450 system. Key words —–— diphenyl, estrogenic activity, metabolic activation, human breast cancer cell line MCF-7, endo- crine disruption, cytochrome P450 INTRODUCTION exert biological effects.
    [Show full text]